设为首页
加入收藏
期刊导航
网站地图
首页
期刊
数学与物理
地球与环境
信息通讯
经济与管理
生命科学
工程技术
医药卫生
人文社科
化学与材料
会议
合作
新闻
我们
招聘
千人智库
我要投稿
办刊
期刊菜单
●领域
●编委
●投稿须知
●最新文章
●检索
●投稿
文章导航
●Abstract
●Full-Text PDF
●Full-Text HTML
●Full-Text ePUB
●Linked References
●How to Cite this Article
PureMathematics
n
Ø
ê
Æ
,2023,13(3),644-648
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133069
˜
‘
š
‚
5
Å
Ä
•
§
˜
‡
5
P
ÅÅÅ!!!!!!
§§§
ÁÁÁ
WWW
À
u
Œ
Æ
n
Æ
ê
Æ
X
§
þ
°
Â
v
F
Ï
µ
2023
c
2
22
F
¶
¹
^
F
Ï
µ
2023
c
3
23
F
¶
u
Ù
F
Ï
µ
2023
c
3
30
F
Á
‡
©
ï
Ä
÷
v
"
^
‡
˜
‘
š
‚
5
Å
Ä
•
§
Cauchy
¯
K
§
Ï
L
ò
˜
‘
š
‚
5
Å
Ä
•
§
z
•
˜
‘
[
‚
5
Å
Ä
•
§
|
§
|
^
[
‚
5
œ
/
(
Ø
§
·
‚
y
²
Ð
Š
²
;
)
N
•
3
5
"
'
…
c
˜
‘
š
‚
5
Å
Ä
•
§
§
Cauchy
¯
K
§
"
^
‡
§
Ð
Š
§
N
•
3
5
ANoteonOne-DimensionFully
NonlinearWaveEquations
XinxinXue,DongbingZha
DepartmentofMathematics,CollegeofScience,DonghuaUniversity,Shanghai
Received:Feb.22
nd
,2023;accepted:Mar.23
rd
,2023;published:Mar.30
th
,2023
Abstract
Inthispaper,westudytheCauchyproblemofone-dimensionfullynonlinearwave
equationswithnullcondition,bytransformingtheone-dimensionfullynonlinearwave
equationtoasystemofone-dimensionquasilinearwaveequations,andusingtheresult
©
Ù
Ú
^
:
Å!!
,
Á
W
.
˜
‘
š
‚
5
Å
Ä
•
§
˜
‡
5
P
[J].
n
Ø
ê
Æ
,2023,13(3):644-648.
DOI:10.12677/pm.2023.133069
Å!!
§
Á
W
inthequasilinearcase,weshowtheglobalexistenceofclassicalsolutionwithsmall
initialdata.
Keywords
One-DimensionFullyNonlinearWaveEquations,CauchyProblem,NullCondition,
SmallInitialData,GlobalExistence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.
Ú
ó
P
(
t,x
)
∈
R
×
R
•
(
k
‹
I
§
…
½
Â
ξ
=
t
+
x
2
,
η
=
t
−
x
2
,(1.1)
±
9
ƒ
A
•
þ
|
(
A
ê
)
∂
ξ
=
∂
t
+
∂
x
,
∂
η
=
∂
t
−
∂
x
.(1.2)
˜
‘
à
g
‚
5
Å
Ä
•
§
3
(
ξ,η
)
‹
I
e
Œ
•
u
ξη
=0
"
©
ò
?
n
Ù
š
‚
5
6
Ä
"
•
X
e
š
‚
5
Å
Ä
•
§
u
ξη
=
F
(
u,u
ξ
,u
η
,u
ξξ
,u
ηη
,u
ξη
)
,
(1.3)
ù
p
™
•
¼
ê
u
=
u
(
t,x
):
R
1+1
−→
R
"
P
λ
=(
λ
i
)
1
≤
i
≤
6
.
b
3
λ
=0
˜
‡
•
¥
§
š
‚
5
‘
¿
©
1
w
…
÷
v
F
(
λ
) =
O
(
|
λ
|
2
)
.
(1.4)
·
‚
¡
•
§
(1.3)
÷
v
"
^
‡
§
e?
Û
(
)
†
1
Å
)
u
=
φ
(
ξ
)
±
9
m
1
Å
)
u
=
ψ
(
η
)
Ñ
÷
v
(1.3)
"
„
[1–4]
±
9
[5]
"
=
3
λ
= 0
˜
‡
•
¥
§
¤
á
F
(
λ
1
,λ
2
,
0
,λ
4
,
0
,
0) = 0
,
(1.5)
F
(
λ
1
,
0
,λ
3
,
0
,λ
5
,
0) = 0
.
(1.6)
Š
â
(1.4)
§
(1.5)
±
9
(1.6)
§
d
‡
È
©
Ä
½
n
!
ó
ª
{
K
±
9
Leibniz
{
K
´
•
3
λ
= 0
˜
‡
DOI:10.12677/pm.2023.133069645
n
Ø
ê
Æ
Å!!
§
Á
W
•
¥
¤
á
F
(
λ
) =
O
(
|
λ
2
|
+
|
λ
4
|
+
|
λ
6
|
)(
|
λ
3
|
+
|
λ
5
|
+
|
λ
6
|
)
,
(1.7)
F
λ
1
(
λ
)
,F
λ
2
(
λ
)
,F
λ
4
(
λ
) =
O
(
|
λ
3
|
+
|
λ
5
|
+
|
λ
6
|
)
,
(1.8)
F
λ
1
(
λ
)
,F
λ
3
(
λ
)
,F
λ
5
(
λ
) =
O
(
|
λ
2
|
+
|
λ
4
|
+
|
λ
6
|
)(1.9)
±
9
F
λ
6
(
λ
) =
O
(
|
λ
|
)
.
(1.10)
•
(1.3)
ä
Ð
Š
t
= 0 :
u
=
εu
0
, u
t
=
εu
1
(1.11)
Cauchy
¯
K
§
Ù
¥
u
0
±
9
u
1
´
¿
©
1
w
;
|
8
1
w
¼
ê
§
ε>
0
´
˜
‡
ë
ê
"
é
u
Cauchy
¯
K
(1.3)–(1.11)
§
3
Œ
‚
5
œ
/
§
3
˜
‡
r
"
^
‡b
e
§
[6]
‰
Ñ
²
;
)
N
•
3
5
§
[5]
3
"
^
‡
b
e
‰
Ñ
²
;
)
N
•
3
5
¶
[
‚
5
œ
/
K3
[7]
¥
‰
Ñ
y
²
"
ƒ
'
©
z
½
„
[8]
Ú
[9].
©
8
I
´
?
n
•
˜
„
š
‚
5
œ
/
"
©
Ì
‡
(
J
´
X
e
½
n
1.1.
e
"
^
‡
÷
v
…
ε>
0
¿
©
§
K
Cauchy
¯
K
(1.3)
–
(1.11)
•
3
•
˜
N
²
;
)
"
3
e
!
¥
§
·
‚
ò
‰
Ñ
½
n
1.1
y
²
"
2.
½
n
1.1
y
²
·
‚
y
²
½
n
1.1
1
˜
Ú
´
Ï
L
¦
ò
š
‚
5
Å
Ä
•
§
(1.3)
z
•
˜
‡
[
‚
5
Å
Ä
•
§
|
"
T
•{
u
[10]
"
3
©
¥
§
«
O
u
[10]
¥
¦
^
ž
˜
ê
§
·
‚
ò
¦
^
A
ê
"
1
Ú
´
y
8
(
[
‚
5
Å
Ä
•
§
|
÷
v
"
^
‡
§
l
Œ
±
|
^
[7]
¥
N
•
3
5
(
Ø
"
Ä
k
§
d
(1.3)
Œ
u
ξξη
=
F
λ
1
u
ξ
+
F
λ
2
u
ξξ
+
F
λ
3
u
ξη
+
F
λ
4
u
ξξξ
+
F
λ
5
u
ξηη
+
F
λ
6
u
ξξη
,
(2.1)
u
ηξη
=
F
λ
1
u
η
+
F
λ
2
u
ξη
+
F
λ
3
u
ηη
+
F
λ
4
u
ξξη
+
F
λ
5
u
ηηη
+
F
λ
6
u
ξηη
,
(2.2)
ù
p
·
‚
{P
F
λ
i
=
F
λ
i
(
u,u
ξ
,u
η
,u
ξξ
,u
ηη
,u
ξη
)
,i
= 1
,
···
,
6
"
-
U
= (
U
(1)
,U
(2)
,U
(3)
)
T
= (
u,u
ξ
,u
η
)
T
"
d
(1.3)
§
(2.1)
±
9
(2.2)
Œ
U
ξη
=
A
1
(
U,U
ξ
,U
η
)
U
ξη
+
A
2
(
U,U
ξ
,U
η
)
U
ξξ
+
A
3
(
U,U
ξ
,U
η
)
U
ηη
+
G
(
U,U
ξ
,U
η
)
,
(2.3)
ù
p
Ý
Š
¼
ê
A
i
:
R
3
×
R
3
×
R
3
−→
R
3
×
3
,
i
= 1
,
2
,
3,
A
1
= diag
0
,F
λ
6
,F
λ
6
,A
2
= diag
0
,F
λ
4
,F
λ
4
,A
3
= diag
0
,F
λ
5
,F
λ
5
,
(2.4)
DOI:10.12677/pm.2023.133069646
n
Ø
ê
Æ
Å!!
§
Á
W
•
þ
Š
¼
ê
G
:
R
3
×
R
3
×
R
3
−→
R
3
,
G
=
F,F
λ
1
u
ξ
+
F
λ
2
u
ξξ
+
F
λ
3
u
ξη
,F
λ
1
u
η
+
F
λ
2
u
ξη
+
F
λ
3
u
ηη
=
F,F
λ
1
U
(1)
ξ
+
F
λ
2
U
(2)
ξ
+
F
λ
3
U
(2)
η
,F
λ
1
U
(1)
η
+
F
λ
2
U
(3)
ξ
+
F
λ
3
U
(3)
η
.
(2.5)
d
(1.7)
§
(1.8)
§
(1.9)
§
(1.10)
§
(2.4)
±
9
(2.5)
Œ
A
1
(
U,U
ξ
,U
η
) =
O
(
|
U
|
+
|
U
ξ
|
+
|
U
η
|
)
,
(2.6)
A
2
(
U,U
ξ
,U
η
) =
O
(
|
U
η
|
)
,
(2.7)
A
3
(
U,U
ξ
,U
η
) =
O
(
|
U
ξ
|
)
,
(2.8)
G
(
U,U
ξ
,U
η
) =
O
(
|
U
ξ
||
U
η
|
)
.
(2.9)
·
‚
•
Ñ
(2.6)–(2.9)
T
´
[
‚
5
œ
/
"
^
‡
"
y
3
·
‚
®
ò
š
‚
5
Å
Ä
•
§
(1.3)
z
•
[
‚
5
Å
Ä
•
§
|
(2.3)
§
Ù
X
ê
A
i
(
i
=1
,
2
,
3)
•
é
¡
Ý
…
÷
v
(
5
^
‡
(2.6)
§
(2.7)
§
(2.8)
§
(2.9)
"
é
u
ù
«
/
ª
[
‚
5
Å
Ä
•
§
|
Cauchy
¯
K
§
Ù
Ð
Š
²
;
)
N
•
3
5
®
3
[7]
¥y
²
"
Ï
d
½
n
1.1
y
"
5
2.1.
3
(1.3)
¥
§
™
•
¼
ê
u
Š
uk
•
‘
•
þ
˜
m
R
n
ž
§
e
é
u
i
=4
,
5
,
6
,F
λ
i
:
R
6
n
−→
R
n
×
n
´
é
¡
§
K
½
n
1.1
•
¤
á
"
—
©
Š
ö
¥
p
Ä
‰
ï
’
Ö
¤
;
‘
]
7
(Fundamental ResearchFundsfor theCentral
Universities,No.2232022D-27)
]
Ï
"
ë
•
©
z
[1]Alinhac,S.(2001)TheNullConditionforQuasilinearWaveEquationsinTwoSpaceDimen-
sions.
InventionesMathematicae
,
145
,597-618.https://doi.org/10.1007/s002220100165
[2]Christodoulou,D. (1986)Global SolutionsofNonlinear HyperbolicEquations forSmallInitial
Data.
CommunicationsonPureandAppliedMathematics
,
39
,267-282.
https://doi.org/10.1002/cpa.3160390205
[3]Klainerman,S.(1984)LongTimeBehaviourofSolutionstoNonlinearWaveEquations.
Pro-
ceedingsoftheInternationalCongressofMathematicians
,Vol.1,2(Warsaw,1983),PWN,
Warsaw,1209-1215.
[4]Klainerman, S. (1986)TheNull ConditionandGlobal ExistencetoNonlinearWave Equations.
In:
LecturesinAppliedMathematics
, Vol. 23, American MathematicalSociety, Providence, RI,
293-326.
[5]Luli,G.K.,Yang,S.andYu,P.(2018)OnOne-DimensionSemi-LinearWaveEquationswith
NullConditions.
AdvancesinMathematics
,
329
,174-188.
https://doi.org/10.1016/j.aim.2018.02.022
DOI:10.12677/pm.2023.133069647
n
Ø
ê
Æ
Å!!
§
Á
W
[6]Nakamura, M. (2014) Remarks on a Weighted Energy Estimate and Its Applicationto Nonlin-
ear Wave Equationsin One SpaceDimension.
JournalofDifferentialEquations
,
256
,389-406.
https://doi.org/10.1016/j.jde.2013.09.005
[7]Zha, D. (2020)OnOne-Dimension QuasilinearWave Equations withNullConditions.
Calculus
ofVariationsandPartialDifferentialEquations
,
59
,ArticleNo.94.
https://doi.org/10.1007/s00526-020-01761-1
[8]Cha,L.D.andShao,A.(2022)GlobalStabilityofTravelingWavesfor(1+1)-Dimensional
SystemsofQuasilinearWaveEquations.
JournalofHyperbolicDifferentialEquations
,
19
,
549-586.https://doi.org/10.1142/S0219891622500163
[9]Zha,D.(2022)GlobalStabilityofSolutionstoTwo-DimensionandOne-DimensionSystems
ofSemilinearWaveEquations.
JournalofFunctionalAnalysis
,
282
,ArticleID:109219.
https://doi.org/10.1016/j.jfa.2021.109219
[10]Dionne,A.(1962)Surlesprobl`emesdeCauchyhyperboliquesbienpos´es.
Journald’Analyse
Math´ematique
,
10
,1-90.https://doi.org/10.1007/BF02790303
DOI:10.12677/pm.2023.133069648
n
Ø
ê
Æ