Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62340 , 11 pages
10.12677/ACM.2023.133469

免疫检查点抑制剂相关糖尿病患者的抗体水平与胰岛功能无相关性

徐慧,郭云蕾,戴晓晴,咸玉欣,孙亚楠,王静,王芳*

青岛大学附属医院内分泌代谢科,山东 青岛

收稿日期:2023年2月8日;录用日期:2023年3月6日;发布日期:2023年3月13日

摘要

目的:探讨免疫检查点抑制剂相关糖尿病患者应用PD-1抑制剂治疗后胰岛素自身抗体阳性与胰岛功能的关系。方法:对5例免疫检查点抑制剂相关糖尿病患者进行回顾性研究。本文数据已通过本院伦理委员会审查。这些患者于2018年9月至2021年2月在青岛大学附属医院内分泌代谢科接受治疗。收集的数据包括性别、年龄、生存率、体重指数(BMI)、肿瘤类型、应用免疫抑制剂类型、发病周期、胰岛相关抗体、胰岛素和C肽水平。在查阅现有的中英文文献数据库(CNKI, Wanfang, VIP, PubMed, Web of Science)后,我们将患者分为胰岛抗体阳性组(22例)和胰岛抗体阴性组(23例)。使用卡方检验,Fisher精确检验和Whitney U检验,检验组间差异。结果:我们没有发现胰岛素相关抗体与胰岛功能之间的关联(p > 0.05)。由于单个统计量 < 1,Fisher检验结果为p = 0.233,p > 0.05。经Mann-Whitney U检验,抗体阳性组与抗体阴性组C肽水平无显著性差异(p > 0.05)。结论:检查点抑制剂相关糖尿病患者胰岛相关抗体水平与胰岛功能无明显相关性。

关键词

免疫检查点抑制剂,PD-1,胰岛相关抗体,免疫检查点抑制剂相关糖尿病

Antibody Levels Were Not Correlated with Islet Function in Patients with Checkpoint Inhibitor-Related Diabetes

Hui Xu, Yunlei Guo, Xiaoqing Dai, Yuxin Xian, Yanan Sun, Jing Wang, Fang Wang*

Endocrinology and Metabolism Department, Qingdao University Affiliated Hospital, Qingdao Shandong

Received: Feb. 8th, 2023; accepted: Mar. 6th, 2023; published: Mar. 13th, 2023

ABSTRACT

Objective: The goal of this study was to investigate the relationship between positive insulin autoantibodies and islet function in patients with checkpoint inhibitor-related diabetes mellitus who were treated with PD-1 inhibitors. Methods: A retrospective study was conducted regarding five patients with checkpoint inhibitor-related diabetes mellitus. The data have been reviewed by the Ethics Committee of our hospital. These patients were treated in the Department of Endocrinology and Metabolism in the Affiliated Hospital of Qingdao University from September 2018 to February 2021. The data collected included sex, age, survival, body mass index (BMI), tumor type, immunosuppressive agent type, onset cycle, insulin-related antibodies, insulin and c-peptide levels. After searching the existing Chinese and English literature databases (CNKI, Wanfang, VIP, PubMed, Web of Science) for additional case reports containing statistical data on insulin-related antibody and C-peptide levels (i.e., islet function), we divided patients into two groups: the insulin antibody-positive group (22 cases) and the insulin antibody-negative group (23 cases). The differences between groups were tested using the chi-square test, Fisher’s exact test, and the Whitney U test. Results: We did not find an association between insulin-related antibodies and islet function (p > 0.05). Due to a single statistic being < 1, the results of the Fisher’s test were p = 0.233, p > 0.05. We also did not find a difference in the c-peptide levels between the antibody-positive group and the antibody-negative group with Mann-Whitney U test result of p > 0.05. Conclusions: There was no significant correlation between islet-associated antibody levels and islet function in patients with checkpoint inhibitor-related diabetes mellitus.

Keywords:Immune Checkpoint Inhibitor, PD-1, Islet-Associated Antibody, Checkpoint Inhibitor-Related Diabetes Mellitus

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,随着免疫分析技术的发展,肿瘤特异性抗原的免疫治疗日益受到重视 [1] 。其中,免疫检查点抑制剂(immune checkpoint inhibitors, ICPis)、细胞毒性T细胞抗原-4 (cytotoxic T lymphocyte antigen-4, CTLA-4))、程序性死亡受体(programmed death receptor, PD-1)和程序性死亡配体-L1 (programmed death ligand-1, PD-L1))是应用最广泛的抗体 [2] 。然而,随着ICPis的使用越来越多,各种自身免疫性疾病并发症的报道正在增加。这些自身免疫性并发症称为免疫相关不良事件(immune-related adverse events, irAEs),可影响人体多个系统,其中与内分泌系统相关的疾病,包括自身免疫性垂体炎、自身免疫性甲状腺炎、自身免疫性肾炎和自身免疫性糖尿病 [3] [4] 。免疫检查点抑制剂相关性糖尿病(Checkpoint inhibitor-related diabetes mellitus, CPI-DM)是由ICPis诱导的自身免疫性糖尿病,是罕见的内分泌相关不良反应 [5] 。CPI-DM的发病率约为0.2%~0.9% [6] 。

PD-1是在T细胞上表达的受体,可被两种配体PD-L1和PD-L2激活。当PD-1与PD-L1结合时,该途径抑制T细胞的活化并使自身免疫性T细胞失活 [7] 。这导致T细胞凋亡,并在免疫应答的调节中起负面作用 [1] 。一些肿瘤通过表达肿瘤微环境和激活PD-1抑制途径来抑制肿瘤特异性T细胞反应,从而逃避人体免疫系统 [8] 。因此,通过特异性ICPis,我们可以阻断PD-1途径,重新激活T细胞并杀死肿瘤细胞 [9] 。然而,当PD-1途径被阻断时,不仅靶向癌细胞的特异性T细胞存活,一些自身反应性T细胞(如靶向胰岛细胞的T细胞)也能存活 [10] 。激活自身反应性CD4+和CD8+ T细胞的过度增殖,促进细胞因子如I型干扰素(type I interferon, IFN-I) [11] 、肿瘤坏死因子(tumor necrosis factor, TNF)和白细胞介素-2 (interleukin-2, IL-2) [12] 的分泌。这些自身免疫细胞攻击胰岛细胞,最终引发CPI-DM [13] 。

目前,学术界普遍认为胰岛相关抗体阳性的患者在使用PD-1抗体后更容易发生胰岛功能衰竭,但研究尚不清楚 [6] [12] 。我们收集了在我院用PD-1抗体治疗的5例不同肿瘤患者中发生CPI-DM的情况。为了阐明胰岛功能与自身抗体之间的关系,我们对2015~2020年中英文数据库(CNKI,Wanfang data, VIP, PubMed, Web of Science)中报道的相关病例进行了文献回顾,最终得到了57名患者。通过对57例CPI-DM患者胰岛自身抗体和胰岛功能的相关性分析,可以更好地监测疾病的发生,指导临床用药。

2. 病例报告

从2018年9月到2021年2月,我们发现了5例经PD-1抗体治疗后的CPI-DM报告。表1~表3总结了主要分析结果。

Table 1. Case overview 1

表1. 病历摘要

aBody Mass Index.

Table 2. Case overview

表2. 病历摘要

aInsulin; bGlutamate decarboxylase antibody; cInsulin autoantibody.

Table 3. Blood glucose monitoring, initial symptoms and concomitant symptoms

表3. 血糖监测、初始症状及伴随症状

aYes; bNo.

CPI-DM通常表现为严重高血糖合并糖尿病酮症酸中毒(DKA)。大多数患者在第一次发病时还未出现明显高血糖,但已患有DKA和高渗性高血糖综合征。在5名患者中,4名患者有DKA (80%),其中一名患有高渗性高血糖综合征(20%)。CPI-DM发病时一般以高血糖和低糖化血红蛋白(HbA1c)水平为特征。此外,与典型1型糖尿病(T1DM)相比,本组5例患者的血糖水平为19.7~49.82 mmol/l,平均血糖为36.48 mmol/l,糖化血红蛋白(HbA1c)在7.5%~9.5%之间波动,平均约为8.4%,与典型1型糖尿病相比,血糖水平(24.1 ± 11.8 mmol/l)较高。患者5在用PD-1抗体进行免疫治疗前和治疗期间的血糖筛查显示,患者在第一次免疫治疗前(2020年11月9日)血糖水平正常。经PD-1抗体治疗后,前4次定期检测血糖,结果均正常,即使在发病前1周内,血糖仍在正常范围内,但1周后,当病人于第4周(2021年1月18日)第8天入院化疗时,出现头晕、恶心、呕吐、呼吸困难等症状。血糖升至48.62 mmol/l,糖化血红蛋白(HbA1c)升至7.5%,空腹C肽和餐后2 h C肽均 < 0.02 ng/ml,合并酮症酸中毒。患者在一周内有明显的糖尿病症状,如多饮和多尿,但未引起重视。5号病人的随访结果显示,即使规范应用胰岛素治疗,病人的血糖仍然控制不佳,出院2周后空腹血糖水平为16.34 mmol/l。因此,对于接受ICPis治疗的患者,除了对典型的糖尿病现象及时警惕外,还应密切注意神经系统和消化系统症状,如头晕、头痛、恶心、呕吐等不适,及时就医。总之,CPI-DM作为一种内分泌相关性重症疾病应引起更多重视,通过及时干预,完全可以控制CPI-DM危及生命的程度,目前国内外尚无因CPI-DM死亡病例报道。在我们的5例患者中,有2例患者死亡。其中2号患者死于肿瘤复发,4号患者死于呼吸衰竭,与CPI-DM均无关。因此,CPI-DM不是PD-1抑制剂免疫治疗的用药禁忌,但在DKA存在时应优先控制血糖,在应在胰岛素治疗的基础上保持血糖稳定从而继续进行免疫治疗。因此,虽然不能避免一些irAEs的存在,但ICPis仍然是肿瘤患者不可或缺的治疗方法。

3. 讨论

作为一种罕见但高危的疾病,CPI-DM的诊断标准如下:如果患者服药用药前血糖正常,但用药后出现以下三种情况之一,则可诊断为CPI-DM:1) 典型的糖尿病症状(由多饮、多饮、多尿、体重减轻引起的高血糖)、皮肤刺激、视力模糊、随机血糖升高 ≥ 11.1 mmol/l或其他急性代谢紊乱;2) 空腹血糖 ≥ 7.0 mmol/l,3) 口服75 g葡萄糖后血糖 ≥ 11.1 mmol/l [14] 。本文报道的5例病例分析显示,除1例患者外,空腹血糖水平在用药前均处于正常范围内。4号患者被诊断为2型糖尿病7年。血糖控制良好,C肽监测正常。2020年12月,患者被诊断为左肺恶性肿瘤。开始治疗前三个月,患者空腹C肽为2.2 IU/ml,餐后2小时C肽为4.4 IU/ml。该患者因PD-1抗体引起的自身免疫性间质性肺炎入院。入院后,患者甲状腺功能和血糖水平异常。重新检查胰岛功能后,发现胰岛功能衰竭,空腹C肽为0.74 IU/ml,在短期内患者血糖平稳的情况下出现突然的胰岛功能衰竭,可以认为患者在既往2型糖尿病的基础上,合并了CPI-DM。此外,2号患者检测到的胰岛素水平是在静脉注射人胰岛素后的水平,这个数值不能真正反映病人的胰岛功能。C肽的水平可以更好地反映患者的胰岛功能。因此,我们认为所有5名患者在使用PD-1抗体治疗期间均发生了快速的胰岛衰竭。根据胰岛功能评估,5例患者C肽分泌不足,提示胰岛功能衰竭,支持CPI-DM的诊断。

目前,对CPI-DM的发病机制尚无明确的研究。Ansari [15] 建立了由ICPis应用于非肥胖糖尿病(nonobese diabetic, NOD)小鼠引起的CPI-DM模型,用不同ICPis阻断免疫通路来诱发糖尿病前期雌性NOD小鼠的糖尿病,最终证实无论年龄如何(从1周到10周大),PD-1/PD-L1抑制剂均有诱发小鼠犯病,尽管它在老年小鼠中表现的最为明显。相比之下,CTLA-4抑制剂仅在新生儿中诱导疾病的产生。因此证实CTLA-4抗体仅对人类T细胞的早期增殖和活化起负调节作用,而PD-1/PD-L1通路在整个生命周期对人类T细胞起负调节作用。该途径可以显着抑制T细胞的活化。如果这一途径被阻断,就可能导致自身反应性T细胞的克隆和发育,引起对自身胰岛细胞的破坏和胰岛功能的严重损害。这最终导致了自体免疫性疾病。目前的相关文献也证实了这一点。在Clotma统计的42例病例中 [6] ,34例接受PD-1抑制剂治疗,3例接受PD-L1抑制剂治疗,4例联合应用PD-1和CTLA-4抑制剂治疗,1例未见报道。在Quandt [16] 收集的27例CPI-DM患者中,14例在确诊为CPI-DM时接受PD-1抑制剂单药治疗,其余患者接受PD-L1抑制剂单药治疗或联合治疗。目前,只有2例糖尿病似乎是由CTLA-4抑制剂引起的。因此,不同的免疫检查点抑制剂可能导致不同发病率的CPI-DM,使用PD-1免疫抑制剂更有可能引起自身免疫性糖尿病。

此外,我们还观察到在我们的5名患者中,2号患者胰岛素自身抗体(IAA)阳性,3号患者为谷氨酸脱羧酶抗体(GADA)阳性。这使我们想知道胰岛相关抗体与免疫检查点抑制剂引起的自身免疫性糖尿病之间是否存在某种关联。在众多的胰岛素自身抗体如GADA、IAA和锌转运蛋白8 (ZnT8)中,GADA是目前用于诊断T1DM应用最广泛的抗体,也是最敏感的胰岛素相关抗体。Usui [17] 发现PD-1/PD-L1抗体应用CPI-DM发病之间的时间间隔与GADA相关。Gauci [18] 进一步支持这一发现。24例CPI-DM病例中有13例胰岛素相关抗体阳性。GADA阳性患者发病时间约为 ICPis使用后3周,GADA阴性患者发病时间约为12.5周。最新发表的关于免疫抑制剂引起的内分泌相关不良反应的专家共识也提到了这个问题。与胰岛素自身抗体阴性的患者相比,抗体阳性的CPI-DM患者发病时间短,胰岛功能差,DKA发病率高。然而,在观察自身免疫性NOD小鼠后,Ansari [15] 发现胰岛素自身抗体水平与糖尿病发病无关。在阻断了PD-1/PD-L1通路后,他们检测了小鼠体内的胰岛素相关抗体,发现有些小鼠在缺乏抗体的情况下发展为糖尿病,而另一些小鼠出现了抗体但没有发展为糖尿病。Stamatouli [19] 还发现,在25例CPI-DM患者中只有10例为抗体阳性。此外,还有免疫治疗后抗体阳性但未发生CPI-DM的患者。Marchand [20] 追踪了6名患者,发现只有1名患者IAA抗体阳性,这与Ansari的研究一致。

这是两种截然相反的观点。Chang [3] 对22例CPI-DM患者C肽和抗体水平的研究发现,部分CPI-DM患者在ICPis治疗前即存在胰岛自身抗体阳性,还有部分患者在治疗后出现抗体转化。为进一步分析胰岛素自身抗体与CPI-DM患者胰岛功能下降的关系,我们收集了2015年1月1日至2021年1月1日国内外共57例CPI-DM病例报告(包括本文报告的5例患者),并设计研究方案。

4. 方法

我们共收集了57例患者,剔除不符合纳入标准的患者,最终获得了45例患者的资料。这些病例中包含其抗体水平及胰岛功能。其中根据胰岛素相关抗体(GADA或IAA)是否阳性,将这些患者分为两组,测量它们的胰岛功能(即空腹C肽水平)。由于不同研究中使用的试剂不同,所定义的空腹C肽参考值范围也不同。为了规范这些数据,我们规定空腹C肽低于正常下限或<0.1 ng/ml的病例应视为胰岛功能衰竭病例。表4 (抗体阳性病例)和表5 (抗体阴性病例)显示了最终的统计结果。

Table 4. C-peptide levels in antibody-positive cases

表4. 抗体阳性组的C肽水平

aIslet cell antibody; bZnT-8 Polyclonal Antibody.

Table 5. C-peptide levels in antibody-negative cases

表5. 抗体阴性组的C肽水平

首先,我们假设胰岛素相关抗体阳性与胰岛功能之间没有关联,p > 0.05。2 × 2表生成为表6。应用卡方检验检测,由于单个格(n < 1)数据不符,Fisher精确检验更合适。结果表明χ2 = 2.188,p > 0.05,这证实了我们的假设。因此,我们认为胰岛素相关抗体阳性与胰岛功能之间没有关联。为了进一步验证我们的发现,我们使用两个独立样本的秩和检验(Mann-Whitney u检验)来验证两个样本所代表的人群之间是否存在任何差异。当空腹C肽水平检测不到或C肽水平小于0.1 ng/ml时,不管抗体水平如何,C肽水平标记为0。我们发现C肽水平没有显着差异(p = 0.906),这证实了我们的假设。

因此,当患者在短时间内出现明显症状时而就诊时,抗体被检测为阳性。然而,随着时间的推移,阳性抗体转化为阴性。换句话说,诊断越早,发现阳性抗体的可能性越高。这与Usui的观点是一致的。因此,我们认为胰岛自身抗体水平与患者的疾病进展和胰岛衰竭没有显着关系。它似乎只与从发病到诊断或从发病到检测的时间段有关。因此没有必要在使用ICPis的患者中常规测试胰岛素相关抗体。

Table 6. Effects of antibody levels on islet function

表6. 抗体水平对胰岛功能的影响

5. 结论

由ICPis引起的免疫相关性糖尿病是一种罕见但高度危险的免疫相关不良反应。由不同的免疫抑制点抑制剂引起的CPI-DM的发生率不同。PD-1免疫抑制剂的使用比CTLA-4更可能引起CPI-DM。

作为一种自体免疫性疾病,抗体水平的监测是一个关键的问题。然而,没有确切的证据证明胰岛素相关抗体与胰岛功能降低有关。我们的研究证实,抗体阳性与CPI-DM患者胰岛功能降低无显着相关性。它似乎只与从发病到诊断或从发病到检测的时间段有关。越早检测到,检测阳性率越高。

关于我们研究的相关机制还没有确切的结论,但对此我们有两个猜想。首先,碍于目前的研究水平,只有5种已知的胰岛素自身抗体,其中IAA和GADA是最常用的。然而,一些未知的抗体可能在PD-1/PD-L1途径中发挥作用,从而导致CPI-DM的发生。这将在未来对于胰岛抗体的进一步研究中得到验证。其次,在自身免疫性糖尿病中,许多儿童在婴儿期即出现胰岛抗体,但并非所有儿童在15岁之前均发展为1型糖尿病。即使具有高风险的HLA表型,首次出现的不同抗体也可能导致不同的发育结果。因此,一些抗体阳性可能仅反映糖尿病发病前的亚临床阶段。它在疾病的发展中不起作用。此外,在抗PD-1抗体治疗中,抗体的血清转换可能随着疾病的进展而发生,但是由于我们观察到的淋巴结的不同而不能被捕获。这需要进一步的实验研究来证实我们的猜想,这将是未来监测CPI-DM发生的重要研究方向。

因此,对于CPI-DM患者,由于胰岛功能迅速衰竭,可在短时间内出现明显症状。定期监测血糖和尿酮体是足够的,没有必要过多关注胰岛相关抗体的监测。

文章引用

徐 慧,郭云蕾,戴晓晴,咸玉欣,孙亚楠,王 静,王 芳. 免疫检查点抑制剂相关糖尿病患者的抗体水平与胰岛功能无相关性
Antibody Levels Were Not Correlated with Islet Function in Patients with Checkpoint Inhibitor-Related Diabetes[J]. 临床医学进展, 2023, 13(03): 3287-3297. https://doi.org/10.12677/ACM.2023.133469

参考文献

  1. 1. Waldman, A.D., Fritz, J.M. and Lenardo, M.J. (2020) A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice. Nature Reviews Immunology, 20, 651-668. https://doi.org/10.1038/s41577-020-0306-5

  2. 2. Puzanov, I., Diab, A., Abdallah, K., et al. (2017) Managing Tox-icities Associated With Immune Checkpoint Inhibitors: Consensus Recommendations from the Society for Immunother-apy of Cancer (SITC) Toxicity Management Working Group. Journal for ImmunoTherapy of Cancer, 5, Article No. 95. https://doi.org/10.1186/s40425-017-0300-z

  3. 3. Chang, L.-S., Barroso-Sousa, R., Tolaney, S.M., et al. (2019) Endocrine Toxicity of Cancer Immunotherapy Targeting Immune Checkpoints. Endocrine Reviews, 40, 17-65. https://doi.org/10.1210/er.2018-00006

  4. 4. Akturk, H.K., Kahramangil, D., Sarwal, A., et al. (2019) Immune Checkpoint Inhibitor-Induced Type 1 Diabetes: A Systematic Review and Meta-Analysis. Diabetic Medicine, 36, 1075-1081. https://doi.org/10.1111/dme.14050

  5. 5. Liu, J., Shi, Y., Liu, X., et al. (2022) Clinical Characteristics and Outcomes of Immune Checkpoint Inhibitor-Induced Diabetes Mellitus. Translational Oncology, 24, Article ID: 101473. https://doi.org/10.1016/j.tranon.2022.101473

  6. 6. Clotman, K., Janssens, K., Specenier, P., et al. (2018) Programmed Cell Death-1 Inhibitor-Induced Type 1 Diabetes Mellitus. The Journal of Clinical Endocrinology and Me-tabolism, 103, 3144-3154. https://doi.org/10.1210/jc.2018-00728

  7. 7. Dermani, F.K., Samadi, P., Rahmani, G., Kohlan, A.K. and Najafi, R. (2019) PD-1/PD-L1 Immune Checkpoint: Potential Target for Cancer Therapy. Journal of Cellular Physiology, 234, 1313-1325. https://doi.org/10.1002/jcp.27172

  8. 8. Mooradian, M.J. and Sullivan, R.J. (2017) Immunomodulatory Effects of Current Cancer Treatment and the Consequences for Follow-Up Immunotherapeutics. Future Oncology, 13, 1649-1663. https://doi.org/10.2217/fon-2017-0117

  9. 9. D’Arrigo, P., Tufano, M., Rea, A., et al. (2020) Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Current Medicinal Chemis-try, 27, 2402-2448. https://doi.org/10.2174/0929867325666181106114421

  10. 10. Elia, G., Ferrari, S.M., Galdiero, M.R., et al. (2020) New Insight in Endocrine-Related Adverse Events Associated to Immune Checkpoint Blockade. Best Practice & Re-search Clinical Endocrinology & Metabolism, 34, Article ID: 101370. https://doi.org/10.1016/j.beem.2019.101370

  11. 11. Castro, F., Cardoso, A.P., Gon Alves, R.M., Serre, K. and Oliveira, M.J. (2018) Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Im-munology, 9, Article 847. https://doi.org/10.3389/fimmu.2018.00847

  12. 12. Wright, J.J., Powers, A.C. and Johnson, D.B. (2021) Endocrine Toxicities of Immune Checkpoint Inhibitors. Nature Reviews Endocrinology, 17, 389-399. https://doi.org/10.1038/s41574-021-00484-3

  13. 13. Zaied, A.A., Akturk, H.K., Joseph, R.W. and Lee, A.S. (2018) New-Onset Insulin-Dependent Diabetes due to Nivolumab. Endocrinology, Diabetes & Metabolism Case Reports, 2018, Article ID: 170174. https://doi.org/10.1530/EDM-17-0174

  14. 14. 中华医学会内分泌学分会免疫内分泌学组. 免疫检查点抑制剂引起的内分泌系统免疫相关不良反应专家共识(2020) [J]. 中华内分泌代谢杂志, 2021, 37(1): 1-16.

  15. 15. Ansari, M.J., Salama, A.D., Chitnis, T., et al. (2003) The Programmed Death-1 (PD-1) Pathway Regulates Autoimmune Diabe-tes in Nonobese Diabetic (NOD) Mice. The Journal of Experimental Medicine, 198, 63-69. https://doi.org/10.1084/jem.20022125

  16. 16. Quandt, Z., Young, A. and Anderson, M. (2020) Immune Checkpoint Inhibitor Diabetes Mellitus: A Novel Form of Autoimmune Diabetes. Clinical and Experimental Immunology, 200, 131-140. https://doi.org/10.1111/cei.13424

  17. 17. Usui, Y., Udagawa, H., Matsumoto, S., et al. (2017) Association of Serum Anti-GAD Antibody and HLA Haplotypes with Type 1 Diabetes Mellitus Triggered by Nivolumab in Patients with Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 12, e41-e43. https://doi.org/10.1016/j.jtho.2016.12.015

  18. 18. Gauci, M.L., Laly, P., Vidal-Trecan, T., et al. (2017) Autoimmune Diabetes Induced by PD-1 Inhibitor-Retrospective Analysis and Pathogenesis: A Case Report and Literature Review. Cancer Immunology, Immunotherapy, 66, 1399-1410. https://doi.org/10.1007/s00262-017-2033-8

  19. 19. Stamatouli, A.M., Quandt, Z., Perdigoto, A.L., et al. (2018) Col-lateral Damage: Insulin-Dependent Diabetes Induced with Checkpoint Inhibitors. Diabetes, 67, 1471-1480. https://doi.org/10.2337/dbi18-0002

  20. 20. Marchand, L., Thivolet, A., Dalle, S., et al. (2019) Diabetes Mellitus In-duced by PD-1 and PD-L1 Inhibitors: Description of Pancreatic Endocrine and Exocrine Phenotype. Acta Diabetologica, 56, 441-448. https://doi.org/10.1007/s00592-018-1234-8

  21. 21. Mellati, M., Eaton, K.D., Brooks-Worrell, B.M., et al. (2015) An-ti-PD-1 and Anti-PDL-1 Monoclonal Antibodies Causing Type 1 Diabetes. Diabetes Care, 38, e137-e138. https://doi.org/10.2337/dc15-0889

  22. 22. Hughes, J., Vudattu, N., Sznol, M., et al. (2015) Precipitation of Autoim-mune Diabetes with Anti-PD-1 Immunotherapy. Diabetes Care, 38, e55-e57. https://doi.org/10.2337/dc14-2349

  23. 23. Hansen, E., Sahasrabudhe, D. and Sievert, L. (2016) A Case Report of In-sulin-Dependent Diabetes as Immune-Related Toxicity of Pembrolizumab: Presentation, Management and Outcome. Cancer Immunology, Immunotherapy, 65, 765-767. https://doi.org/10.1007/s00262-016-1835-4

  24. 24. Chae, Y.K., Chiec, L., Mohindra, N., et al. (2017) A Case of Pembrolizumab-Induced Type-1 Diabetes Mellitus and Discussion of Immune Checkpoint Inhibitor-Induced Type 1 Di-abetes. Cancer Immunology, Immunotherapy, 66, 25-32. https://doi.org/10.1007/s00262-016-1913-7

  25. 25. Lowe, J.R., Perry, D.J., Salama, A.K., et al. (2016) Genetic Risk Analysis of a Patient with Fulminant Autoimmune Type 1 Diabetes Mellitus Secondary to Combination Ipilimumab and Nivolumab Immunotherapy. Journal for ImmunoTherapy of Cancer, 4, Article No. 89. https://doi.org/10.1186/s40425-016-0196-z

  26. 26. Hofmann, L., Forschner, A., Loquai, C., et al. (2016) Cutaneous, Gastrointestinal, Hepatic, Endocrine, and Renal Side-Effects of Anti-PD-1 Therapy. European Journal of Cancer, 60, 190-209. https://doi.org/10.1016/j.ejca.2016.02.025

  27. 27. Alhusseini, M. and Samantray, J. (2017) Autoimmune Diabetes Superimposed on Type 2 Diabetes in a Patient Initiated on Immunotherapy for Lung Cancer. Diabetes & Metabolism, 43, 86-88. https://doi.org/10.1016/j.diabet.2016.05.007

  28. 28. Godwin, J.L., Jaggi, S., Sirisena, I., et al. (2017) Nivolumab-Induced Autoimmune Diabetes Mellitus Presenting as Diabetic Ketoacidosis in a Patient With Metastatic Lung Cancer. Journal for ImmunoTherapy of Cancer, 5, Article No. 40. https://doi.org/10.1186/s40425-017-0245-2

  29. 29. Alzenaidi, A.A., Dendy, J. and Rejjal, L. (2017) Autoimmune Diabetes Presented with Diabetic Ketoacidosis Induced by Immunotherapy in an Adult with Melanoma. The Journal of the Louisiana State Medical Society, 169, 49.

  30. 30. Leonardi, G.C., Oxnard, G.R., Haas, A., et al. (2017) Diabetic Ke-toacidosis as an Immune-Related Adverse Event from Pembrolizumab in Non-Small Cell Lung Cancer. Journal of Im-munotherapy, 40, 249-251. https://doi.org/10.1097/CJI.0000000000000173

  31. 31. Kollipara, R., Schneider, B., Radovich, M., Babu, S. and Kiel, P.J. (2017) Exceptional Response with Immunotherapy in a Patient with Anaplastic Thyroid Cancer. Oncologist, 22, 1149-1151. https://doi.org/10.1634/theoncologist.2017-0096

  32. 32. Kapke, J,. Shaheen, Z., Kilari, D., Knudson, P. and Wong, S. (2017) Immune Checkpoint Inhibitor-Associated Type 1 Diabetes Mellitus: Case Series, Review of the Literature, and Optimal Management. Case Reports in Oncology, 10, 897-909. https://doi.org/10.1159/000480634

  33. 33. Araújo, M., Ligeiro, D., Costa, L., et al. (2017) A Case of Fulminant Type 1 Diabetes Following Anti-PD1 Immunotherapy in a Genetically Susceptible Patient. Immunotherapy, 9, 531-535. https://doi.org/10.2217/imt-2017-0020

  34. 34. De Filette, J.M.K., Pen, J.J., Decoster, L., et al. (2019) Immune Checkpoint Inhibitors and Type 1 Diabetes Mellitus: A Case Report and Systematic Review. European Journal of Endo-crinology, 181, 363-374. https://doi.org/10.1530/EJE-19-0291

  35. 35. Gaudy, C., Clévy, C., Monestier, S., et al. (2015) Anti-PD1 Pembroli-zumab Can Induce Exceptional Fulminant Type 1 Diabetes. Diabetes Care, 38, e182-e183. https://doi.org/10.2337/dc15-1331

  36. 36. Thoreau, B., Gouaillier-Vulcain, F., Machet, L., et al. (2017) Acute Lower Limb Ischaemia and Diabetes in a Patient Treated with Anti-PD1 Monoclonal Antibody for Metastatic Melanoma. Acta Dermato-Venereologica, 97, 408-409. https://doi.org/10.2340/00015555-2504

  37. 37. Miyoshi, Y., Ogawa, O. and Oyama, Y. (2016) Nivolumab, an An-ti-Programmed Cell Death-1 Antibody, Induces Fulminant Type 1 Diabetes. The Tohoku Journal of Experimental Medi-cine, 239, 155-158. https://doi.org/10.1620/tjem.239.155

  38. 38. Okamoto, M., Okamoto, M., Gotoh, K., et al. (2016) Fulminant Type 1 Diabetes Mellitus with Anti-Programmed Cell Death-1 Therapy. Journal of Diabetes Investigation, 7, 915-918. https://doi.org/10.1111/jdi.12531

  39. 39. Aleksova, J., Lau, P.K., Soldatos, G., et al. (2016) Glucocorticoids Did Not Reverse Type 1 Diabetes Mellitus Secondary to Pembrolizumab in a Patient With Metastatic Melanoma. BMJ Case Re-ports, 2016, Article ID: bcr2016217454. https://doi.org/10.1136/bcr-2016-217454

  40. 40. Shah, M., Maxfield, L., Feroz, R. and Donohue, K. (2016) Rapid Development of Type 1 Diabetes Mellitus after Initiation of Anti-PD-1 Therapy. International Journal of Cancer and Clinical Research, 3, Article No. 066. https://doi.org/10.23937/2378-3419/3/4/1066

  41. 41. Farrell, C.M., Casasola, R., Pearson, E.Z. and Schofield, C. (2017) Acute Onset Type1 Diabetes Precipitated by Pembrolizumab, an Anti-PD-1 Monoclonal Antibody Used as a Treatment for Melanoma. Diabetic Medicine, 34, 95.

  42. 42. Ishikawa, K., Shono-Saito, T., Yamate, T., et al. (2017) A Case of Fulminant Type 1 Diabetes Mellitus, with a Precipitous Decrease in Pancreatic Volume, Induced by Nivolumab for Malignant Melanoma: Analysis of HLA and CTLA-4 Polymorphisms. European Journal of Dermatology, 27, 184-185. https://doi.org/10.1684/ejd.2016.2923

  43. 43. 曾海銮, 李晓牧, 高鑫. 一例PD-1抑制剂导致1型糖尿病病例报道及文献复习[J]. 中华内分泌代谢杂志, 2019, 35(7): 559-563.

  44. 44. 程思远, 王正航, 鲁智豪, 沈琳. 抗PD-1/PD-L1治疗食管鳞癌诱发的1型糖尿病:个案报道及文献回顾[J]. 肿瘤综合治疗电子杂志, 2018, 4(1): 69-76.

  45. 45. Hickmott, L., De La Peña, H., Turner, H., et al. (2017) Anti-PD-L1 Atezolizumab-Induced Autoimmune Diabetes: A Case Report and Review of the Literature. Targeted Oncology, 12, 235-241. https://doi.org/10.1007/s11523-017-0480-y

  46. 46. 谷志远, 李薇, 杨涛, 等. 程序性死亡蛋白1抗体治疗后暴发性1型糖尿病一例[J]. 中华糖尿病杂志, 2020, 12(5): 328-332.

  47. 47. 王妍, 罗晓红, 杨玲, 等. 应用程序性死亡受体1抑制剂后高血糖症二例报道及文献复习[J]. 中华糖尿病杂志, 2021, 13(1): 87-90.

  48. 48. 何韬, 张祥波, 费云霞, 等. 抗PD-1治疗晚期肝恶性肿瘤诱发1型糖尿病1例[J]. 中华肝脏病杂志, 2020, 28(6): 518-520.

  49. 49. Li, S., Zhang, Y., Sun, Z., Hu, J. and Fang, C. (2018) Anti-PD-1 Pembrolizumab Induced Autoimmune Diabetes in Chinese Patient: A Case Report. Medicine, 97, e12907. https://doi.org/10.1097/MD.0000000000012907

  50. 50. Wu, L. and Li, B. (2021) A Case of Severe Diabetic Ketoacidosis Associated with Pembrolizumab Therapy in a Patient with Metastatic Melanoma. Diabetes, Metabolic Syndrome and Obesity, 14, 753-757. https://doi.org/10.2147/DMSO.S297709

  51. NOTES

    *通讯作者Email: 18660291711@qdu. edu.cn

期刊菜单