Advances in Clinical Medicine
Vol. 11  No. 09 ( 2021 ), Article ID: 45501 , 6 pages
10.12677/ACM.2021.119632

射血分数降低性心力衰竭的 药物治疗进展

周文丽,王营忠*,周钰璞

延安大学附属医院,陕西 延安

收稿日期:2021年8月22日;录用日期:2021年9月12日;发布日期:2021年9月27日

摘要

心力衰竭(HF)是一种常见的疾病,尽管近年来治疗有所改善,但射血分数降低性心力衰竭(HFrEF)仍然是导致患者死亡和低水平生活质量增加的主要原因。随着抗心衰药物研究的不断发展,不少新药被广泛的运用到了心衰患者的治疗当中,其中血管紧张素受体脑啡肽酶抑制剂不仅能够改善患者的射血分数,降低死亡风险,已成为了目前国内外治疗心衰指南推荐的药物。对于心衰患者而言,血管紧张素受体脑啡肽酶抑制剂不仅耐受性高,而且能帮助患者维持血流动力学稳定。此外,钠–葡萄糖协同转运蛋白2抑制剂也具有同样的治疗效果,能够增强患者葡萄糖与钠经尿液排泄,降低患者的死亡风险,缩短住院治疗时间,同时其他的抗心衰药物的研究也取得了良好的成效。基于此,本文对新型药物的特点、作用机制及其安全性和耐受性的相关研究进行综述。希望为临床心衰患者的治疗提供帮助。

关键词

射血分数,心力衰竭,药物治疗,治疗进展,临床用药

Advances in Pharmacologic Treatment of Heart Failure with Reduced Ejection Fraction

Wenli Zhou, Yingzhong Wang*, Yupu Zhou

The Affiliated Hospital of Yan’an University, Yan’an Shaanxi

Received: Aug. 22nd, 2021; accepted: Sep. 12th, 2021; published: Sep. 27th, 2021

ABSTRACT

Heart failure is a common disease. Although treatment has improved in recent years, heart failure with reduced ejection fraction remains increasing factor for mortality and morbidity. With the continuous development of anti-heart failure drug research, many new drugs have been widely used in the treatment of patients with heart failure. Among them, angiotensin receptor enkephalinase inhibitors can not only improve the ejection fraction and reduce the risk of death of patients, but also shorten the hospitalization time and promote the early recovery of patients, which have become the drugs recommended by the treatment guidelines for heart failure at home and abroad. For patients with heart failure, angiotensin receptor enkephalinase inhibitors not only have high safety, but also can help patients maintain hemodynamic stability. In addition, sodium-glucose cotransporter 2 inhibitors have the same therapeutic effect, which can enhance the excretion of glucose and sodium in urine, reduce the risk of death and shorten the hospitalization time. Meanwhile, other anti-heart failure drugs have also achieved good results. Based on this, this paper reviews the characteristics, mechanism, safety and tolerability of the new drugs, hoping to provide help for the clinical treatment of patients with heart failure.

Keywords:Ejection Fraction, Heart Failure, Medication, Treatment Progress, Clinical Medication

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

心力衰竭的患者常具有胸闷气短、不能平卧、下肢水肿、运动能力明显降低等表现,其中射血分数降低性心力衰竭(heart failure with reduced ejection fractions, HF-REF)患者的死亡风险以及再入院风险明显增高。现阶段,治疗慢性心衰仍以药物治疗为主,随着治疗心衰药物不断发展,患者的生存率得到改善,但对于射血分数降低性心衰的治疗研究仍需要进一步突破。基于此,本文对射血分数降低性药物进展相关文献进行综述,内容如下。

2. 钠–葡萄糖协同转运蛋白-2抑制剂

2.1. 特点

钠–葡萄糖协同转运蛋白-2抑制剂(SGLT)主要包括SGLT1-SGLT6,存在于体内。其中,SGLT2是该家族中的重要一员。近年来,达格列净、恩格列净及坎格列净已批准国内上市。SGLT-2抑制剂是以降糖药的身份出现的,由于该种药物能够明显改善患有2型糖尿病的心血管不良后果,所以引起大家对该种药物的关注。目前上市的有恩格列净(Empagliflozin)、坎格列净(Canagliflozin)、达格列净(Dapagliflozin)、埃格列净(Ertugliflozin),其他药物仍在紧密研发或处于临床试验阶段 [1],已有的SGLT-2i临床研究试验观察到药物主要减少了无心力衰竭基础患者心力衰竭的发生率,而不是延缓心力衰竭患者的心功能恶化。最近,DAPA-HF试验报道,达格列净降低了心衰患者(包括T2DM患者和非T2DM患者)死亡风险 [2]。

2.2. 作用机制

SGLT2抑制剂的一种有益作用机制是抑制钠氢交换器(NHE1)的活性,这种活性在T2DM和hf中都是上调的 [3]。通过抑制NHE1受体,SGLT2抑制剂可能保护心脏免受有毒的细胞内Ca2+超载 [4] [5]。SGLT2抑制剂也可能直接影响心肌代谢 [6] [7] 并降低心肌氧化应激 [8],与2型糖尿病类似,心衰的特征是胰岛素抵抗 [9],在胰岛素抵抗心脏中,游离脂肪酸(FFA)比葡萄糖更适合作为能量来源 [10]。这种代谢转移导致心脏代谢效率降低(即ATP产生不足)。在一个实验模型中,恩格列净在不改变整体代谢效率的情况下防止心功能下降和增加心脏ATP的产生 [11]。心脏能量产生的增加是由于葡萄糖氧化增加,FFA氧化降低和酮体氧化没有改变的结果。此外,尽管酮体对心脏的供应增加,但酮体氧化的总比率降低并保持不变。这表明,SGLT2抑制剂增加循环酮体水平的能力可能提供额外的能量来源,以维持心脏收缩功能 [7]。这得到了另一项实验研究的支持,该研究表明,恩格列净可以改善猪的左室重构,这是一种通过摄入更多的酮体、游离脂肪酸和支链氨基酸所介导的效应EMPA-HEART CardioLink-6研究也证实了对2型糖尿病和冠状动脉疾病患者心室重构的益处,在接受恩格列净治疗6个月后,左室质量指数降低(通过心脏磁共振测量),舒张功能改善,但左室收缩功能没有改变 [12]。此外,达格列净在DAPA-LVH试验中观察到T2DM患者的左室质量显著降低,这表明有可能出现反向左室重构 [13]。然而,这并没有得到最近的改革试验的证实。另一个目前尚未证实的关于SGLT2抑制剂心血管作用的假说包括可能的心脏抗纤维化作用 [14] [15] 和改善脂肪因子分泌的平衡 [16]。对内皮功能 [17]、血压、中枢脉压 [18] [19] [20] 及动脉硬化和血管阻力参数的有益影响 [21],以及交感神经系统活性的降低 [22],也可能在预防心衰中发挥重要作用。此外,有假设认为,细胞对环境应激反应的有利改变可能是SGLT2抑制剂对心肾保护的另一种机制,需要进一步探索 [23]。

2.3. 安全性与耐受性

SGLT2抑制剂最常见的不良反应是泌尿生殖道感染和体位性低血压,通常是良性的。肾损害患者的降糖疗效降低,并可能发生一些与这类药物独特作用机制直接相关的不良事件:生殖真菌感染、轻度尿路感染和低血压发作的发生率增加(主要发生在容量不足的老年患者)。总体而言,女性(阴道炎)的发病率高于男性(龟头炎)。

3. 血管紧张素受体脑啡肽酶抑制剂

3.1. 特点

沙库巴曲缬沙坦(原名LCZ696)是一类首个沙库巴曲与缬沙坦的结合而成,通过抑制脑啡肽酶(负责NPs降解的酶)增强(包括NPs)在内的血管活性肽。在PARADIGM-HF中,使用沙库巴曲缬沙坦治疗可降低死亡风险,并改善患者预后。目前沙库巴曲 + 缬沙坦的联合用药成为指南的心衰一线用药。可以通过同时对血管紧张素受体和脑啡肽酶起抑制作用,具有利钠利尿、扩张血管以及预防和逆转心室重构的作用。

3.2. 作用机制

沙库巴曲缬沙坦是一种治疗心力衰竭的新型药物,主要包括沙库巴曲和缬沙坦,前者主要负责利钠肽、缓激肽等血管活性物质的降解,从而减少BNP的降解达到改善神经内分泌系统激活和水钠潴留的作用。使其提高机体肽的水平从而达到心肾保护作用 [24],利钠肽(NPs)是一类帮助维持钠和液体平衡的激素,主要有三种NPs:ANP、BNP、CNP。ANP主要是由于血管内液体超载导致心房压力增加而从心房释放的。BNP主要由于充盈压力增加而从左心室释放。心房和心室ANP和BNP的表达在心肌肥厚和其他增加心室壁应力的情况下增加。ANP和BNP都有多种作用机制,包括血管舒张、利尿和利钠。CNP主要有抗血栓形成和抗纤维化作用。NPs通过对静脉系统、肾脏和大脑的影响来调节钠和水平衡、血容量、动脉压和交感神经抑制。NPs可直接引起血管舒张,从而降低心室前负荷、全身血管阻力和动脉压。此外,NPs增加肾小球滤过率,导致利钠和利尿,从而减少全身钠和液体总量。最后,NPs也减少肾小球球旁细胞的肾素释放,以此来降低对血浆血管紧张素II以及醛固酮的释放,从而舒张血管。缬沙坦是血管紧张素受体拮抗剂,可抑制RAAS系统,达到舒张血管、改善水钠潴留、改善血流动力学、抑制交感神经等作用 [25],改善心衰患者远期预后。作为一种复方制剂,应用于射血分数降低的心力衰竭,能够有效改善心肌重构,从而有效降低心衰患者心血管死亡风险、心力衰竭住院风险和全因死亡风险,显著提高和改善患者的症状和生活质量,特别适用于常规心衰药物治疗效果不好的病人。沙库巴曲与缬沙坦作用联合起来来维持理想的水钠平衡、保护肾脏、减少心脏的前后负荷等,具有独特用药模式,为心力衰竭提供了用药新思路。

3.3. 安全性和耐受性

沙库巴曲缬沙坦组最常见的副作用低血压和非严重血管性水肿;而肾损害、高血钾和咳嗽的发生率较低,沙库巴曲缬沙坦的使用在欧洲和美国的心力衰竭治疗指南中得到认可。与依那普利组相比,沙库巴曲缬沙坦组出现血管水肿情况较多;然而,这一结果没有达到统计学意义 [26]。

4. 伊伐布雷定

4.1. 特点

伊伐布雷定(ivabradine)是一种新型的降低心率的药物,在CONSTATHE-DHF研究中,伊伐布雷定的选择性很高,只对窦房结具有选择性的抑制作用,对心脏内的传导、心肌的兴奋收缩、心室的复极化等均没有影响,主要用于心力衰竭患者心率的控制。伊伐布雷定最早于2005年在欧洲被批准上市,于2015年在我国被批准用于慢性心衰的治疗。在SHIFT研究中,伊伐布雷定改善了HF患者的预后并降低了射血分数。

4.2. 作用机制

伊伐布雷定被发现通过抑制(If)来降低心率。伊伐布雷定对心脏组织的主要作用机制是窦房结,窦房结主要位于上腔静脉(SVC)和右心房(RA)交界处的心外膜下位置。在窦房结中,伊伐布雷定阻断了超极化激活的环核苷酸门控(HCN)跨膜通道的胞内通道,HCN负责钠离子(Na+)和钾离子(K+)在开放状态下跨细胞膜运输。这导致了内向有趣电流(If)的抑制,该电流在超极化膜电位时被特异性激活。通过选择性抑制If,在不改变动作电位其他阶段的情况下,心脏起搏器动作电位舒张去极化斜率降低,舒张持续时间增加。这导致心率降低。

4.3. 安全性和耐受性

伊伐布雷定最常见的副作用有闪光现象(光幻视)和窦性心动速率过缓,它属于剂量依赖性,与其相关药理学有关。

5. 总结与展望

所以在积极推广心衰指南药物的基础上,要促进各地区医院防治心衰的规范化发展,使得新型药物能够更好地应用于临床心衰患者中,降低住院风险,提高患者生活质量。

文章引用

周文丽,王营忠,周钰璞. 射血分数降低性心力衰竭的药物治疗进展
Advances in Pharmacologic Treatment of Heart Failure with Reduced Ejection Fraction[J]. 临床医学进展, 2021, 11(09): 4320-4325. https://doi.org/10.12677/ACM.2021.119632

参考文献

  1. 1. Vaduganathan, M. and Januzzi Jr., J.L. (2019) Preventing and Treating Heart Failure with Sodium-Glucose Co- Transporter 2 Inhibitars. American Journal of Cardiology, 124, S20-S27. https://doi.org/10.1016/j.amjcard.2019.10.026

  2. 2. McMurray, J.J., Solomon, S.D., Inzucchi, S.E., Kober, L., Kosiborod, M.N., Martinez, F.A., et al., for the DAPA-HF Trial Committees and Investigators (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. New England Journal of Medicine, 381, 1995-2008. https://doi.org/10.1056/NEJMoa1911303

  3. 3. Packer, M., Anker, S.D., Butler, J., Filippatos, G. and Zannad, F. (2017) Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients with Heart Failure: Proposal of a Novel Mechanism of Action. JAMA Cardiology, 2, 1025-1029. https://doi.org/10.1001/jamacardio.2017.2275

  4. 4. Iborra-Egea, O., Santiago-Vacas, E., Yurista, S.R., Lupon, J., Packer, M., Heymans, S., Zannad, F., et al. (2019) Unraveling the Molecular Mechanism of Action of Empagliflozin in Heart Failure with Reduced Ejection Fraction with or without Diabetes. JACC: Basic to Translational Science, 4, 831-840. https://doi.org/10.1016/j.jacbts.2019.07.010

  5. 5. Yurista, S.R, Sillje, H.H., Oberdorf-Maass, S.U., Schouten, E.M., Pavez Giani, M.G., Hillebrands, J.L., et al. (2019) Sodium-Glucose Co-Transporter 2 Inhibition with Empagliflozin Improves Cardiac Function in Non-Diabetic Rats with Left Ventricular Dysfunction after Myocardial Infarction. European Journal of Heart Failure, 21, 862-873. https://doi.org/10.1002/ejhf.1473

  6. 6. Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944. https://doi.org/10.1016/j.jacc.2019.01.056

  7. 7. Li, C., Zhang, J., Xue, M., Li, X., Han, F., Liu, X., et al. (2019) SGLT2 Inhibition with Empagliflozin Attenuates Myocardial Oxidative Stress and Fibrosis in Diabetic Mice Heart. Cardiovascular Diabetology, 18, Article No. 15. https://doi.org/10.1186/s12933-019-0816-2

  8. 8. Paolisso, G., De Riu, S., Marrazzo, G., Verza, M., Varricchio, M. and D’Onofrio, F. (1991) Insulin Resistance and Hyperinsulinemia in Patients with Chronic Congestive Heart Failure. Metabolism, 40, 972-977. https://doi.org/10.1016/0026-0495(91)90075-8

  9. 9. Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258. https://doi.org/10.1152/physrev.00015.2009

  10. 10. Verma, S., Rawat, S., Ho, K.L., Wagg, C.S., Zhang, L., Teoh, H., et al. (2018) Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights into the Heart Failure Benefits of SGLT2 Inhibitors. JACC: Basic to Translational Science, 3, 575-587. https://doi.org/10.1016/j.jacbts.2018.07.006

  11. 11. Mudaliar, S., Alloju, S. and Henry, R.R. (2016) Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG Outcome Study a Unifying Hypothesis. Diabetes Care, 39, 1115-1122.

  12. 12. Verma, S., Mazer, C.D., Yan, A.T., Mason, T., Garg, V., Teoh, H., Zuo, F., Quan, A., Farkouh, M.E., Fitchett, D.H., Goodman, S.G., Goldenberg, R.M., Al-Omran, M., Gilbert, R.E., Bhatt, D.L., Leiter, L.A., Jüni, P., Zinman, B. and Connelly, K.A. (2019) EMPA-HEART CardioLink-6 Investigators. Effect of Empagliflozin on Left Ventricular Mass in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease: The EMPA-HEART CardioLink-6 Randomized Clinical Trial. Circulation, 140, 1693-1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375

  13. 13. Brown, A., Gandy, S., McCrimmon, R., Struthers, A. and Lang, C.C. (2019) A Randomised Controlled Trial of Dapagliflozin on Left Ventricular Hypertrophy in Patients with Type Two Diabetes. The DAPA-LVH Trial. Circulation, 140, A10643.

  14. 14. Pabel, S., Wagner, S., Bollenberg, H., Bengel, P., Kovacs, A., Schach, C., et al. (2018) Empagliflozin Directly Improves Diastolic Function in Human Heart Failure. European Journal of Heart Failure, 20, 1690-1700. https://doi.org/10.1002/ejhf.1328

  15. 15. Packer, M. (2018) Do Sodium-Glucose Co-Transporter-2 Inhibitors Prevent Heart Failure with a Preserved Ejection Fraction by Counterbalancing the Effects of Leptin? A Novel Hypothesis. Diabetes, Obesity and Metabolism, 20, 1361-1366. https://doi.org/10.1111/dom.13229

  16. 16. Shigiyama, F., Kumashiro, N., Miyagi, M., Ikehara, K., Kanda, E., Uchino, H. and Hirose, T. (2017) Effectiveness of Dapagliflozin on Vascular Endothelial Function and Glycemic Control in Patients with Early-Stage Type 2 Diabetes Mellitus: DEFENCE Study. Cardiovascular Diabetology, 16, Article No. 84. https://doi.org/10.1186/s12933-017-0564-0

  17. 17. Zinman, B., Wanner, C., Lachin, J.M., Fitchett, D., Bluhmki, E., Hantel, S., et al., for the EMPA-REG OUTCOME Investigators (2015) Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. New England Journal of Medicine, 373, 2117-2128. https://doi.org/10.1056/NEJMoa1504720

  18. 18. Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al., for the DECLARE-TIMI 58 Investigators (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357. https://doi.org/10.1056/NEJMoa1812389

  19. 19. Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., et al., for the CANVAS Program Collaborative Group (2017) Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine, 377, 644-657. https://doi.org/10.1056/NEJMoa1611925

  20. 20. Chilton, R., Tikkanen, I., Cannon, C.P., Crowe, S., Woerle, H.J., Broedl, U.C. and Johansen, O.E. (2015) Effects of Empagliflozin on Blood Pressure and Markers of Arterial Stiffness and Vascular Resistance in Patients with Type 2 Diabetes. Diabetes, Obesity and Metabolism, 17, 1180-1193. https://doi.org/10.1111/dom.12572

  21. 21. Herat, L.Y., Magno, A.L., Rudnicka, C., Hricova, J., Carnagarin, R., Ward, N.C., et al. (2020) SGLT2 Inhibitor-Induced Sympathoinhibition: A Novel Mechanism for Cardiorenal Protection. JACC: Basic to Translational Science, 5, 169-179. https://doi.org/10.1016/j.jacbts.2019.11.007

  22. 22. Avogaro, A., Fadini, G.P. and Del Prato, S. (2020) Reinterpreting Cardiorenal Protection of Renal Sodium-Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming. Diabetes Care, 43, 501-507. https://doi.org/10.2337/dc19-1410

  23. 23. Johnsson, K.M., Ptaszynska, A., Schmitz, B., Sugg, J., Parikh, S.J. and List, J.F. (2013) Vulvovaginitis and Balanitis in Patients with Diabetes Treated with Dapagliflozin. Journal of Diabetes and its Complications, 27, 479-484. https://doi.org/10.1016/j.jdiacomp.2013.04.012

  24. 24. 李颖. 血管紧张素受体-脑啡肽酶双重抑制通过调控TGF-β/Smad信号通路对心肾综合征的作用及机制研究[D]: [博士学位论文]. 天津: 天津医科大学, 2019.

  25. 25. Chen, C.H. (2016) Critical Questions about PARADIGM-HF and the Future. Acta Cardiologica Sinica, 32, 387-396.

  26. 26. Bhagat, A.A., Greene, S.J., Vaduganathan, M., Fonarow, G.C. and Butler, J. (2019) Initiation, Continuation, Switching, and Withdrawal of Heart Failure Medical Therapies During Hospitalization. JACC: Heart Failure, 7, 1-12. https://doi.org/10.1016/j.jchf.2018.06.011

  27. NOTES

    *通讯作者。

期刊菜单