Advances in Clinical Medicine
Vol. 14  No. 03 ( 2024 ), Article ID: 82563 , 7 pages
10.12677/ACM.2024.143716

Avapritinib治疗血小板源性生长因子受体α 外显子18突变的晚期胃肠间质瘤的研究进展

刘昆,李洋*

重庆医科大学附属第二医院胃肠肛肠外科,重庆

收稿日期:2024年2月14日;录用日期:2024年3月9日;发布日期:2024年3月14日

摘要

胃肠间质瘤(GIST)是一类起源于胃肠道间叶组织的肿瘤,可根据编码受体酪氨酸激酶蛋白(KIT)和血小板源性生长因子受体α (PDGFRA)突变进行分子分类。酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)是胃肠间质瘤全身治疗的基础药物,显著延长了晚期胃肠间质瘤患者的生存期,但PDGFRA外显子18突变的晚期GIST对传统的靶向药物耐药。而Avapritinib是一种有效的KIT和PDGFRA-特异性酪氨酸激酶抑制剂,对PDGFRA外显子18 D842V突变的胃肠间质瘤患者显示出良好的缓解率,为耐药的晚期胃肠间质瘤患者提供了更多的治疗机会。本文对Avapritinib治疗PDGFRA外显子18 D842V突变的晚期胃肠间质瘤的研究进展进行综述。

关键词

Avapritinib,胃肠间质瘤,PDGFRA突变,D842V突变,研究进展

Research Progress of Avapritinib in the Treatment of Advanced Gastrointestinal Stromal Tumors with Mutation of Exon 18 of Platelet-Derived Growth Factor Receptor α

Kun Liu, Yang Li*

Gastrointestinal & Anorectal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing

Received: Feb. 14th, 2024; accepted: Mar. 9th, 2024; published: Mar. 14th, 2024

ABSTRACT

Gastrointestinal stromal tumors (GIST) are a group of tumors originating from the stromal lobe of the gastrointestinal tract that can be molecularly classified by mutations encoding the receptor tyrosine kinase protein (KIT) and platelet-derived growth factor receptor α (PDGFRA). Tyrosine kinase inhibitors (tyrosine kinase inhibitor, TKI) are the basic drugs for the systemic treatment of gastrointestinal GISTs, significantly prolonging the survival of patients with advanced gastrointestinal GISTs, but the advanced GIST with PDGFRA exon 18 mutation is resistant to conventional targeted drugs. Avapritinib, a potent KIT and PDGFRA-specific tyrosine kinase inhibitor, showed a favorable response rate for patients with PDGFRA exon 18 D842V mutation, providing more therapeutic opportunities for resistant patients with advanced gastrointestinal GISTs. This paper reviews Avapritinib treatment for advanced gastrointestinal stromal tumors with PDGFRA exon 18 D842V mutation.

Keywords:Avapritinib, Gastrointestinal Stromal Tumors, PDGFRΑ Mutation, D842V Mutation, Research Progress

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

胃肠间质瘤(GIST)是胃肠道中最常见的间叶性肿瘤,其细胞起源被认为与Cajal间质细胞有关 [1] ,但它们很罕见,每年每百万患者中的发病率仅为10~15例 [2] [3] 。目前治疗方式有手术治疗和药物治疗,如术前评估肿瘤可R0切除,首选外科手术治疗,手术切除后,根据危险度分级进行辅助治疗。术前评估预期肿瘤难以达到R0切除、需联合脏器切除、可完整切除但手术风险较大者,应考虑新辅助治疗 [4] [5] [6] 。需接受辅助治疗者,可接受TKI治疗,其疗效与肿瘤的基因突变位点有关 [7] [8] 。GIST的分子亚型很大程度上影响预后,分子检测被认为是接受全身治疗的患者的标准治疗方法 [9] 。大多数GIST是由编码受体酪氨酸激酶蛋白KIT (69%~83%)和PDGFRA (5%~15%)的基因突变驱动 [10] ,少数野生型GIST涉及其他分子改变,包括SDHx、BRAF、NF1、K/N-RAS和PIK3CA等基因突变 [11] [12] 。PDGFRA是GIST中第二大突变的癌基因 [13] ,最常见的PDGFRA分子亚型,即改变激活环的基因外显子18突变,而D842V是最常见的外显子18突变,单个D842V突变(将天冬氨酸替换为缬氨酸)会产生错义突变,从而对伊马替尼、舒尼替尼和瑞戈非尼产生耐药性 [14] 。与PDGFRA外显子18非D842V突变GIST相比,具有D842V突变的患者的OS较差 [15] 。Avapritinib是KIT和PDGFRA的有效选择性抑制剂,对KIT外显子17突变D816V和PDGFRA D842V突变激酶具有高效力,2020年1月9日在美国已经被批准用于治疗患有PDGFRA外显子18突变(包括PDGFRA D842V突变)的成人U/M GIST [16] 。2021年,我国批准Avapritinib上市用于治疗PDGFRA外显子18突变的转移性GIST [17] 。全文对Avapritinib治疗PDGFRA外显子18 D842V突变的晚期GIST的研究进展进行综述。

2. PDGFRA肿瘤发生机制

KIT和PDGFRA属于III型受体酪氨酸激酶的同一亚家族,通过JAK/STAT、Ras/ERK、PI3K和AKT途径传递下游信号 [18] 。尽管KIT和PDGFRA突变型GIST的下游信号通路被认为是相似的,但基因表达谱显示,每一类突变都表现出下游信号通路的差异表达 [19] [20] 。在对26个GIST的分析中,KIT突变的GIST中AKT/PI3K通路基因的水平较高,而PDGFRA突变的GIST中与T细胞受体信号传导相关的基因水平较高 [21] 。然而,对22个GIST的类似研究表明PDGFRA和KIT突变的GIST之间70个基因的表达存在差异 [22] 。尽管需要进一步的工作来充分了解差异基因表达的临床影响,但很明显,PDGFRA突变的某些亚组患者的一个重要临床区别是对TKI治疗缺乏敏感性。最常见的突变是单核苷酸取代2664A → T,导致D842V激活突变 [23] 。这种突变导致激酶激活环扭曲,从而导致有利于活性结构的蛋白质构象改变。这导致D842V突变体对伊马替尼不敏感,因为伊马替尼只能与PDGFRA的非活性形式结合 [24] 。

3. PDGFRA突变——治疗意义

体外数据表明,PDGFRA突变体之间的伊马替尼反应不同。几乎所有外显子18 D842突变体(D842Y除外)已被证明具有伊马替尼耐药性 [25] [26] 。而其他PDGFRA突变体已被发现对伊马替尼敏感 [25] [26] 。然而,在相对不常见的PDGFRA分子亚型中,越来越多的文献证明,PDGFRA外显子18 D842V突变和非外显子18 D842V突变患者对伊马替尼的反应存在差异 [27] 。PDGFRA外显子18 D842V突变GIST患者预后较差。来自PDGFRA突变GIST回顾性队列的证据支持不同PDGFRA突变之间伊马替尼敏感性的差异。在一项欧洲回顾性研究中,与携带D842V突变的患者相比,携带非PDGFRA D842V突变的患者对伊马替尼的反应有所改善(D842V疾病进展 = 68% vs非D842V = 12%) [28] 。携带D842V突变的肿瘤患者与使用伊马替尼治疗的其他非D842V外显子18突变的肿瘤患者之间的PFS存在统计学显着性差异(分别为2.8个月和28.5个月)。具有D842V突变的患者的OS较差(14.7个月vs未达到非D842V突变的患者) [28] 。

4. Avapritinib的作用机制

85%~90%的GIST病例存在肿瘤驱动基因KIT (约80%~85%)和PDGFRA (约10%)的活化突变,其中KIT基因突变常发生在外显子9和11,PDGFRA基因突变常发生在外显子12和18 [29] [30] 。KIT基因和PDGFRA基因同属于III型受体酪氨酸激酶( receptor tyrosine kinase, RTK)家族成员,分别表达蛋白产物KIT (CD117)和PDGFRA。KIT和PDGFRA均属于跨膜酪氨酸激酶受体,由胞外区(免疫球蛋白样结构域,配体结合部位) 、跨膜区(氨基酸残基)和胞内区(酪氨酸激酶结构域)组成 [31] [32] [33] 。正常情况下,KIT的胞外区与其配体(干细胞因子(stem cell factor, SCF))结合,引起KIT的二聚体化及磷酸化,进而调控下游信号通路(MARK, JAK/STAT)的信号转导,促发相关联级反应,进而调控基因表达。当KIT基因活化突变,KIT可在无配体结合时自主二聚体化及磷酸化,活化相关信号通路,引起细胞生长、增殖和分化的失控,最终导致肿瘤的发生或进展 [31] [34] 。PDGFRA基因位于KIT基因的下游(4q12),其可表达蛋白产物PDGFRA。正常情况下,PDGFRA的胞外区与其配体[血小板源性生长因子(platelet-derived growth factor, PDGF)]结合后,PDGFRA会发生二聚化,进一步通过反式磷酸化的方式激活,调控PDGF/PDGFRA信号通路的信号转导 [33] 。PDGFRA基因突变时,导致PDGFRA的异常表达,PDGF/PDGFRA信号通路转导紊乱,比如PDGFRβ胞外结构域被核有丝分裂蛋白NUMA1的卷曲螺旋结构域所置换,导致形成二聚化的融合蛋白,引起间质细胞无序增殖和迁移并促进肿瘤血管的生成,最终导致肿瘤的发生或进展 [33] [35] 。Avapritinib是一种能够强效、选择性地抑制突变激酶KIT和PDGFRA (分别由活化突变的肿瘤驱动基因KIT和PDGFRA表达)的新型TKI。Evans等 [36] 通过细胞实验表明,Avapritinib对KIT D816V和PDGFRA D842V基因突变体(对其他TKIs耐药的突变类型)的半抑制浓度(IC50)分别为0.27和0.24 nmol∙L−1,具有明显的抑制活性。Gebreyohannes等 [37] 通过小鼠GIST异种移植模型研究表明,Avapritinib能够显著抑制肿瘤细胞的生长。

5. Avapritinib的临床研究及治疗效果

5.1. I期临床研究:NAVIGATOR (NCT02508532)研究

NAVIGATOR研究是一项将Avapritinib首次用于人类的单臂、开放标签、多中心I期临床试验(NCT02508532),旨在初步评价Avapritinib治疗晚期GIST或其他复发/难治性实体肿瘤的安全性和有效 性 [38] 。NAVIGATOR研究纳入了250例患者作为研究对象,其中总共38例PDGFRA D842V突变GIST患者接受了阿伐替尼300/400mg起始剂量。研究起始给予患者口服Avapritinib 400 mg∙d−1,后由于ADR,剂量降低至300 mg∙d−1,连续用药直至疾病进展或出现不可耐受的ADR。由于摄入2种剂量Avapritinib的患者在客观缓解率方面无明显差异,所有数据进行汇总分析。亚组分析显示,38例PDGFRA D842V突变的GIST患者的ORR为95% (36/38例;5例(13%)患者达到完全缓解,31例(82%)患者达到部分缓解[PR])。正是基于此项研究成果,Avapritinib得以成功获批上市。

5.2. I/II期桥接研究:NCT04254939研究

Avapritinib对PDGFRA D842V突变GIST的安全性和初步临床疗效已在NAVIGATOR研究中得到证实。在中国进行了一项个体、开放标签、I/II期桥接研究,旨在确定RP2D、评估阿伐普替尼在中国不可切除或转移性GIST患者中的安全性和疗效 [39] 。第一阶段包括安全剂量递增和第二阶段剂量确定。II期包括对具有PDGFRA D842V突变的患者或已接受至少3线治疗但无PDGFRA D842V突变的患者进行剂量扩展,以进行安全性/有效性评估。主要终点是推荐的II期剂量、安全性和独立放射学审查委员会(IRRC)评估的客观缓解率(ORR)。研究共纳入65名GIST患者作为研究对象。一阶段中6名59名患者接受了Avapritinib的起始剂量为200毫克和300毫克,在两个剂量组中,总共有47/65 (72%)名患者报告了≥3级TRAE。300 mg剂量组的2名患者观察到4级TRAE,但没有报告5级TRAE。表明,Avapritinib对于不可切除或转移性胃肠道间质瘤(GIST)患者是安全且可耐受的。接受300 mg起始剂量59名患者中,28名为PDGFRA D842V突变GIST患者,其中根据IRRC评估,21名患者实现了部分缓解(PR),ORR为75% (95% CI: 55%~89%)。CBR为86%。根据研究者评估,1名患者获得完全缓解(CR) (4%; 95% CI: 0%~18%),21名患者获得PR (75%; 95% CI: 55%~89%),ORR为79% (95% CI: 59%~92%),CBR为86%。根据Choi标准评估PDGFRA D842V人群的抗肿瘤疗效显示,25/28例患者达到PR,ORR为89% (95% CI: 72%~98%)。根据Choi标准的CBR为89% (95% CI: 72%~98%)。接受300 mg起始剂量59名患者中,23名患者之前接受过至少3线TKI治疗(即第四线或后线治疗)并且没有PDGFRA D842V突变。根据IRRC评估,5名患者实现PR (ORR 22%; 95% CI: 8%~44%)。根据研究者评估,1例达到CR,7例达到PR (ORR 35%; 95% CI: 16%~57%)。根据研究者和IRRC的评估,四线或后线患者的CBR为57% (95% CI: 35%~77%)。在NAVIGATOR研究中,Avapritinib在接受过多次治疗且携带PDGFRA D842V突变的晚期GIST患者中表现出前所未有的持久抗肿瘤活性,ORR为91% (51/56名患者)。在该研究中,包括PDGFRA D842V患者群体,IRRC评估的ORR为75% (21/28患者),CBR为86%。研究者评估的ORR为79% (22/28例患者),与IRRC评估一致。NAVIGATOR研究评估了第四线或后线队列中无PDGFRA D842V突变的患者的疗效,报告ORR为17%,在该研究中,IRRC评估的四线或后线患者的ORR为22%,结果一致。表明Avapritinib在携带PDGFRA D842V突变的中国GIST患者中显示出显着的抗肿瘤活性,并且作为第四线或后线单一疗法具有显着的疗效。基于这些和全球NAVIGATOR研究结果,Avapritinib在中国被批准用于治疗PDGFRA D842V突变GIST。

5.3. III期临床研究:VOYAGER (NCT03465722)研究

VOYAGER (NCT03465722)是一项III期研究,评估了Avapritinib与瑞戈非尼作为不可切除或转移性GIST患者的三线或后续治疗的疗效和安全性 [40] 。VOYAGER研究纳入476名既往接受伊马替尼和一种或两种额外TKI治疗的U/M GIST患者患者作为研究对象,476 名患者被随机分配(Avapritinib, n = 240; regorafenib, n = 236)至Avapritinib 300 mg每日一次(连续4周)或瑞格非尼160 mg每日一次(连续3周,停药1周)。Avapritinib和瑞戈非尼之间的中位PFS没有统计学差异(风险比,1.25;95% CI,0.99至1.57;4.2个月vs 5.6个月;P = 0.055)。Avapritinib和瑞戈非尼的ORR分别为17.1%和7.2%,缓解持续时间分别为7.6和9.4个月;DCR为41.7% (95% CI,35.4至48.2)和46.2% (95% CI,39.7至52.8)。Avapritinib (92.5%和55.2%)和瑞戈非尼(96.2%和57.7%)的治疗相关不良事件(任何级别,≥3级)相似。在接受Avapritinib治疗的7名PDGFRA D842V突变GIST患者中,ORR为42.9% (95% CI,9.9至81.6;全部PR),57.1%出现SD,没有患者出现PD,DCR为100.0% (95% CI,59.0至100.0)。相比之下,接受瑞戈非尼治疗的6名PDGFRA D842V突变GIST患者均未出现放射学反应,50.0%出现SD,16.7%出现PD,DCR为33.3% (95% CI,4.3至77.7;数据补充)。NAVIGATOR研究中的观察结果类似,Avapritinib在所有PDGFRA D842V突变GIST患者中均表现出抗肿瘤活性。在安全人群中,接受Avapritinib (92.5%)和瑞戈非尼(96.2%)治疗的患者中任何级别的治疗相关不良事件(TRAE)的发生率相似,分别有55.2%和57.7%报告级别 ≥ 3 TRAE。≥30%的患者中最常见的任何级别TRAE为贫血(40.2%)、恶心(39.3%)和疲劳(35.1%),使用Avapritinib和疲劳(34.2%)、腹泻(34.6%)和手掌–瑞戈非尼引起的足底红斑感觉综合征(59.0%)。截至目前,在分子未选择的晚期GIST患者中,阿伐替尼和瑞非尼的中位PFS没有显著差异。该研究还未达到主要终点,期待后续数据进一步展示。

6. 结语

Avapritinib是一种能够强效、选择性地抑制突变激酶KIT和PDGFRA的新型TKI,且不同于传统的分子靶向药物(如伊马替尼、舒尼替尼和瑞戈非尼) [41] [42] ,它对于携带PDGFRA D842V活化突变的GIST也具有强大的抗肿瘤活性。目前,Avapritinib也是全球首款针对性治疗携带PDGFRA外显子18突变的GIST患者的靶向药物。现今有限的研究数据表明,Avapritinib对于特定类型的GIST具有不错的疗效,已经先后被多个国家批准上市用于治疗PDGFRA外显子18突变的晚期GIST患者。其III期临床试验数据还未完全统计,就目前来看,Avapritinib在治疗晚期PDGFRA外显子18突变的GIST患者的过程中,疗效可观,期待更进一步研究,在未来为晚期PDGFRA外显子18突变GIST患者带来更多希望。

文章引用

刘 昆,李 洋. Avapritinib治疗血小板源性生长因子受体α外显子18突变的晚期胃肠间质瘤的研究进展
Research Progress of Avapritinib in the Treatment of Advanced Gastrointestinal Stromal Tumors with Mutation of Exon 18 of Platelet-Derived Growth Factor Receptor α[J]. 临床医学进展, 2024, 14(03): 402-408. https://doi.org/10.12677/ACM.2024.143716

参考文献

  1. 1. Huizinga, J.D., Thuneberg, L., Klüppel, M., et al. (1995) W/Kit Gene Required for Interstitial Cells of Cajal and for In-testinal Pacemaker Activity. Nature, 373, 347-349. https://doi.org/10.1038/373347a0

  2. 2. Verschoor, A.J., Bovée, J., Overbeek, L.I.H., et al. (2018) The Incidence, Mutational Status, Risk Classification and Referral Pattern of Gas-tro-Intestinal Stromal Tumours in the Netherlands: A Nationwide Pathology Registry (PALGA) Study. Virchows Archiv, 472, 221-229. https://doi.org/10.1007/s00428-017-2285-x

  3. 3. Søreide, K., Sandvik, O.M., Søreide, J.A., et al. (2016) Global Epidemiology of Gastrointestinal Stromal Tumours (GIST): A Systematic Review of Population-Based Cohort Studies. Cancer Epidemiology, 40, 39-46. https://doi.org/10.1016/j.canep.2015.10.031

  4. 4. Fiore, M., Palassini, E., Fumagalli, E., et al. (2009) Preoperative Imatinib Mesylate for Unresectable or Locally Advanced Primary Gastrointestinal Stromal Tumors (GIST). European Journal of Surgical Oncology, 35, 739-745. https://doi.org/10.1016/j.ejso.2008.11.005

  5. 5. Li, W., Li, X., Yu, K., et al. (2022) Efficacy and Safety of Neoad-juvant Imatinib Therapy for Patients with Locally Advanced Rectal Gastrointestinal Stromal Tumors: A Multi-Center Cohort Study. Frontiers in Pharmacology, 13, Article 950101. https://doi.org/10.3389/fphar.2022.950101

  6. 6. Yang, H., Shen, C., Yin, X., et al. (2021) Clinicopathological Fea-tures, Clinical Efficacy on 101 Cases of Rectal Gastrointestinal Stromal Tumors, and the Significance of Neoadjuvant Therapy. BMC Surgery, 21, Article No. 400. https://doi.org/10.1186/s12893-021-01397-8

  7. 7. Sciot, R., Debiec-Rychter, M., Daugaard, S., et al. (2008) Dis-tribution and Prognostic Value of Histopathologic Data and Immunohistochemical Markers in Gastrointestinal Stromal Tumours (GISTs): An Analysis of the EORTC Phase III Trial of Treatment of Metastatic GISTs with Imatinib Mesylate. European Journal of Cancer, 44, 1855-1860. https://doi.org/10.1016/j.ejca.2008.06.003

  8. 8. Bannon, A.E., Klug, L.R., Corless, C.L., et al. (2017) Using Mo-lecular Diagnostic Testing to Personalize the Treatment of Patients with Gastrointestinal Stromal Tumors. Expert Review of Molecular Diagnostics, 17, 445-457. https://doi.org/10.1080/14737159.2017.1308826

  9. 9. Casali, P.G., Abecassis, N., Aro, H.T., et al. (2018) Gastro-intestinal Stromal Tumours: ESMO-EURACAN Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 29, Iv68-Iv78.

  10. 10. 刘柏钶, 蔡兆伦, 张波. 晚期胃肠间质瘤新药相关I期临床试验进展[J]. 中国肿瘤临床, 2022, 49(2): 64-68.

  11. 11. Patel, S.R. and Reichardt, P. (2021) An Updated Review of the Treatment Landscape for Advanced Gastrointestinal Stromal Tumors. Cancer, 127, 2187-2195. https://doi.org/10.1002/cncr.33630

  12. 12. Boikos, S.A., Pappo, A.S., Killian, J.K., et al. (2016) Molecular Subtypes of KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumors: A Report from the National Institutes of Health Gastroin-testinal Stromal Tumor Clinic. JAMA Oncology, 2, 922-928. https://doi.org/10.1001/jamaoncol.2016.0256

  13. 13. Cassier, P.A., Ducimetière, F., Lurkin, A., et al. (2010) A Pro-spective Epidemiological Study of New Incident GISTs during Two Consecutive Years in Rhône Alpes Region: Inci-dence and Molecular Distribution of GIST in a European Region. British Journal of Cancer, 103, 165-170. https://doi.org/10.1038/sj.bjc.6605743

  14. 14. Sun, Y., Yue, L., Xu, P., et al. (2022) An Overview of Agents and Treatments for PDGFRA-Mutated Gastrointestinal Stromal Tumors. Frontiers in Oncology, 12, Article 927587. https://doi.org/10.3389/fonc.2022.927587

  15. 15. Smrke, A., Gennatas, S., Huang, P., et al. (2020) Avapritinib in the Treatment of PDGFRA Exon 18 Mutated Gastrointestinal Stromal Tumors. Future Oncologyvol, 16, 1639-1646. https://doi.org/10.2217/fon-2020-0348

  16. 16. Joseph, C.P., Abaricia, S.N., Angelis, M.A., et al. (2021) Optimal Avapritinib Treatment Strategies for Patients with Metastatic or Unresectable Gastrointestinal Stromal Tumors. Oncolo-gist, 26, E622-E631. https://doi.org/10.1002/onco.13632

  17. 17. Jones, R.L., Serrano, C., Von, Mehren, M., et al. (2021) Avapritinib in Unresectable or Metastatic PDGFRA D842V-Mutant Gastrointestinal Stromal Tumours: Long-Term Efficacy and Safety Data from the NAVIGATOR Phase I Trial. European Journal of Cancer, 145, 132-142. https://doi.org/10.1016/j.ejca.2020.12.008

  18. 18. Corless, C.L., Barnett, C.M. and Heinrich, M.C. (2011) Gastroin-testinal Stromal Tumours: Origin and Molecular Oncology. Nature Reviews Cancer, 11, 865-878. https://doi.org/10.1038/nrc3143

  19. 19. Sihto, H., Sarlomo-Rikala, M., Tynninen, O., et al. (2005) KIT and Plate-let-Derived Growth Factor Receptor α Tyrosine Kinase Gene Mutations and KIT Amplifications in Human Solid Tumors. Journal of Clinical Oncology, 23, 49-57. https://doi.org/10.1200/JCO.2005.02.093

  20. 20. Du, Z.Q., Dong, J., Li, M.X., et al. (2020) Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Re-generation and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. Journal of Cancer, 11, 4614-4624. https://doi.org/10.7150/jca.44492

  21. 21. Subramanian, S., West, R.B., Corless, C.L., et al. (2004) Gas-trointestinal Stromal Tumors (GISTs) with KIT and PDGFRA Mutations Have Distinct Gene Expression Profiles. On-cogene, 23, 7780-7790. https://doi.org/10.1038/sj.onc.1208056

  22. 22. Kang, H.J., Koh, K.H., Yang, E., et al. (2006) Differentially Expressed Proteins in Gastrointestinal Stromal Tumors with KIT and PDGFRA Mutations. Proteomics, 6, 1151-1157. https://doi.org/10.1002/pmic.200500372

  23. 23. Lasota, J. and Miettinen, M. (2008) Clinical Significance of Onco-genic KIT and PDGFRA Mutations in Gastrointestinal Stromal Tumours. Histopathology, 53, 245-266. https://doi.org/10.1111/j.1365-2559.2008.02977.x

  24. 24. Szucs, Z., Thway, K., Fisher, C., et al. (2017) Molecular Subtypes of Gastrointestinal Stromal Tumors and Their Prognostic and Therapeutic Implications. Future Oncology, 13, 93-107. https://doi.org/10.2217/fon-2016-0192

  25. 25. Corless, C.L., Schroeder, A., Griffith, D., et al. (2005) PDGFRA Mutations in Gastrointestinal Stromal Tumors: Frequency, Spectrum and in Vitro Sensitivity to Imatinib. Journal of Clinical Oncology, 23, 5357-5364. https://doi.org/10.1200/JCO.2005.14.068

  26. 26. Heinrich, M.C., Owzar, K., Corless, C.L., et al. (2008) Correlation of Kinase Genotype and Clinical Outcome in the North American Intergroup Phase III Trial of Imatinib Mesylate for Treatment of Advanced Gastrointestinal Stromal Tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. Journal of Clinical Oncology, 26, 5360-5367. https://doi.org/10.1200/JCO.2008.17.4284

  27. 27. Farag, S., Somaiah, N., Choi, H., et al. (2017) Clinical Characteris-tics and Treatment Outcome in a Large Multicentre Observational Cohort of PDGFRA Exon 18 Mutated Gastrointestinal Stromal Tumour Patients. European Journal of Cancer, 76, 76-83. https://doi.org/10.1016/j.ejca.2017.02.007

  28. 28. Cassier, P.A., Fumagalli, E., Rutkowski, P., et al. (2012) Outcome of Patients with Platelet-Derived Growth Factor Receptor α-Mutated Gastrointestinal Stromal Tumors in the Tyrosine Kinase Inhibitor Era. Clinical Cancer Research, 18, 4458-4464. https://doi.org/10.1158/1078-0432.CCR-11-3025

  29. 29. Mei, L., Smith, S.C., Faber, A.C., et al. (2018) Gastrointes-tinal Stromal Tumors: the GIST of Precision Medicine. Trends in Cancer, 4, 74-91. https://doi.org/10.1016/j.trecan.2017.11.006

  30. 30. 中国临床肿瘤学会胃肠间质瘤专家委员会. 中国胃肠间质瘤诊断治疗共识(2017年版) [J]. 肿瘤综合治疗电子杂志, 2018, 4(1): 31-43.

  31. 31. Kang, W., Zhu, C., Yu, J., et al. (2015) KIT Gene Mutations in Gastrointestinal Stromal Tumor. Frontiers in Bioscience, 20, 919-926. https://doi.org/10.2741/4346

  32. 32. Iorio, N., Sawaya, R.A. and Friedenberg, F.K. (2014) Review Article: the Biol-ogy, Diagnosis and Management of Gastrointestinal Stromal Tumours. Alimentary Pharmacology & Therapeutics, 39, 1376-1386. https://doi.org/10.1111/apt.12761

  33. 33. 王媚媚, 秦晓红, 米立志. 血小板衍生生长因子受体结构与功能的研究[J]. 中国科学(生命科学), 2019, 49(6): 683-697.

  34. 34. Hemming, M.L., Heinrich, M.C., Bauer, S. and George, S. (2018) Translational Insights into Gastrointestinal Stromal Tumor and Current Clinical Advances. Annals of Oncology, 29, 2037-2045. https://doi.org/10.1093/annonc/mdy309

  35. 35. Appiah-Kubi, K., Lan, T., Wang, Y., et al. (2017) Platelet-Derived Growth Factor Receptors (PDGFRs) Fusion Genes Involvement in Hematological Malignancies. Criti-cal Reviews in Oncology/Hematology, 109, 20-34. https://doi.org/10.1016/j.critrevonc.2016.11.008

  36. 36. Evans, E.K., Gardino, A.K., Kim, J.L., et al. (2017) A Preci-sion Therapy against Cancers Driven by KIT/PDGFRA Mutations. Science Translational Medicine, 9, eaao1690. https://doi.org/10.1126/scitranslmed.aao1690

  37. 37. Gebreyohannes, Y.K., Wozniak, A., Zhai, M.E., et al. (2019) Robust Activity of Avapritinib, Potent and Highly Selective Inhibitor of Mutated KIT, in Patient-Derived Xenograft Models of Gastrointestinal Stromal Tumors. Clinical Cancer Research, 25, 609-618. https://doi.org/10.1158/1078-0432.CCR-18-1858

  38. 38. Heinrich, M.C., Jones, R.L., Von Mehren, M., et al. (2020) Avapritinib in Advanced PDGFRA D842V-Mutant Gastrointestinal Stromal Tumour (NAVIGATOR): A Multicentre, Open-Label, Phase 1 Trial. The Lancet Oncology, 21, 935-946. https://doi.org/10.1016/S1470-2045(20)30269-2

  39. 39. Li, J., Zhang, X., Deng, Y., et al. (2023) Efficacy and Safety of Avapritinib in Treating Unresectable or Metastatic Gastrointestinal Stromal Tumors: A Phase I/II, Open-Label, Multi-center Study. Oncologist, 28, 187-e114. https://doi.org/10.1093/oncolo/oyac242

  40. 40. Kang, Y.K., George, S., Jones, R.L., et al. (2021) Avapritinib versus Regorafenib in Locally Advanced Unresectable or Metastatic GI Stromal Tumor: A Randomized, Open-Label Phase III Study. Journal of Clinical Oncology, 39, 3128-3139. https://doi.org/10.1200/JCO.21.00217

  41. 41. 许高奇, 张轶雯, 孔思思, 等. 酪氨酸激酶抑制剂的群体药动学研究进展[J]. 中国现代应用药学, 2020, 37(15): 1899-1906.

  42. 42. 张轶雯, 潘宗富, 叶强, 等. 新一代TKI类药物瑞派替尼在胃肠间质瘤中的作用及研究进展[J]. 中国新药杂志, 2020, 29(23): 2690-2694.

  43. NOTES

    *通讯作者。

期刊菜单