Advances in Clinical Medicine
Vol. 11  No. 04 ( 2021 ), Article ID: 41932 , 6 pages
10.12677/ACM.2021.114275

MicroRNA作为癫痫分子生物标志物的相关性研究进展

贾月欣,海日汗*

内蒙古医科大学,内蒙古 呼和浩特

收稿日期:2021年3月22日;录用日期:2021年4月20日;发布日期:2021年4月27日

摘要

癫痫病是一种常见的慢性神经系统疾病,全世界约有6500万人受到影响。现在,抗癫痫药仅在不到三分之一的癫痫患者中有效,并且当我们研究新的抗癫痫药物时,无法获得来自生物标志物的预测支持。微小核糖核酸(MicroRNA,miRNA)是基因表达的主要调控因子,单个miRNA会影响多种分子途径和网络中的多种蛋白质。因此,miRNA的水平或活性变化可对细胞功能产生深远影响。目前miRNA已被提议作为癫痫急性发作和癫痫持续状态的潜在生物标志物。在这篇综述中,我们回顾了在癫痫的病理生理中miRNA所起作用的最新进展。

关键词

癫痫,微小核糖核酸,相关性

Research Advances in the Correlation of MicroRNA as a Biomarker for Epilepsy

Yuexin Jia, Rihan Hai*

Inner Mongolia Medical University, Hohhot Inner Mongolia

Received: Mar. 22nd, 2021; accepted: Apr. 20th, 2021; published: Apr. 27th, 2021

ABSTRACT

Epilepsy is a common chronic neurological disease affecting approximately 65 million people worldwide. Antiepileptic drugs are now only effective in less than one-third of patients with epilepsy and when we study new anti-epileptic drugs, biomarker predictions are not available. MicroRNA (miRNA) is a major regulator of gene expression, and a single miRNA affects multiple molecular pathways and multiple proteins in a network. Thus, changes in the level or activity of miRNA can have profound effects on cellular function. MiRNA has been proposed as a potential biomarker for epileptic seizures and status epilepticus. In this review, we review recent advances in the understanding of the role of miRNA in the pathophysiology of epilepsy.

Keywords:Epilepsy, MicroRNA, Correlation

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 介绍

癫痫(Epilepsy, EP)是一种慢性神经系统疾病,是世界范围内最常见的神经系统疾病之一,有多种临床发作表现,约占世界人口的1.5%~2%。在我国癫痫的患病率为4‰~7‰,影响全世界数百万人。尽管目前在临床实践中使用的抗癫痫药已发展至第三代,但大约30%的癫痫患者对抗癫痫药物无效,这给患者带来了严重的心理和经济负担 [1],改善癫痫患者的生活质量有许多事项,包括发现抗癫痫药物以及疾病缓解疗法 [2]。目前,癫痫的诊断主要依靠临床病史,脑电图记录,脑成像和基因检测,但是它们仍然具有很高的误诊率。在大约10年前,发表了一份报告,显示了大鼠癫痫持续状态后血液中微小核糖核酸的变化 [3],这一发现以及大量证据表明相同分子可以靶向预防癫痫发作,并且多个实验室都在探索微小核糖核酸在诊断癫痫以及其他疾病中的潜在用途。

微小核糖核酸(microRNA, miRNA)是一类短的非编码调控RNA,长约20~22个核苷酸序列,对基因表达具有负调控作用 [4]。自从25年前发现第一个miRNA以来,miRNA已经成为哺乳动物大脑中基因表达的关键调节剂 [5]。研究人员表明,miRNA是大脑发育、细胞分化、神经发生等其他功能所必须的,这些miRNA代表了癫痫基因表达控制的重要层,具有治疗癫痫和作为其生物标志物的潜力 [6]。最近,癫痫动物模型和人类癫痫中的表达谱表明,大脑miRNA的选择性变化主要影响炎症,神经元兴奋和细胞凋亡,这表明miRNA可能调控某些关键过程,从而广泛改变癫痫的病理生理 [7]。已观察到颞叶癫痫患者海马中的几种miRNA的水平发生了变化,已发现的miRNA在血清中稳定,检测血液中的miRNA快速,无创且在经济上可持续 [8],这使miRNA有望成为癫痫诊断的生物标志物。

2. 为什么将miRNA用作癫痫生物标志物呢?

有多种理由认为miRNA可能是癫痫的分子生物标志物。首先是因为它们在大脑中富集,所有已知的miRNA一半以上在大脑中表达 [9]。在大脑中,特定细胞类型的表达建立,维持生理特性以及细胞结构都需要特定的miRNA。已发现miRNA在兴奋性神经元,抑制性神经元,星型胶质细胞,小胶质细胞和少突胶质细胞中富集或独特表达 [10]。关键的miRNA发生酶的缺失能够导致大脑结构和功能发生明显变化,从而导致神经变性的发生 [11]。其次是因为它们在生物流体中非常稳定,耐PH值 [12],miRNA的稳定性一部分源自其包裹在微粒(如外泌体)中的能力,并保留与AGO蛋白质(Argonaute)的物理附着 [13],但这并不是说在生物流体中重复检测和定量miRNA很简单。最后,据认为,神经元死亡,炎症,离子通道功能的改变,神经发生和神经胶质发生均与癫痫发生过程有关 [14],总之,以上这些因素都强烈支持miRNA可以作为癫痫的生物标志物,但是,到目前为止我们都有哪些证据来证明呢?

3. MiRNA作为癫痫生物标志物的最新研究

目前,研究人员已经鉴定出大量在癫痫中差异表达的miRNA,并且越来越多的miRNA也显示出在癫痫中的功能,主要是通过在啮齿动物模型中操纵单个miRNA来降低神经元细胞死亡或癫痫发作的严重程度 [15]。在这里,我们将详细讨论4个具有强大治疗潜力的miRNA,这些miRNA是基于其在癫痫病中已证明的失调和功能而选择的。

3.1. MiR-134

MiR-134是在癫痫病中研究最广泛的microRNA之一。最初,miR-134被发现是一种大脑特异性的miRNA,它位于海马神经元的树突和突触中 [16],最近的研究表明miR-134在实验性癫痫动物和人类癫痫中的表达上调,毛果芸香碱引起的癫痫持续状态与小鼠海马中miR-134的上调有关 [17]。一些研究表明,在癫痫动物模型中,对miR-134的抑制可有效保护海马神经元免受癫痫持续状态导致的神经元死亡 [18]。体内证据表明,miR-134能够调节海马的脊柱体积,这提示了癫痫发作的不同的触发机制,通过降低miR-134来减少海马神经元的癫痫持续状态样电活动 [19]。此外,miR-134被证明可通过靶向神经元迁移蛋白(Doublecortin, DCX)和(Chordin-like1, Chrdl1)来控制神经元发育,并通过控制RNA结合蛋白(Pumilio-2, Pum2)来控制突触的稳态 [20]。综上所述,对miR-134的抑制具有抗癫痫,抗惊厥和神经保护的作用,使其成为miRNA介导的癫痫治疗的可能靶标。目前,需要进一步的工作来阐明miR-134的体内靶点,这些靶点对于评估基于miR-134的治疗策略可能产生的抗惊厥和神经保护作用至关重要。

3.2. MiR-124

MiR-124最初被认为是神经元分化和神经系统发育的关键调节因子。已经证明,在颞叶癫痫患者以及癫痫持续状态的大鼠或小鼠模型中,miR-124的表达下调。miR-124可减轻癫痫发作的严重程度并延长发病潜伏期,而miR-124抑制剂可缩短大鼠癫痫发作模型的发病潜伏期 [21]。此外,局部场电位的记录进一步表明miR-124可能具有抗癫痫的作用。miR-124也与抗N-甲基D-天冬氨酸受体(NMDAR)的抑制有关。注射miR-124可导致环磷酸腺苷(cAMP)反应元件结合蛋白1 (CREB1)的表达降低,这是癫痫发生中的关键调节剂 [22]。Gary P.显示红藻氨酸癫痫大鼠模型中海马中的miR-124下降,这表明miR-124可能是抑制癫痫发生的候选者 [23]。

3.3. MiR-146a

MiR-146a在星形胶质细胞中高度表达并调节神经炎症,这一过程被认为与癫痫发生相关 [24]。通过分析癫痫大鼠海马中的miR-146a显示miR-146a上调。在反应性星形胶质细胞中也证实了miR-146a的表达。实际上,在颞叶癫痫的大鼠模型中,miR-146a的表达被证明是最高的,还发现在患有中间性颞叶癫痫的儿童中miR-146a的水平上调 [25]。Cui [26] 发现miR-146a启动子区域的rs57095329多态性与癫痫发生频率有关,这表明miR-146a可能是癫痫评估的潜在生物标志物。最近的两项研究表明补充miR-146a可以抑制癫痫发作,在颞叶癫痫锂–毛果芸香碱大鼠模型中通过鼻内给药miR-146a模拟物能使其延迟发作 [27],以上研究表明miR-146a在癫痫发生过程中具有潜在的至关重要的作用,其可能成为阻断癫痫发生的治疗靶标。

3.4. MiR-128

MiR-128是神经元兴奋性的关键调节剂,当其缺失或减少时,会增加癫痫的易感性以及加重癫痫发作 [28]。miR-128在成年神经元中表达,并通过调节神经元信号网络和兴奋性来调节运动行为,miR-128通过抑制细胞外信号来调节激酶细胞外调节蛋白激酶-2 (ERK2)网络的各种离子通道和信号成分的表达来调控运动,而ERK2网络能够调节神经元的兴奋性 [29]。近来,PHF6基因表达已被建议作为miR-128的重要调控靶标 [30],因为它可以抵消miR-128对神经元迁移,生长和固有生理特性的有害影响。为了进一步研究miR-128作为治疗靶标,必须评估特定miR-128靶标在引起神经元兴奋性方面的相对作用,并且要评估使用其模拟物使miR-128的急性上调是否可以减少癫痫大鼠或小鼠模型的癫痫发作,然而,该研究仍是未知的,值得我们进一步关注。

4. 下一步和未来的挑战

目前,国内外还没有通过检测miRNA来应用于癫痫病的诊断与治疗,也没有相关文献详细地说明miRNA在癫痫病的诊断与治疗中的作用。但现在有充分的理由认为,测定生物标志物miRNA可以支持癫痫病的诊断和治疗。分子具有良好的生化特性,有一种便宜而可靠的检测技术,可以以适合即时医疗的方式进行扩展,它们在癫痫性脑组织中的失调与靶向控制癫痫发作或改变疾病之间存在机械联系。现在,有直接证据表明某些循环中的miRNA确实来自神经元,但是,离临床检测或诊断标记还有很长的路要走。目前需要进行多中心临床验证,并且需要继续开发和完善用于检测它们的技术,miRNA作为生物标志物的几种潜在作用尚未得到解决。能否使用miRNA图谱来检测耐药性癫痫病在切除病变部位手术后是否能取得良好的效果?血清或血浆是否是癫痫生物标志物的更好来源?尽管必须在未来的几个月或几年中等待关键的实验研究,才能知道这些重要分子的全部潜力,但miRNA作为癫痫的生物标志物仍具有广阔的前景。

文章引用

贾月欣,海日汗. MicroRNA作为癫痫分子生物标志物的相关性研究进展
Research Advances in the Correlation of MicroRNA as a Biomarker for Epilepsy[J]. 临床医学进展, 2021, 11(04): 1284-1289. https://doi.org/10.12677/ACM.2021.114275

参考文献

  1. 1. Deng, X., Shao, Y., Xie, Y., Feng, Y., Wu, M., Wang, M., et al. (2019) MicroRNA-146a-5p Downregulates the Expression of P-Glycoprotein in Rats with Lithium-Pilocarpine-Induced Status Epilepticus. Biological and Pharmaceutical Bulletin, 42, 744-750. https://doi.org/10.1248/bpb.b18-00937

  2. 2. Baulac, M., de Boer, H., Elger, C., Glynn, M., Kälviäinen, R., Little, A., et al. (2015) Epilepsy Priorities in Europe: A Report of the ILAE-IBE Epilepsy Advocacy Europe Task Force. Epilepsia, 56, 1687-1695. https://doi.org/10.1111/epi.13201

  3. 3. Liu, D.Z., Tian, Y., Ander, B.P., Xu, H.C., Stamova, B.S, Zhan, X.H., et al. (2010) Brain and Blood microRNA Expression Profiling of Ischemic Stroke, Intracerebral Hemorrhage, and Kainate Seizures. Journal of Cerebral Blood Flow & Metabolism, 30, 92-101. https://doi.org/10.1038/jcbfm.2009.186

  4. 4. Lee, R.C. and Ambros, V. (2001) An Extensive Class of Small RNAs in Caenorhabditis Elegans. Science, 294, 862-864. https://doi.org/10.1126/science.1065329

  5. 5. Thomas, K.T., Gross, C. and Bassell, G.J. (2018) microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Frontiers in Molecular Neuroscience, 11, Article No. 455. https://doi.org/10.3389/fnmol.2018.00455

  6. 6. Enright, N., Simonato, M. and Henshall, D.C. (2018) Discovery and Validation of Blood microRNAs as Molecular Biomarkers of Epilepsy: Ways to Close Current Knowledge Gaps. Epilepsia Open, 3, 427-436. https://doi.org/10.1002/epi4.12275

  7. 7. Alsharafi, W.A., Xiao, B., Abuhamed, M.M. and Luo, Z. (2015) miRNAs: Biological and Clinical Determinants in Epilepsy. Frontiers in Molecular Neuroscience, 8, Article No. 59. https://doi.org/10.3389/fnmol.2015.00059

  8. 8. Wang, X., Sun, Y., Tan, Z., Che, N., Ji, A., Luo, X., et al. (2016) Serum MicroRNA-4521 Is a Potential Biomarker for Focal Cortical Dysplasia with Refractory Epilepsy. Neurochemical Research, 41, 905-912. https://doi.org/10.1007/s11064-015-1773-0

  9. 9. Brindley, E., Hill, T.D.M. and Henshall, D.C. (2019) MicroRNAs as Biomarkers and Treatment Targets in Status Epilepticus. Epilepsy & Behavior, 101, Article No. 106272. https://doi.org/10.1016/j.yebeh.2019.04.025

  10. 10. Jovičić, A., Roshan, R., Moisoi, N., Pradervand, S., Moser, R., Pillai, B., et al. (2013) Comprehensive Expression Analyses of Neural Cell-Type-Specific miRNAs Identify New Determinants of the Specification and Maintenance of Neuronal Phenotypes. Journal of Neuroscience, 33, 5127-5137. https://doi.org/10.1523/JNEUROSCI.0600-12.2013

  11. 11. Fiorenza, A., Lopez-Atalaya, J.P., Rovira, V., Scandaglia, M., Geijo-Barrientos, E. and Barco, A. (2016) Blocking miRNA Biogenesis in Adult Forebrain Neurons Enhances Seizure Susceptibility, Fear Memory, and Food Intake by Increasing Neuronal Responsiveness. Cerebral Cortex, 26, 1619-1633. https://doi.org/10.1093/cercor/bhu332

  12. 12. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., et al. (2008) Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518. https://doi.org/10.1073/pnas.0804549105

  13. 13. Arroyo, J.D., Chevillet, J.R., Kroh, E.M., Ruf, I.K., Pritchard, C.C., Gibson, D.F., et al. (2011) Argonaute2 Complexes Carry a Population of Circulating MicroRNAs Independent of Vesicles in Human Plasma. Proceedings of the National Academy of Sciences of the United States of America, 108, 5003-5008. https://doi.org/10.1073/pnas.1019055108

  14. 14. Organista-Juárez, D., Jiménez, A., Rocha, L., Alonso-Vanegas, M. and Guevara-Guzmán, R. (2019) Differential Expression of miR-34a, 451, 1260, 1275 and 1298 in the Neocortex of Patients with Mesial Temporal Lobe Epilepsy. Epilepsy Research, 157, Article ID: 106188. https://doi.org/10.1016/j.eplepsyres.2019.106188

  15. 15. Mooney, C., Becker, B.A., Raoof, R. and Henshall, D.C. (2016) EpimiRBase: A Comprehensive Database of microRNA-Epilepsy Associations. Bioinformatics, 32, 1436-1438. https://doi.org/10.1093/bioinformatics/btw008

  16. 16. Tiwari, D., Peariso, K. and Gross, C. (2018) MicroRNA-Induced Silencing in Epilepsy: Opportunities and Challenges for Clinical Application. Developmental Dynamics, 247, 94-110. https://doi.org/10.1002/dvdy.24582

  17. 17. Jimenez-Mateos, E.M. and Henshall, D.C. (2013) Epilepsy and MicroRNA. Neuroscience, 238, 218-229. https://doi.org/10.1016/j.neuroscience.2013.02.027

  18. 18. Gao, X., Guo, M., Meng, D., Sun, F., Guan, L., Cui, Y., et al. (2019) Silencing MicroRNA-134 Alleviates Hippocampal Damage and Occurrence of Spontaneous Seizures after Intraventricular Kainic Acid-Induced Status Epilepticus in Rats. Frontiers in Cellular Neuroscience, 13, Article No. 145. https://doi.org/10.3389/fncel.2019.00145

  19. 19. Wang, X.M., Jia, R.H., Wei, D., Cui, W.-Y. and Jiang, W. (2014) MiR-134 Blockade Prevents Status Epilepticus Like-Activity and Is Neuroprotective in Cultured Hippocampal Neurons. Neuroscience Letters, 572, 20-25. https://doi.org/10.1016/j.neulet.2014.04.049

  20. 20. Fiore, R., Rajman, M., Schwale, C., Bicker, S., Antoniou, A., Bruehl, C., et al. (2014) MiR-134-Dependent Regulation of Pumilio-2 Is Necessary for Homeostatic Synaptic Depression. The EMBO Journal, 33, 2231-2246. https://doi.org/10.15252/embj.201487921

  21. 21. Brennan, G.P., Dey, D., Chen, Y., Patterson, K.P., Magnetta, E.J., Hall, A.M., et al. (2016) Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Reports, 14, 2402-2412. https://doi.org/10.1016/j.celrep.2016.02.042

  22. 22. McClelland, S., Flynn, C. Dube, C., Richichi, C., Zha, Q., Ghestem, A., et al. (2011) Neuron-Restrictive Silencer Factor-Mediated Hyperpolarization-Activated Cyclic Nucleotide Gated Channelopathy in Experimental Temporal Lobe Epilepsy. Annals of Neurology, 70, 454-464. https://doi.org/10.1002/ana.22479

  23. 23. Jiang, G., Zhou, R., He, X., Shi, Z., Huang, M., Yu, J., et al. (2016) Expression Levels of MicroRNA-199 and Hypoxia-Inducible Factor-1 Alpha in Brain Tissue of Patients with Intractable Epilepsy. International Journal of Neuroscience, 126, 326-334. https://doi.org/10.3109/00207454.2014.994209

  24. 24. Kong, H., Yin, F., He, F., Omran, A., Li, L., Wu, T., et al. (2015) The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. Journal of Molecular Neuroscience, 57, 28-37. https://doi.org/10.1007/s12031-015-0574-x

  25. 25. Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., Van Vliet, E.A., et al. (2010) Expression Pattern of miR-146a, an Inflammation-Associated MicroRNA, in Experimental and Human Temporal Lobe Epilepsy. European Journal of Neuroscience, 31, 1100-1107. https://doi.org/10.1111/j.1460-9568.2010.07122.x

  26. 26. Cui, L., Tao, H., Wang, Y., Liu, Z., Xu, Z., Zhou, H., et al. (2015) A Functional Polymorphism of the MicroRNA-146a Gene Is Associated with Susceptibility to Drug-Resistant Epilepsy and Seizures Frequency. Seizure, 27, 60-65. https://doi.org/10.1016/j.seizure.2015.02.032

  27. 27. Tao, H., Zhao, J., Liu, T., Cai, Y., Zhou, X., Xing, H., et al. (2017) Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model. Mediators of Inflammation, 2017, Article ID: 6512620. https://doi.org/10.1155/2017/6512620

  28. 28. Tan, C.L., Plotkin, J.L., Venø, M.T., von Schimmelmann, M., Feinberg, P., Mann, S., et al. (2013) MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice. Science, 342, 1254-1258. https://doi.org/10.1126/science.1244193

  29. 29. Yuan, Y., Xiang, W., Liu, Y., Liang, R., Mao, Y., Luo, J., et al. (2016) Dysregulation of MicroRNA-128 Expression in WHO Grades 2 Glioma Is Associated with Glioma-Associated Epilepsy: Down-Regulation of miR-128 Induces Glioma-Associated Seizure. Epilepsy Research, 127, 6-11. https://doi.org/10.1016/j.eplepsyres.2016.08.005

  30. 30. Franzoni, E., Booker, S.A., Parthasarathy, S., Rehfeld, F., Grosser, S., Srivatsa, S., et al. (2015) miR-128 Regulates Neuronal Migration, Outgrowth and Intrinsic Excitability via the Intellectual Disability Gene Phf6. eLife, 4, Article No. 4. https://doi.org/10.7554/eLife.04263

  31. NOTES

    *通讯作者。

期刊菜单