Advances in Clinical Medicine
Vol. 12  No. 11 ( 2022 ), Article ID: 57911 , 8 pages
10.12677/ACM.2022.12111473

外泌体治疗勃起功能障碍的研究进展

范明伦1,赵战魁2*

1济宁医学院临床医学院,山东 济宁

2济宁医学院附属医院泌尿外科,山东 济宁

收稿日期:2022年10月14日;录用日期:2022年11月8日;发布日期:2022年11月16日

摘要

勃起功能障碍(erectile dysfunction, ED)是男性性成熟期常见的性功能障碍疾病,而临床一线治疗方案对器质性病变导致的ED效果往往并不理想。干细胞移植治疗已被证明是一种有前途的新的ED治疗方法。现已证实干细胞是通过旁分泌的方式分泌外泌体发挥作用。外泌体内携带核酸物质,尤其是microRNA直接作用于靶细胞以改善功能恢复或激活内源性修复机制。当前在糖尿病ED、神经损伤性ED、动脉损伤性ED的动物实验中均取得良好的效果。本文着重对外泌体治疗各种器质性ED的研究进展进行综述,为后续临床转化提供理论基础。

关键词

外泌体,海绵体神经,勃起功能障碍,平滑肌细胞

Research Progress of Exocrine Therapy for Erectile Dysfunction

Minglun Fan1, Zhankui Zhao2*

1Clinical Medical College, Jining Medical University, Jining Shandong

2Department of Urology, Affiliated Hospital of Jining Medical University, Jining Shandong

Received: Oct. 14th, 2022; accepted: Nov. 8th, 2022; published: Nov. 16th, 2022

ABSTRACT

Erectile dysfunction (ED) is a common sexual dysfunction disease in male sexual maturity, but the clinical first-line treatment scheme is often not ideal for ED caused by organic diseases. Stem cell transplantation has been proved to be a promising new treatment for ED. It has been proved that stem cells secrete exosomes through paracrine. Nucleic acids carried in exosomes, especially microRNA, directly act on target cells to improve functional recovery or activate endogenous repair mechanisms. At present, it has achieved good results in animal experiments of diabetic ED, nerve injury ED and artery injury ED. This article focuses on the research progress of exosomes in the treatment of various organic ED, providing theoretical basis for the follow-up clinical transformation.

Keywords:Exosomes, Cavernous Nerve, Erectile Dysfunction, Smooth Muscle Cell

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

勃起功能障碍(erectile dysfunction, ED)是男性性成熟期常见的性功能障碍疾病,其特征是无法达到或维持足以享受性行为的勃起 [1]。阴茎勃起是一个多系统复杂的过程,该过程是发生在体动脉、静脉和海绵体的一系列血流动力学变化,主要受神经、内分泌系统调节,并受血管、全身疾病和心理障碍的影响 [2]。ED根据其发病机制可分为器质性损伤ED、精神性ED、心理性ED和内分泌性ED [3]。据报道,器质性ED的常见病因主要包括糖尿病ED、动脉损伤性ED,神经损伤性ED等。目前磷酸二酯酶5抑制剂(PDE5Is)药物,如他达拉非、伐地那非和西地那非,通常被认为是ED的一线治疗药物,但PDE5Is的疗效必须基于海绵体血管内皮功能的完整性和一氧化氮(NO)的生物利用度。因此,对于更严重的难治性ED患者来说,很难取得满意的结果 [4]。

干细胞移植治疗ED由于具有多潜能分化能力和旁分泌作用,已被证明是一种有前途的新的ED治疗方法。尽管间充质干细(mesenchymal stem cells, MSC)确切作用机制尚不清楚,但已用于治疗ED并显著改善实验动物的勃起功能 [5] [6]。通常认为,MSCs在ED大鼠中发挥其恢复勃起功能的生物学效应,不是通过直接分化为内皮细胞、平滑肌细胞或神经元样细胞来替代受损细胞,而是通过分泌大量生物活性物质(即旁分泌效应)来修复受损阴茎组织 [7],例如许多营养因子、细胞因子和信号分子以及主动分泌大量称为外泌体(exosomes)的颗粒 [8],通过减少平滑肌细胞的凋亡、促进损伤的海绵体神经轴突生长和抑制阴茎白膜纤维化改善勃起功能。本文着重对外泌体用于各种器质性ED治疗的相关研究进展进行综述。

2. 外泌体概述

2.1. 外泌体发生过程

外泌体属于细胞外囊泡中较小的一种,可以由多种细胞分泌,直径在30~100 nm之间,在电镜下可观察到其脂质双分子层亚细胞微泡结构。外泌体在身体各处广泛分布,并可透过血脑屏障,具有其来源细胞的基本生物学特性 [9]。细胞膜不断向内凹陷到细胞质形成内分泌体,内分泌体膜不断向内萌芽,形成腔内小泡(intraluminal vesicles, IVs)。在这个阶段,内分泌体被称为多泡体(multivesicular bodies, MVB)。MVB与细胞膜融合后,MVB被释放到细胞外空间 [10]。在这个过程中将特定分子分类并封装到IVs中,其中包括细胞因子、生长因子以及mRNA、miRNA等生物活性物质 [11]。当外泌体释放到细胞外环境中时,它们可以粘附在受体细胞表面,与脂质配体受体相互作用,然后通过内吞吸收或与细胞膜融合的途径来发挥作用。

2.2. 外泌体的提取和鉴定

目前用于生产大规模和高质量外泌体的分离和纯化技术极大地限制了外泌体作为治疗方法的使用。目前有七种外泌体分离技术:差速离心、沉淀、冲洗分离、超滤、抗体亲和捕获、微流体分离和质谱。其中差速离心被视为“金标准”,但仍存在消耗大量时间和样品的缺点。目前的方法都不能快速、可靠和大规模的将外泌体与细胞外囊泡(extracellular vesicles, EVs)分离 [12]。这也是基于外泌体的治疗方法转化为临床环境的主要障碍之一。与其他EVs相比,外泌体囊泡表面有一些特征性成分,可以作为鉴定标记,其中最典型的即为四联跨膜蛋白(包括CD9、CD63和CD81) [13],在各种来源的外泌体中均有较高的浓度,并且含有反映细胞来源和病理生理状态的特定蛋白质 [14]。而酶联免疫吸附试验(ELISA)、流式细胞术和蛋白质印迹法经常用于通过分析特定蛋白质来检测外体生物标志物。表达CD9的外泌体由内皮细胞和血细胞分泌,在健康捐赠者的血液中最常发现。CD81与一些病毒颗粒(如丙型肝炎病毒)复合,以促进它们并入外泌体可能导致病毒在细胞间的传播 [15]。据报道,在结直肠癌中,由内皮细胞和组织巨噬细胞分泌的外泌体中CD9、CD81、CD63比例增加 [16]。因此,外泌体作为细胞间通讯载体的功效也会产生不良后果,即在传播诸如丙型肝炎病毒和癌症等病理物质方面有效。

3. 糖尿病ED

3.1. 糖尿病ED流行病学

糖尿病(diabetes mellitus, DM)是一种代谢性疾病,目前在世界范围内流行,其特征是相对或绝对缺乏胰岛素分泌,导致血糖水平长期升高。据报道,糖尿病患者ED的发病率高达75%,是非糖尿病患者的三倍多 [17]。PDE5Is抑制剂在DMED中有效率远不是最佳的,在血糖控制不足的患者中只有约44% [18]。因此,DMED是当前的研究热点。

3.2. DMED病理生理

DMED的病理生理学主要表现为两个维度的功能和结构改变。早期改变主要是功能性的:长期高血糖刺激导致阴茎动脉和内皮功能障碍 [19],活性氧增加 [20],NO生成和生物利用度降低 [21]。随着疾病的进展,阴茎海绵体中产生高浓度的活性氧和纤维生成因子,导致内皮细胞过度凋亡、平滑肌萎缩、纤维化等结构改变,最终导致海绵体静脉闭合功能障碍。

3.3. 外泌体治疗糖尿病ED研究现状

从脂肪组织中分离培养的脂肪源性干细胞(adipose-derived stem cells, ADSC)是一种MSC。ADSC在免疫表型、细胞形态、分化和治疗潜力方面与其他MSC非常相似 [22]。Chen等人通过超速离心从培养的脂肪源性干细胞ADSC的上清液中分离出EXO。将24只DM大鼠被随机分为三组,并接受海绵体内注射ADSC衍生的EXO、ADSC或磷酸盐缓冲盐水的治疗。结果表明ADSC衍生的EXO与ADSC类似,能够通过抑制凋亡来挽救2型糖尿病大鼠的海绵体内皮细胞和平滑肌细胞,从而促进勃起功能的恢复 [23]。外泌体治疗的DMED的有效性已经得到了证实,对于其发挥作用的作用机制尚未研究清楚。

海绵体平滑肌细胞(corpus cavernosum smooth muscle cells, CCSMCs)是分布于整个海绵体的重要细胞,直接参与勃起过程。CCSMC数量的减少和CCSMC功能障碍是DMED发病机制中的重要因素。据报道,来自血管平滑肌的外泌体可以作为血管平滑肌富集的靶点 [24]。Song [25] 等人研究了来源于海绵体平滑肌细胞的外显体(CCSMC-Exo)对糖尿病大鼠模型勃起功能的治疗作用,他们将标记的CCSMC-Exo与CCSMC孵育,结果显示CCSMC-Exo可以通过增加平滑肌含量和减少胶原沉积来发挥抗纤维化作用。CCSMC-Exo也增加了eNOS和nNOS的表达,随后NO和cGMP水平增加。这些发现初步确定了CCSMC-Exo通过抑制体纤维化和调节NO/cGMP信号通路在改善DMED中发挥作用。为了改善DMED中CCSMC减少的情况,Zhu等人使用超顺磁性氧化铁纳米颗粒(SPIONs)标记的ADSC在外磁场中改善链脲佐菌素诱导的糖尿病大鼠的勃起功能的作用,与单独注射ADSC相比,磁性靶向ADSC有助于在海绵体中长期保留细胞,并改善糖尿病大鼠的勃起功能 [26]。程序性细胞死亡4(PDCD4)作为细胞凋亡的中心介导因子,被认为是血管平滑肌细胞凋亡的重要调节因子 [27]。PDCD4被发现是miR-21的靶标,miR-21通过PDCD4调节,在缺氧诱导的肺血管平滑肌细胞增殖和迁移中发挥抑制作用 [28] [29]。Huo等人从阴茎海绵体组织中分离出CCSMC,并在高糖(HG)培养基中培养,从转染miR-21-5p模拟物或miR-21-5p抑制剂并与CCSMC共培养的间充质干细胞(MSCs)中分离出外泌体。向DMED大鼠注射携带PDCD4/siRNA-PDCD4质粒的慢病毒,或含有miR-21-5p-agomir的MSC-Exo。实验数据表明,miR-21-5p在MSCs外泌体中富集。PDCD4下调、miR-21-5p升高或MSCs衍生的外泌体miR-21-5p降低了在HG培养基中培养的CCSMCs的凋亡并增强了其增殖。PDCD4沉默或含有miR-21-5p的MSC外泌体可改善DMED大鼠的勃起功能和平滑肌密度 [30]。

越来越多的研究表明DMED是一种血管疾病 [31]。Corin是一种II型跨膜丝氨酸蛋白酶,主要存在于心脏 [32]。Corin将心钠素原和脑钠素转化为活性形式,心钠素原是主要底物。心钠素原和脑钠素诱导cGMP的产生,进而促进血管舒张。Wang等人从ADSCs或Corin基因表达被siRNA沉默的ADSC (siCorin)中分离出外泌体。在体内研究中,将链脲佐菌素诱导的糖尿病大鼠静脉注射ADSC-Exo或siCorin ADSC-Exo。两周后,测量阴茎鞘内压(intracavernous pressure, ICP)和平均动脉压(mean arterial pressure, MAP)以评估勃起功能,并采集阴茎组织以进一步评估炎症因子水平、心钠素原、脑钠素和神经型一氧化氮合(nNOS)的表达。结果表明,ADSC-Exo可恢复糖尿病大鼠的勃起功能,ADSCs-Exo也促进神经血管功能并抑制炎症因子的表达。相反,在ADSCs中沉默Corin后,外泌体中Corin的含量降低,降低了外泌体对ED的治疗作用。这些发现证明了ADSC-Exo治疗ED的治疗机制以及corin的有益作用 [33]。综上所述,现有的研究表明外泌体在DMED中发挥作用的机制是通过外泌体携带的核酸物质,尤其是microRNA直接作用于靶细胞的受体产生修复作用,同时外泌体通过抑制炎症反应减少血管内皮损伤,为后续临床转化提供了理论基础。

4. 神经损伤性ED

4.1. 根治性前列腺癌术后导致神经损伤

前列腺癌(prostate cancer, PCa)是男性最常见的癌症之一,在全世界的发病率逐年上升。根治性前列腺切除术(radical prostatectomy, RP)是早期PCa的主要治疗方法,但它总是导致许多并发症,包括ED、压力性尿失禁、直肠损伤等。RP后勃起功能障碍(pRP ED)可被视为一种多因素疾病,其相互关联的机制包括去神经支配、内皮功能障碍以及结缔组织和平滑肌细胞的结构改变,其中去神经支配是导致术后ED的最主要的因素。pRP ED的发生率在14%到90%之间,主要取决于手术方法和手术经验 [34]。虽然磷酸二酯酶5抑制剂(PDE5Is)目前被广泛用作治疗ED的一线药物,但它们对海绵体神经损伤后ED的作用较小,也表现出副作用症状 [35]。因此,有必要寻找一种相对安全有效的改善术后勃起功能的方法。

4.2. 外泌体治疗神经损伤性ED研究现状

轴突再生是神经损伤后功能恢复的重要过程。为了重建靶组织神经分布,轴突必须延伸穿过损伤部位,以重新连接远端神经。再生轴突形成的远端扩张称为生长锥,可感知和引导生长方向 [36]。外泌体作为施万细胞(Schwann cells, SCs)与轴突联系的重要媒介,可以调节轴突的再生过程。在Lopez-Verrilli等人 [37] 的研究中,他们发现去分化SCs的外泌体被轴突特异性内化。这些外泌体可以促进DRG神经元的存活,并在体外增加轴突再生。他们进一步说明,这些来源于SCs的外泌体有助于维持生长锥的促再生表型,并抑制参与生长锥塌陷和轴突收缩的GTPase RhoA的活性。Lopez-Leal等人 [38] 已经证明,SCs转变为增强神经突生长的修复表型是由于外泌体miRNA-21的表达增加,SCs外泌体还可通过PTEN下调和神经元中PI3激酶激活促进轴突再生。除了来源于SCs的外泌体外,来自MSC的外泌体还显示出促进轴突再生的能力。外泌体内存在多种神经营养因子,Bucan等人 [39] 证明,ADSCs来源的外泌体在体外增加了DRG神经元的神经突起生长,并在体内增强了坐骨神经挤压损伤后的再生。在Peng [40] 等人的实验中,将SD大鼠骨盆大神经节(major pelvic ganglion, MPG)和带MPG的海绵体神经(CN/MPG)分离出来在体外培养,然后用微能声脉(microenergy acoustic pulse, MAP)处理SCs,分离SCs外泌体。MPG和CN/MPG用MAP以不同剂量处理或者用分离出的SCs外泌体对其进行处理。结果表明MAP和经MAP处理后分离的SCs外泌体均促进了MPG的神经突生长,证明MAP诱导神经再生的机制之一是刺激SCs分泌外泌体。在Li [41] 等人的研究中,用外泌体对损伤的海绵体神经(cavernous nerve injury, CNI)进行修复,术后21天,对大盆神经节中的nNOS表达、神经丝蛋白水平、内皮标志物vWF、平均海绵体内压/平均动脉压比等相关指标进行检测。结果表明,外泌体能显著减轻海绵体损伤相关大鼠的病理变化,改善勃起功能。在Yang [42] 等人的研究中,从大鼠骨髓中分离MSCs,并通过超速离心从上清液中分离外泌体。CNI治疗4周后检测,结果表明外泌体可通过抑制细胞凋亡来改善大鼠中神经损伤导致的ED。综上所述,外泌体在再生信号传递中发挥关键作用,并介导轴突再生的必要机制,为周围神经修复提供益处。

5. 佩罗尼氏病导致的ED

佩罗尼氏病(Peyronie’s disease, PD)是一种阴茎海绵体白膜获得性局限性纤维化障碍,可引起阴茎畸形、肿块和疼痛,并可导致部分患者出现阴茎勃起功能障碍 [43]。目前尚无强有力的数据支持任何口服药物作为佩罗尼氏病的单一疗法,通常会开出几种口服疗法。其他选择包括阴茎牵引疗法和病灶内注射,对许多患者来说,尤其是在症状出现后的早期使用,效果会略有改善。通过阴茎皱襞和斑块切开或部分切除和移植等方法矫正阴茎,是症状稳定后矫正阴茎弯曲的最快速和可靠的方法。副作用因手术类型而异,包括阴茎缩短、感觉改变和少数男性勃起功能障碍。外泌体为PD的治疗提供了新的候选治疗方案,Yang等人从人尿液源性干细胞中提取的外泌体在膜内注射,评估对斑块形成和勃起功能的影响。结果表明注射4周后可以显著改善纤维化,这可能与抑制成纤维细胞向肌成纤维细胞的转分化、降低阴茎白膜TIMP (TIMP-1,2,3)的表达和增加阴茎白膜中MMPs (MMP-1,3,9)的活性有关 [44]。

6. 血管损伤性ED

血管性ED的常见机制是动脉供血不足,主要由动脉粥样硬化、创伤和外科手术引起。许多研究证明,在动脉性ED中,组织缺血后的氧化应激损伤通常会加剧ED的进展 [45]。PDE5Is的疗效必须基于海绵体血管内皮功能的完整性和一氧化氮(NO)的生物利用度。鉴于这些原因,对于那些患有较严重难治性ED的患者来说,很难取得满意的结果。Liu等人将MSC-Exos通过IC注射的方式用于治疗髂内动脉损伤诱导的ED大鼠模型,研究表明,IC注射MSC-Exos可以促进海绵窦内皮细胞的形成,减少组织氧化应激损伤,并改善海绵体中的一氧化氮合酶和平滑肌含量 [4]。实验证明外泌体有助于改善动脉损伤性ED导致的勃起功能障碍,但当前样本量较少,还需更多实验来展示治疗潜力。

7. 小结与展望

目前临床的一线治疗方案对器质性损伤导致的ED的治疗效果达不到医生和患者的期望。外泌体在近期的研究中展示了良好的潜力,通过传递许多遗传物质、神经营养因子和生长因子传递到微环境中,尤其是microRNA,通过改善血管内皮功能、促进平滑肌再生和调节轴突再生,从而促进勃起功能的恢复,而且外泌体很好地避免了与细胞移植相关的问题。然而现在对于外泌体发挥作用的机制通路尚且没有一个统一的定论,外泌体的提取暂时没有一个稳定高效的途径。在实际应用中,给药途径和初始剂量的选择没有准确的标准。这些困难为临床转化带来挑战。基于外泌体的治疗可能代表器质性ED功能恢复的一个重要领域。尽管现有实验证据表明,使用外泌体治疗器质性ED是有效和安全的,但是实验数据较少,未来还需要做大量工作来充分确定外泌体的临床应用潜力。

文章引用

范明伦,赵战魁. 外泌体治疗勃起功能障碍的研究进展
Research Progress of Exocrine Therapy for Erectile Dysfunction[J]. 临床医学进展, 2022, 12(11): 10217-10224. https://doi.org/10.12677/ACM.2022.12111473

参考文献

  1. 1. Xu, W., Jiang, H., Liu, J., et al. (2022) Non-Coding RNAs: New Dawn for Diabetes Mellitus Induced Erectile Dysfunc-tion. Frontiers in Molecular Biosciences, 9, Article ID: 888624. https://doi.org/10.3389/fmolb.2022.888624

  2. 2. Yan, H., Ding, Y. and Lu, M. (2020) Current Status and Pro-spects in the Treatment of Erectile Dysfunction by Adipose-Derived Stem Cells in the Diabetic Animal Model. Sexual Medicine Reviews, 8, 486-491. https://doi.org/10.1016/j.sxmr.2019.09.006

  3. 3. Sanchez-Cruz, J.J., Cabrera-Leon, A., Martin-Morales, A., et al. (2003) Male Erectile Dysfunction and Health-Related Quality of Life. European Urology, 44, 245-253. https://doi.org/10.1016/S0302-2838(03)00215-X

  4. 4. Liu, Y., Zhao, S., Luo, L., et al. (2019) Mesenchymal Stem Cell-Derived Exosomes Ameliorate Erection by Reducing Oxidative Stress Damage of Corpus Cavernosum in a Rat Model of Artery Injury. Journal of Cellular and Molecular Medicine, 23, 7462-7473. https://doi.org/10.1111/jcmm.14615

  5. 5. Garcia, M.M., Fandel, T.M., Lin, G., et al. (2010) Treatment of Erectile Dysfunction in the Obese Type 2 Diabetic ZDF Rat with Adipose Tissue-Derived Stem Cells. The Journal of Sexual Medicine, 7, 89-98. https://doi.org/10.1111/j.1743-6109.2009.01541.x

  6. 6. Gokce, A., Peak, T.C., Abdel-Mageed, A.B., et al. (2016) Adipose Tissue-Derived Stem Cells for the Treatment of Erectile Dysfunction. Current Urology Reports, 17, Article No. 14. https://doi.org/10.1007/s11934-015-0569-8

  7. 7. Albersen, M., Fandel, T.M., Lin, G., et al. (2010) Injections of Adipose Tissue-Derived Stem Cells and Stem Cell Lysate Improve Recovery of Erectile Function in a Rat Model of Cav-ernous Nerve Injury. The Journal of Sexual Medicine, 7, 3331-3340. https://doi.org/10.1111/j.1743-6109.2010.01875.x

  8. 8. Bonafede, R., Scambi, I., Peroni, D., et al. (2016) Exosome Derived from Murine Adipose-Derived Stromal Cells: Neuroprotective Effect on in Vitro Model of Amyotrophic Lateral Sclerosis. Experimental Cell Research, 340, 150-158. https://doi.org/10.1016/j.yexcr.2015.12.009

  9. 9. Valadi, H., Ekstrom, K., Bossios, A., et al. (2007) Exo-some-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nature Cell Biology, 9, 654-659. https://doi.org/10.1038/ncb1596

  10. 10. Colombo, M., Raposo, G. and Thery, C. (2014) Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annual Review of Cell and Developmental Biology, 30, 255-289. https://doi.org/10.1146/annurev-cellbio-101512-122326

  11. 11. Schneider, A. and Simons, M. (2013) Exosomes: Ve-sicular Carriers for Intercellular Communication in Neurodegenerative Disorders. Cell and Tissue Research, 352, 33-47. https://doi.org/10.1007/s00441-012-1428-2

  12. 12. Tang, Y., Zhou, Y. and Li, H.J. (2021) Advances in Mesenchy-mal Stem Cell Exosomes: A Review. Stem Cell Research & Therapy, 12, Article No. 71. https://doi.org/10.1186/s13287-021-02138-7

  13. 13. Thery, C., Ostrowski, M. and Segura, E. (2009) Membrane Vesicles as Conveyors of Immune Responses. Nature Reviews Immunology, 9, 581-593. https://doi.org/10.1038/nri2567

  14. 14. Simpson, R.J., Jensen, S.S. and Lim, J.W. (2008) Proteomic Profiling of Ex-osomes: Current Perspectives. Proteomics, 8, 4083-4099. https://doi.org/10.1002/pmic.200800109

  15. 15. Montpellier, C., Tews, B.A., Poitrimole, J., et al. (2011) Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection. Journal of Biological Chemistry, 286, 13954-13965. https://doi.org/10.1074/jbc.M111.220103

  16. 16. Yunusova, N.V., Tugutova, E.A., Tamkovich, S.N., et al. (2018) The Role of Exosomal Tetraspanins and Proteases in Tumor Progression. Biomeditsinskaia Khimiia, 64, 123-133. https://doi.org/10.18097/PBMC20186402123

  17. 17. Thorve, V.S., Kshirsagar, A.D., Vyawahare, N.S., et al. (2011) Diabetes-Induced Erectile Dysfunction: Epidemiology, Pathophysiology and Management. Journal of Diabetic Compli-cations, 25, 129-136. https://doi.org/10.1016/j.jdiacomp.2010.03.003

  18. 18. Liu, D.F., Jiang, H., Hong, K., et al. (2010) Influence of Erec-tile Dysfunction Course on Its Progress and Efficacy of Treatment with Phosphodiesterase Type 5 Inhibitors. Chinese Medical Journal (English), 123, 3258-3261.

  19. 19. Castela, A. and Costa, C. (2016) Molecular Mechanisms Associated with Diabetic Endothelial-Erectile Dysfunction. Nature Reviews Urology, 13, 266-274. https://doi.org/10.1038/nrurol.2016.23

  20. 20. Yuan, P., Ma, D., Gao, X., et al. (2020) Liraglutide Ameliorates Erec-tile Dysfunction via Regulating Oxidative Stress, the RhoA/ROCK Pathway and Autophagy in Diabetes Mellitus. Fron-tiers in Pharmacology, 11, Article No. 1257. https://doi.org/10.3389/fphar.2020.01257

  21. 21. Zhou, B., Chen, Y., Yuan, H., et al. (2021) NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Re-constitution. The Journal of Sexual Medicine, 18, 1970-1983. https://doi.org/10.1016/j.jsxm.2021.09.007

  22. 22. Lin, C.S., Xin, Z.C., Deng, C.H., et al. (2008) Recent Advances in Andrology-Related Stem Cell Research. Asian Journal of Andrology, 10, 171-175. https://doi.org/10.1111/j.1745-7262.2008.00389.x

  23. 23. Chen, F., Zhang, H., Wang, Z., et al. (2017) Adipose-Derived Stem Cell-Derived Exosomes Ameliorate Erectile Dysfunction in a Rat Model of Type 2 Diabetes. The Journal of Sexual Medicine, 14, 1084-1094. https://doi.org/10.1016/j.jsxm.2017.07.005

  24. 24. Heo, J., Yang, H.C., Rhee, W.J., et al. (2020) Vascular Smooth Muscle Cell-Derived Exosomal MicroRNAs Regulate Endothelial Cell Migration under PDGF Stimulation. Cells, 9, Ar-ticle No. 639. https://doi.org/10.3390/cells9030639

  25. 25. Song, J., Sun, T., Tang, Z., et al. (2020) Exosomes De-rived from Smooth Muscle Cells Ameliorate Diabetes-Induced Erectile Dysfunction by Inhibiting Fibrosis and Modulat-ing the NO/cGMP Pathway. Journal of Cellular and Molecular Medicine, 24, 13289-13302. https://doi.org/10.1111/jcmm.15946

  26. 26. Zhu, L.L., Zhang, Z., Jiang, H.S., et al. (2017) Superparamagnetic Iron Oxide Nanoparticle Targeting of Adipose Tissue-Derived Stem Cells in Diabetes-Associated Erectile Dysfunction. Asian Journal of Andrology, 19, 425-432. https://doi.org/10.4103/1008-682X.179532

  27. 27. Liu, X.J., Cheng, Y.H., Yang, J., Krall, T.J., et al. (2010) An Es-sential Role of PDCD4 in Vascular Smooth Muscle Cell Apoptosis and Proliferation: Implications for Vascular Disease. American Journal of Physiology-Cell Physiology, 298, C1481-C1488. https://doi.org/10.1152/ajpcell.00413.2009

  28. 28. Sarkar, J., Gou, D., Turaka, P., Viktorova, E., et al. (2010) Mi-croRNA-21 Plays a Role in Hypoxia-Mediated Pulmonary Artery Smooth Muscle Cell Proliferation and Migration. American Journal of Physiology—Lung Cellular and Molecular Physiology, 299, L861-L871. https://doi.org/10.1152/ajplung.00201.2010

  29. 29. Ruan, Q., Wang, T., Kameswaran, V., et al. (2011) The mi-croRNA-21-PDCD4 Axis Prevents Type 1 Diabetes by Blocking Pancreatic Beta Cell Death. Proceedings of the Nation-al Academy of Sciences of the United States of America, 108, 12030-12035. https://doi.org/10.1073/pnas.1101450108

  30. 30. Huo, W., Li, Y., Zhang, Y. and Li, H. (2020) Mesenchymal Stem Cells-Derived Exosomal microRNA-21-5p Downregulates PDCD4 and Ameliorates Erectile Dysfunction in a Rat Model of Diabetes Mellitus. FASEB Journal, 34, 13345-13360. https://doi.org/10.1096/fj.202000102RR

  31. 31. Montorsi, P., Ravagnani, P.M., Galli, S., et al. (2005) The Artery Size Hypothesis: A Macrovascular Link between Erectile Dysfunc-tion and Coronary Artery Disease. American Journal of Cardiology, 96, 19M-23M. https://doi.org/10.1016/j.amjcard.2005.07.006

  32. 32. Ichiki, T., Huntley, B.K., Heublein, D.M., et al. (2011) Corin Is Present in the Normal Human Heart, Kidney, and Blood, with pro-B-Type Natriuretic Peptide Processing in the Circula-tion. Clinical Chemistry, 57, 40-47. https://doi.org/10.1373/clinchem.2010.153908

  33. 33. Wang, J., Mi, Y.Y., Wu, S., You, X.M. et al. (2020) Exo-somes from Adipose-Derived Stem Cells Protect against High Glucose-Induced Erectile Dysfunction by Delivery of Corin in a Streptozotocin-Induced Diabetic Rat Model. Regenerative Therapy, 14, 227-233. https://doi.org/10.1016/j.reth.2020.03.002

  34. 34. Saleh, A., Abboudi, H., Ghazal-Aswad, M., et al. (2015) Manage-ment of Erectile Dysfunction Post-Radical Prostatectomy. Research and Reports in Urology, 7, 19-33. https://doi.org/10.2147/RRU.S58974

  35. 35. Matz, E.L., Terlecki, R., Zhang, Y., et al. (2019) Stem Cell Therapy for Erectile Dysfunction. Sexual Medicine Reviews, 7, 321-328. https://doi.org/10.1016/j.sxmr.2017.12.008

  36. 36. Santos, T.E., Schaffran, B., Broguiere, N., et al. (2020) Axon Growth of CNS Neurons in Three Dimensions Is Amoeboid and Independent of Adhesions. Cell Reports, 32, Article ID: 107907. https://doi.org/10.1016/j.celrep.2020.107907

  37. 37. Lopez-Verrilli, M.A., Picou, F. and Court, F.A. (2013) Schwann Cell-Derived Exosomes Enhance Axonal Regeneration in the Peripheral Nervous System. Glia, 61, 1795-1806. https://doi.org/10.1002/glia.22558

  38. 38. Lopez-Leal, R., Diaz-Viraque, F., Catalan, R.J., et al. (2020) Schwann Cell Reprogramming into Repair Cells Increases miRNA-21 Expression in Exosomes Promoting Axonal Growth. Journal of Cell Science, 133, jcs239004. https://doi.org/10.1242/jcs.239004

  39. 39. Bucan, V., Vaslaitis, D., Peck, C.T., Strauß, S., et al. (2019) Effect of Ex-osomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration after Crush Injury. Molecular Neurobiology, 56, 1812-1824. https://doi.org/10.1007/s12035-018-1172-z

  40. 40. Peng, D., Reed-Maldonado, A.B., Zhou, F., Tan, Y., et al. (2020) Exosome Released from Schwann Cells May Be Involved in Microenergy Acoustic Pulse-Associated Cavernous Nerve Regeneration. The Journal of Sexual Medicine, 17, 1618-1628. https://doi.org/10.1016/j.jsxm.2020.05.018

  41. 41. Li, M., Lei, H., Xu, Y., et al. (2018) Exosomes Derived from Mesenchymal Stem Cells Exert Therapeutic Effect in a Rat Model of Cavernous Nerves Injury. Andrology, 6, 927-935. https://doi.org/10.1111/andr.12519

  42. 42. Ouyang, X., Han, X., Chen, Z., et al. (2018) MSC-Derived Exosomes Ameliorate Erectile Dysfunction by Alleviation of Corpus Cavernosum Smooth Muscle Apoptosis in a Rat Model of Cavernous Nerve Injury. Stem Cell Research & Therapy, 9, Article No. 246. https://doi.org/10.1186/s13287-018-1003-1

  43. 43. Ziegelmann, M., Bole, R., Avant, R., et al. (2018) Conservatively Managed Peyronie’s Disease-Long-Term Survey Results from Patients Undergoing Nonsurgical and Noninjection Therapies. Urology, 113, 99-104. https://doi.org/10.1016/j.urology.2017.11.012

  44. 44. Yang, Q., Chen, W., Han, D., et al. (2020) Intratunical Injection of Human Urine-Derived Stem Cells Derived Exosomes Prevents Fibrosis and Improves Erectile Function in a Rat Mod-el of Peyronie’s Disease. Andrologia, 52, e13831. https://doi.org/10.1111/and.13831

  45. 45. Silva, F.H., Lanaro, C., Leiria, L.O., et al. (2014) Oxidative Stress Associ-ated with Middle Aging Leads to Sympathetic Hyperactivity and Downregulation of Soluble Guanylyl Cyclase in Corpus Cavernosum. The American Journal of Physiology-Heart and Circulatory Physiology, 307, H1393-H1400. https://doi.org/10.1152/ajpheart.00708.2013

  46. NOTES

    *通讯作者。

期刊菜单