设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
PureMathematicsnØêÆ,2023,13(3),644-648
PublishedOnlineMarch2023inHans.https://www.hanspub.org/journal/pm
https://doi.org/10.12677/pm.2023.133069
˜‘š‚5ÅÄ•§˜‡5P
ÅÅÅ!!!!!!§§§ÁÁÁWWW
ÀuŒÆnÆêÆX§þ°
ÂvFϵ2023c222F¶¹^Fϵ2023c323F¶uÙFϵ2023c330F
Á‡
©ïÄ÷v"^‡˜‘š‚5ÅÄ•§Cauchy¯K§ ÏLò˜‘š‚5ÅÄ•
§z•˜‘[‚5ÅÄ•§|§|^[‚5œ/( ا·‚ y²Њ²;)N•35"
'…c
˜‘š‚5ÅÄ•§§Cauchy¯K§"^‡§Њ§N•35
ANoteonOne-DimensionFully
NonlinearWaveEquations
XinxinXue,DongbingZha
DepartmentofMathematics,CollegeofScience,DonghuaUniversity,Shanghai
Received:Feb.22
nd
,2023;accepted:Mar.23
rd
,2023;published:Mar.30
th
,2023
Abstract
Inthispaper,westudytheCauchyproblemofone-dimensionfullynonlinearwave
equationswithnullcondition,bytransformingtheone-dimensionfullynonlinearwave
equationtoasystemofone-dimensionquasilinearwaveequations,andusingtheresult
©ÙÚ^:Å!!,ÁW.˜‘š‚5ÅÄ•§˜‡5P[J].nØêÆ,2023,13(3):644-648.
DOI:10.12677/pm.2023.133069
Å!!§ÁW
inthequasilinearcase,weshowtheglobalexistenceofclassicalsolutionwithsmall
initialdata.
Keywords
One-DimensionFullyNonlinearWaveEquations,CauchyProblem,NullCondition,
SmallInitialData,GlobalExistence
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY 4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
P(t,x) ∈R×R•(k‹I§…½Â
ξ=
t+x
2
,η=
t−x
2
,(1.1)
±9ƒA•þ|(Aê)
∂
ξ
= ∂
t
+∂
x
,∂
η
= ∂
t
−∂
x
.(1.2)
˜‘àg‚5ÅÄ•§3(ξ,η)‹IeŒ•u
ξη
=0"©ò?nÙš‚56Ä"•
Xeš‚5ÅÄ•§
u
ξη
= F(u,u
ξ
,u
η
,u
ξξ
,u
ηη
,u
ξη
),(1.3)
ùp™•¼êu= u(t,x): R
1+1
−→R"Pλ=(λ
i
)
1≤i≤6
.b3λ=0˜‡•¥§š‚5‘
¿©1w…÷v
F(λ) = O(|λ|
2
).(1.4)
·‚¡•§(1.3)÷v"^ ‡§e?Û()†1Å)u=φ(ξ)±9m1Å)u=ψ(η)Ñ÷
v(1.3)"„[1–4]±9[5]"=3λ= 0˜‡•¥§¤á
F(λ
1
,λ
2
,0,λ
4
,0,0) = 0,(1.5)
F(λ
1
,0,λ
3
,0,λ
5
,0) = 0.(1.6)
Šâ(1.4)§(1.5)±9(1.6)§d‡È©Ä½n!óª{K±9Leibniz{K´•3λ= 0˜‡
DOI:10.12677/pm.2023.133069645nØêÆ
Å!!§ÁW
•¥¤á
F(λ) = O

(|λ
2
|+|λ
4
|+|λ
6
|)(|λ
3
|+|λ
5
|+|λ
6
|)

,(1.7)
F
λ
1
(λ),F
λ
2
(λ),F
λ
4
(λ) = O(|λ
3
|+|λ
5
|+|λ
6
|),(1.8)
F
λ
1
(λ),F
λ
3
(λ),F
λ
5
(λ) = O(|λ
2
|+|λ
4
|+|λ
6
|)(1.9)
±9
F
λ
6
(λ) = O(|λ|).(1.10)
•(1.3)äЊ
t= 0 :u= εu
0
, u
t
= εu
1
(1.11)
Cauchy¯K§Ù¥u
0
±9u
1
´¿©1w;|81w¼ê§ε>0´˜‡ëê"
éuCauchy¯K(1.3)–(1.11)§3Œ‚5œ/§3˜‡r"^‡be§[6]‰Ñ²
;)N•35§[5]3"^‡be‰Ñ²;)N•35¶[‚5œ/K3[7]¥
‰Ñy²"ƒ'©z½„[8]Ú[9].©8I´?n•˜„š‚5œ/"
©̇(J´Xe
½n1.1.e"^‡÷v…ε>0¿©§KCauchy¯K(1.3)–(1.11)•3•˜N²;)"
3e!¥§·‚ò‰Ñ½n1.1y²"
2.½n1.1y²
·‚y²½n1.11˜Ú´ÏL¦òš‚5ÅÄ•§(1.3)z•˜‡[ ‚5ÅÄ•§
|"T•{u[10]"3©¥§«Ou[10]¥¦^ž˜ê§·‚ò¦^Aê"1Ú
´y8([‚5ÅÄ•§|÷v"^‡§lŒ±|^[7]¥N•35(Ø"
Äk§d(1.3)Œ
u
ξξη
= F
λ
1
u
ξ
+F
λ
2
u
ξξ
+F
λ
3
u
ξη
+F
λ
4
u
ξξξ
+F
λ
5
u
ξηη
+F
λ
6
u
ξξη
,(2.1)
u
ηξη
= F
λ
1
u
η
+F
λ
2
u
ξη
+F
λ
3
u
ηη
+F
λ
4
u
ξξη
+F
λ
5
u
ηηη
+F
λ
6
u
ξηη
,(2.2)
ùp·‚{PF
λ
i
= F
λ
i
(u,u
ξ
,u
η
,u
ξξ
,u
ηη
,u
ξη
),i= 1,···,6"
-U= (U
(1)
,U
(2)
,U
(3)
)
T
= (u,u
ξ
,u
η
)
T
"d(1.3)§(2.1)±9(2.2)Œ
U
ξη
= A
1
(U,U
ξ
,U
η
)U
ξη
+A
2
(U,U
ξ
,U
η
)U
ξξ
+A
3
(U,U
ξ
,U
η
)U
ηη
+G(U,U
ξ
,U
η
),(2.3)
ùpÝмêA
i
: R
3
×R
3
×R
3
−→R
3×3
,i= 1,2,3,
A
1
= diag

0,F
λ
6
,F
λ
6

,A
2
= diag

0,F
λ
4
,F
λ
4

,A
3
= diag

0,F
λ
5
,F
λ
5

,(2.4)
DOI:10.12677/pm.2023.133069646nØêÆ
Å!!§ÁW
•þмêG: R
3
×R
3
×R
3
−→R
3
,
G=

F,F
λ
1
u
ξ
+F
λ
2
u
ξξ
+F
λ
3
u
ξη
,F
λ
1
u
η
+F
λ
2
u
ξη
+F
λ
3
u
ηη

=

F,F
λ
1
U
(1)
ξ
+F
λ
2
U
(2)
ξ
+F
λ
3
U
(2)
η
,F
λ
1
U
(1)
η
+F
λ
2
U
(3)
ξ
+F
λ
3
U
(3)
η

.(2.5)
d(1.7)§(1.8)§(1.9)§(1.10)§(2.4)±9(2.5)Œ
A
1
(U,U
ξ
,U
η
) = O(|U|+|U
ξ
|+|U
η
|),(2.6)
A
2
(U,U
ξ
,U
η
) = O(|U
η
|),(2.7)
A
3
(U,U
ξ
,U
η
) = O(|U
ξ
|),(2.8)
G(U,U
ξ
,U
η
) = O(|U
ξ
||U
η
|).(2.9)
·‚•Ñ(2.6)–(2.9)T´[‚5œ/"^‡"
y3·‚®òš‚5ÅÄ•§(1.3)z•[‚5ÅÄ•§|(2.3)§ÙXêA
i
(i=1,2,3)
•é¡Ý…÷v(5^‡(2.6)§(2.7)§(2.8)§(2.9)"éuù«/ª[‚5ÅÄ•§|
Cauchy¯K§ÙЊ²;)N•35®3[7]¥y²"Ïd½n1.1y"
52.1.3(1.3)¥§™•¼êuŠuk•‘•þ˜mR
n
ž§eéui=4,5,6,F
λ
i
: R
6n
−→
R
n×n
´é¡§K½n1.1•¤á"
—
©Šö¥pÄ‰ï’Ö¤;‘]7(Fundamental ResearchFundsfor theCentral
Universities,No.2232022D-27)]Ï"
ë•©z
[1]Alinhac,S.(2001)TheNullConditionforQuasilinearWaveEquationsinTwoSpaceDimen-
sions.InventionesMathematicae,145,597-618.https://doi.org/10.1007/s002220100165
[2]Christodoulou,D. (1986)Global SolutionsofNonlinear HyperbolicEquations forSmallInitial
Data.CommunicationsonPureandAppliedMathematics,39,267-282.
https://doi.org/10.1002/cpa.3160390205
[3]Klainerman,S.(1984)LongTimeBehaviourofSolutionstoNonlinearWaveEquations.Pro-
ceedingsoftheInternationalCongressofMathematicians,Vol.1,2(Warsaw,1983),PWN,
Warsaw,1209-1215.
[4]Klainerman, S. (1986)TheNull ConditionandGlobal ExistencetoNonlinearWave Equations.
In:LecturesinAppliedMathematics, Vol. 23, American MathematicalSociety, Providence, RI,
293-326.
[5]Luli,G.K.,Yang,S.andYu,P.(2018)OnOne-DimensionSemi-LinearWaveEquationswith
NullConditions.AdvancesinMathematics,329,174-188.
https://doi.org/10.1016/j.aim.2018.02.022
DOI:10.12677/pm.2023.133069647nØêÆ
Å!!§ÁW
[6]Nakamura, M. (2014) Remarks on a Weighted Energy Estimate and Its Applicationto Nonlin-
ear Wave Equationsin One SpaceDimension. JournalofDifferentialEquations, 256,389-406.
https://doi.org/10.1016/j.jde.2013.09.005
[7]Zha, D. (2020)OnOne-Dimension QuasilinearWave Equations withNullConditions. Calculus
ofVariationsandPartialDifferentialEquations,59,ArticleNo.94.
https://doi.org/10.1007/s00526-020-01761-1
[8]Cha,L.D.andShao,A.(2022)GlobalStabilityofTravelingWavesfor(1+1)-Dimensional
SystemsofQuasilinearWaveEquations.JournalofHyperbolicDifferentialEquations,19,
549-586.https://doi.org/10.1142/S0219891622500163
[9]Zha,D.(2022)GlobalStabilityofSolutionstoTwo-DimensionandOne-DimensionSystems
ofSemilinearWaveEquations.JournalofFunctionalAnalysis,282,ArticleID:109219.
https://doi.org/10.1016/j.jfa.2021.109219
[10]Dionne,A.(1962)Surlesprobl`emesdeCauchyhyperboliquesbienpos´es.Journald’Analyse
Math´ematique,10,1-90.https://doi.org/10.1007/BF02790303
DOI:10.12677/pm.2023.133069648nØêÆ

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.