设为首页 加入收藏 期刊导航 网站地图
  • 首页
  • 期刊
    • 数学与物理
    • 地球与环境
    • 信息通讯
    • 经济与管理
    • 生命科学
    • 工程技术
    • 医药卫生
    • 人文社科
    • 化学与材料
  • 会议
  • 合作
  • 新闻
  • 我们
  • 招聘
  • 千人智库
  • 我要投稿
  • 办刊

期刊菜单

  • ●领域
  • ●编委
  • ●投稿须知
  • ●最新文章
  • ●检索
  • ●投稿

文章导航

  • ●Abstract
  • ●Full-Text PDF
  • ●Full-Text HTML
  • ●Full-Text ePUB
  • ●Linked References
  • ●How to Cite this Article
AdvancesinAppliedMathematicsA^êÆ?Ð,2023,12(4),1804-1809
PublishedOnlineApril2023inHans.https://www.hanspub.org/journal/aam
https://doi.org/10.12677/aam.2023.124187
˜aÚÑŒ+ÄO
‘‘‘¦¦¦©©©
úô“‰ŒÆêÆ‰ÆÆ§úô7u
ÂvFϵ2023c324F¶¹^Fϵ2023c418F¶uÙFϵ2023c428F
Á‡
©ÏLZhangOÈ©•{ïÄÚÑŒ+F
−1
e
i[xξ+(ξ
n
+ξ)t]
F3n•Ûê… k.ž
˜‘P~O¯K,ЫTÈ©O•{3ïÄŒ+P~¯K¥-‡5.
'…c
/StationarySet0O§È©§L
p
0
−L
p
O
BasicEstimatesforaClassofDispersive
Semigroups
HuiwenHuang
DepartmentofMathematics,ZhejiangNormalUniversity,JinhuaZhejiang
Received:Mar.24
th
,2023;accepted:Apr.18
th
,2023;published:Apr.28
th
,2023
Abstract
Inthispaper,westudytheproblemofone-dimensionalattenuationestimationofdis-
persionsemigroupsF
−1
e
i[xξ+(ξ
n
+ξ)t]
Fwhennisoddandboundedbyusingtheestimated
oscillatoryintegrationmethodobtainedbyZhang.Theimportanceoftheestimated
©ÙÚ^:‘¦©.˜aÚÑŒ+ÄO[J].A^êÆ?Ð,2023,12(4):1804-1809.
DOI:10.12677/aam.2023.124187
‘¦©
oscillatoryintegrationmethodinthestudyofsemigroupattenuationisdemonstrated.
Keywords
///StationarySet000Estimate,OscillationIntegral,L
p
0
−L
p
Estimates
Copyright
c
2023byauthor(s)andHansPublishersInc.
This work is licensed undertheCreative Commons Attribution InternationalLicense(CCBY4.0).
http://creativecommons.org/licenses/by/4.0/
1.Úó
Strichartz.O(žmõ˜m O)3ïÄÚÑ•§)K5¯K¥äk2•A^.
<‚éÚÑ•§)Strichartz.OkX¿©ïÄ.3[1]¥,Strichartz•Ä…O©ÙFdµ
F p“C†O,d„ïÄd’AlembertianÅ•§!Klein-Gordon•§ÚSchr¨odinger•
§)P~O.3[2]¥,Ben-Artzi•Ä
R
∞
0
e
−i(xλ+
t
m
λ
m
)
a(λ)dλL
∞
O,3T(ØÄ
:þ2ÂAiry•§½Schr¨odinger•§!‚5[‡©•§)P~O.?˜Ú,3[3]
¥,Ben-ArtziïÄ/X
R
∞
0
ξ
α
e
it(P(ξ)−xξ)
dξÈ©˜—O,|^TOp‚
5Kadomtsev-Petviashvili•§)P~O.3[4]¥,Cui|^[5]![6]¥È©½ní
Ñ/X∂
t
u−iP(−i∂
x
)u=f(x,t)•§)StrichartzO.3[7]¥,WangïÄÚÑŒ+
F
−1
e
itP(ξ)
FL
1
−L
∞
O,ÄuTOU?Klein-Gordon•§ÚBean•§P~(J.
Strichartz.O¥•-‡˜Ú´Œ+L
p
0
−L
p
O.†Œ+L
p
0
−L
p
Oƒ'
È©ŽfO•´˜†É'59:¯K,3ïÄùa¯K¥•~^Äóä´Vander
CorputÚn.2021cZhang<3[8]¥í/StationarySet0O½n3˜½§Ýþí2
VanderCorputÚn^‡.3[7]¥,·‚uyWang3ïÄP(ξ)•šàg¼êž,kòP(ξ)
{z•»•¼ê,2|^VanderCorputÚn?nŒ+3˜‘˜m¥P~O¯K.u ´,·
‚•Ä3ïÄ/XP(ξ)=ξ
n
+ξšàg¼êŒ+P~O ¯Kž,|^[8]¥/Stationary
Set0O½n,ØI‡òšàg¼ê{z•»•¼ê.·‚kXe(Jµ
U(t) = F
−1
e
itP(ξ)
F,t∈R
+
,P(ξ)= ξ
n
+ξ,ξ∈R,Ù¥p≥2,
1
p
+
1
p
0
= 1,n•k.Û
ê,Ke¡O¤áµ
kU(t)u
0
k
L
p
[0,c]
.t
2
p
−1
ku
0
k
L
p
0
.
Wang3[7]¥P(ξ)©O•
p
1+ξ
2
,
p
1+ξ
4
,ξ
4
+ξ
2
ùAaŒ+3˜‘˜m¥P~
O(J.w,,©̇(JØ•¹3[7]¥.Wang3?nšàgœ/P(ξ)ž,òÙ{z•»
•¼ê,¿…÷v(H1)−(H4)o‡^‡,Ù¥(H1)!(H3)´pª^‡,(H2) !(H4)´$ª^
DOI:10.12677/aam.2023.1241871805A^êÆ?Ð
‘¦©
‡,©†|^/StationarySet0O½nØI‡òÙ=†•»•¼ê.
2.½n1.1y²
Š•O,·‚{‡£/StationarySet0O½n,äN SNXeµ[8]d,k≥1,Q(ξ)
´Cþξ∈[0,1]
d
¥k.Œ“ê¼ê,ÙE,5≤k,K




Z
[0,1]
d
e
iQ(ξ)
dξ




.
d,k
sup
µ∈R
|{ξ∈[0,1]
d
: µ≤Q(ξ) ≤µ+1}|.
Ù¥,Û¹~ê=†dÚkk',d´‘ê.
·‚3A^þã½nž=IQ(ξ)´gêk.õ‘ª,w,½n1.1¥P(ξ)÷v^‡.Äuþ
ã½n,e¡y²½n1.1.
½n1.1y².dYoungØªŒ
kU(t)u
0
k
L
∞
≤kF
−1
e
it(ξ
n
+ξ)
k
L
∞
ku
0
k
L
1
≤(J
1
+J
2
+J
3
+J
4
)ku
0
k
L
1
.
(1)
Ù¥
J
1
=




Z
c
0
e
i[tξ
n
+(t+x)ξ]
dξ




;
J
2
=




Z
+∞
c
e
i[tξ
n
+(t+x)ξ]
dξ




;
J
3
=




Z
0
−c
e
i[tξ
n
+(t+x)ξ]
dξ




;
J
4
=




Z
−c
−∞
e
i[tξ
n
+(t+x)ξ]
dξ




.
dPlancherel½nŒ
kU(t)u
0
k
2
= kF
−1
e
itP(ξ)
Fu
o
k
2
= ku
0
k
2
.(2)
é(1)Ú(2)|^Riesz-Thorinнn,·‚é÷v
1
p
+
1
p
0
= 1?Ûp≥2,k
kU(t)u
0
k
L
p
.(J
1
+J
2
+J
3
+J
4
)
(1−
2
p
)
ku
0
k
L
p
0
.
Äk,•ÄJ
1
O,-η=
ξ
c
,|^StationarysetO½nŒ




Z
c
0
e
i[tξ
n
+(t+x)ξ]
dξ




=




c
Z
1
0
e
i[t(η·c)
n
+(t+x)η·c]
dη




.
k
sup
µ∈R
c|{η∈[0,1] : µ≤t(η·c)
n
+(t+x)η·c≤µ+1}|
.
k
sup
µ∈R
|{ξ∈[0,c] : µ≤tξ
n
+(t+x)ξ≤µ+1}|.
(3)
DOI:10.12677/aam.2023.1241871806A^êÆ?Ð
‘¦©
lAÛã/¿ÂÝ?˜Ú•ÄÿÝO,ùprÿÝ|{ξ∈[0,c] : µ≤[tξ
n
+(t+x)ξ] ≤µ+1}|
w‰´dŠ••1ü^†‚ƒ•¼êf(ξ)=tξ
n
+ (t+ x)ξξ‰Œ•Ý.´•f
0
3
[0,c]4O,Kf
0
min
= t+x.ŠâÇ½Â,x∈[0,c]ž,Œ
J
1
≤
1
t+x
.
1
t
.
Ùg,•ÄJ
2
O,-η= ξ−c,d(3)ªŒ




Z
+∞
c
e
i[tξ
n
+(t+x)ξ]
dξ




=




lim
a−→+∞
Z
a
c
e
i[tξ
n
+(t+x)ξ]
dξ




=




lim
a−→+∞
Z
a−c
0
e
i[t(η+c)
n
+(t+x)(η+c)]
dη




.lim
a−→+∞
sup
µ∈R
|{η∈[0,a−c] : µ≤t(η+c)
n
+(t+x)(η+c) ≤µ+1}|
.lim
a−→+∞
sup
µ∈R
|{η+c∈[c,a] : µ≤t(η+c)
n
+(t+x)(η+c) ≤µ+1}|
.lim
a−→+∞
sup
µ∈R
|{ξ∈[c,a] : µ≤tξ
n
+(t+x)ξ≤µ+1}|.
(4)
´•f
0
3[c,a]4O,Kf
0
min
= (1+nc
n−1
)t+x.ŠâÇ½Â,x∈[0,c]ž,Œ
J
2
≤lim
a−→+∞
1
(1+nc
n−1
)t+x
.
1
t
.
,,•ÄJ
3
O,-η= −
ξ
c
,d(3) ªŒ




Z
0
−c
e
i[tξ
n
+(t+x)ξ]
dξ




=




−c
Z
1
0
e
−i[t(η·c)
n
+(t+x)η·c]
dη




.
k
sup
µ∈R
c|{η∈[0,1] : µ≤−[t(η·c)
n
+(t+x)η·c] ≤µ+1}|
.
k
sup
µ∈R
|{ξ∈[−c,0] : µ≤tξ
n
+(t+x)ξ≤µ+1}|.
(5)
´•f
0
3[−c,0]4~,Kf
0
min
= t+x.ŠâÇ½Â,x∈[0,c]ž,Œ
J
3
≤
1
t+x
.
1
t
.
•,•ÄJ
4
O,-η= ξ+c,d(3)ªŒ




Z
−c
−∞
e
i[tξ
n
+(t+x)ξ]
dξ




=




lim
b−→−∞
Z
−c
b
e
i[tξ
n
+(t+x)ξ]
dξ




=




lim
b−→−∞
Z
0
b+c
e
i[t(η−c)
n
+(t+x)(η−c)]
dη




.lim
b−→−∞
sup
µ∈R
|{η∈[b+c,0] : µ≤t(η−c)
n
+(t+x)(η−c) ≤µ+1}|
.lim
b−→−∞
sup
µ∈R
|{η−c∈[b,−c] : µ≤t(η−c)
n
+(t+x)(η−c) ≤µ+1}|
.lim
b−→−∞
sup
µ∈R
|{ξ∈[b,−c] : µ≤tξ
n
+(t+x)ξ≤µ+1}|.
(6)
DOI:10.12677/aam.2023.1241871807A^êÆ?Ð
‘¦©
´•f
0
3[b,−c]4~,Kf
0
min
= (1+nc
n−1
)t+x.ŠâÇ½Â,x∈[0,c]ž,Œ
J
4
≤lim
b−→−∞
1
(1+nc
n−1
)t+x
.
1
t
.

kU(t)u
0
k
L
p
[0,c]
.(J
1
+J
2
+J
3
+J
4
)
(1−
2
p
)
ku
0
k
L
p
0
.t
2
p
−1
ku
0
k
L
p
0
.
Ù¥,L
p
[0,c]L«¼êCþ3[0,c]‰ŒþL
p
˜m.

3.o(†Ð"
©lWang[8]ïÄšàgœ/Œ+O•{¥¼éu,±/StationarySet0O½n
•̇óä,ïÄŒ+F
−1
e
it(ξ
n
+ξ)
F3˜‘˜mL
p
0
−L
p
O,¿…T(JØ•¹3[8]®k
(Ø¥.3e˜ÚïÄ¥,·‚ò^©ïÄ•{r(Jí2p‘˜m.
ë•©z
[1]Strichartz,R.S.(1977) RestrictionsofFourier TransformstoQuadratic Surfacesand Decay of
SolutionsofWaveEquations.DukeMathematicalJournal,44,705-714.
https://doi.org/10.1215/S0012-7094-77-04430-1
[2]Ben-Artzi,M.andTreves,F.(1994)UniformEstimatesforaClassofEvolutionEquations.
JournalofFunctionalAnalysis,120,264-299.https://doi.org/10.1006/jfan.1994.1033
[3]Ben-Artzi,M.andSaut,J.-C.(1999)UniformDecayEstimatesforaClassofOscillatory
IntegralsandApplications.DifferentialIntegralEquations,12,137-145.
https://doi.org/10.57262/die/1367265625
[4]Cui,S.andTao,S.(2005)StrichartzEstimatesforDispersiveEquationsandSolvabilityof
theKawaharaEquation.JournalofMathematicalAnalysisandApplications,304,683-702.
https://doi.org/10.1016/j.jmaa.2004.09.049
[5]Kenig,C.E.,Ponce,G.andVega,L.(1991)OscillatoryIntegralsandRegularityofDispersive
Equations.IndianaUniversityMathematicsJournal,40,33-69.
https://doi.org/10.1512/iumj.1991.40.40003
[6]Kenig, C.E.,Ponce, G.and Vega, L.(1989)Onthe(Generalized)Korteweg-deVriesEquations.
DukeMathematicalJournal,59,585-610.https://doi.org/10.1215/S0012-7094-89-05927-9
DOI:10.12677/aam.2023.1241871808A^êÆ?Ð
‘¦©
[7]Wang,B.,Huo,Z.,Hao,C.andGuo,Z.(2011)HarmonicAnalysisMethodforNonlinear
EvolutionEquations,I.WorldScientific,Singapore,Hackensack,NJ.
https://doi.org/10.1142/8209
[8]Basu,S.,Guo,S.,Zhang,R.andZorin-Kranich,P.(2021)AStationarySetMethodfor
EstimatingOscillatoryIntegrals.arXivpreprintarXiv:2103.08844
DOI:10.12677/aam.2023.1241871809A^êÆ?Ð

版权所有:汉斯出版社 (Hans Publishers) Copyright © 2023 Hans Publishers Inc. All rights reserved.