Advances in Clinical Medicine
Vol. 12  No. 12 ( 2022 ), Article ID: 59357 , 10 pages
10.12677/ACM.2022.12121642

血尿酸水平在心肌梗死发生发展中的研究进展

杨彦萍*,孟霞

青岛市黄岛区中心医院急诊科,山东 青岛

收稿日期:2022年11月16日;录用日期:2022年12月11日;发布日期:2022年12月22日

摘要

心肌梗死是一种常见的心血管疾病,多由冠状动脉闭塞、斑块破裂等使心肌细胞坏死而引起,近年来,我国心肌梗死的发病率和死亡率呈上升趋势。心肌梗死的发病率虽然与地域没有密切关系,但已发现随着年龄的增长而增加。研究表明,心肌梗死通常开始在年轻人和中年人中发展。因此,心肌梗死的预防、检测和治疗已成为医学专家学者关注的领域。尿酸是嘌呤代谢(腺嘌呤和鸟嘌呤降解)的最终产物,主要来源于内源性合成。越来越多证据表明,尿酸与高血压、糖尿病、慢性肾病和肥胖一起,被视为众所周知的心血管危险因素。最近的回顾性研究表明,高尿酸血症是急性心肌梗死患者短期和长期死亡率的独立预测因子。然而,血清尿酸升高与ST段抬高心肌梗死不良结果之间的相关性证据仍存在争议,研究显示了相互矛盾的结果。因此本文对血尿酸水平与心肌梗死的关系进行综述,以期阐明血尿酸水平在心肌梗死患者预后的重要性。

关键词

血尿酸,心肌梗死,预后

Research Progress of Serum Uric Acid in the Occurrence and Development of Myocardial Infarction

Yanping Yang*, Xia Meng

Emergency Department of Huangdao District Central Hospital, Qingdao Shandong

Received: Nov. 16th, 2022; accepted: Dec. 11th, 2022; published: Dec. 22nd, 2022

ABSTRACT

Myocardial infarction (MI) is a common cardiovascular disease caused by coronary artery occlusion and plaque rupture. In recent years, the incidence and mortality of myocardial infarction in our country increased. The incidence of MI, although not closely related to geography, has been found to increase with age. Studies have shown that MI usually begins to develop in young and middle-aged adults. Therefore, the prevention, detection, and treatment of myocardial infarction have become an area of concern for medical experts and scholars. Uric acid is the end product of purine metabolism (adenine and guanine degradation), mainly derived from endogenous synthesis. Increasing evidence suggests that uric acid, together with hypertension, diabetes, chronic kidney disease, and obesity, is seen as a well-known cardiovascular risk factor. Recent retrospective studies suggest that hyperuricemia is an independent predictor of short and long-term mortality in patients with AMI. However, the evidence for an association between elevated serum uric acid and the adverse outcome of ST elevation in MI remains controversial, with studies showing conflicting results. Therefore, this review shed lights on the relationship between blood uric acid levels and MI in order to clarify the prognostic significance of blood uric acid levels in patients with MI.

Keywords:Serum Uric Acid, Myocardial Infarction, Prognosis

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 尿酸代谢

嘌呤在细胞中有许多重要的功能,是核酸、DNA和RNA的单体前体的形成。嘌呤还有助于调节能量代谢和信号转导,是一些辅酶的结构成分,已被证明在血小板、肌肉和神经传递的生理中发挥重要作用 [1] 。所有细胞的生长、增殖和存活都需要数量平衡的嘌呤。在生理条件下,参与嘌呤代谢的酶在细胞内保持合成和降解之间的平衡比例。在人体中,尿酸通过嘌呤分解代谢产生,作为来自食物的外源性嘌呤和来自受损和死亡细胞的内源性嘌呤的最终产物 [2] 。这些核苷酸被代谢为黄嘌呤,黄嘌呤最后通过黄嘌呤氧化酶的作用转化为尿酸。尿酸是一种C5H4N4O3 (7,9-二氢-1h-嘌呤-2,6,8(3H)-三酮)杂环有机化合物,分子量为168 Da,在生理pH值下,尿酸是一种pKα为5.8的弱酸。尿酸主要以尿酸盐的形式存在,随着血液中尿酸浓度的增加,尿酸晶体的形成增加。人血尿酸的正常参考区间为:女性1.5~6.0 mg/dL,男性2.5~7.0 mg/dL。尿酸在水中的溶解度较低,在人体中,尿酸在血液中的平均浓度接近溶解度极限(6.8 mg/dL)。当尿酸水平高于6.8 mg/dL时,尿酸结晶形成尿酸钠。所有其他哺乳动物都有尿酸酶,它能将尿酸转化为尿囊素,而尿囊素很容易通过尿液排出。由于尿酸酶的基因突变,人体无法将尿酸氧化为更容易溶解的复合尿囊素,因此人类体内循环的尿酸水平比其他哺乳动物高3到10倍。尿酸是由黄嘌呤氧化酶产生,黄嘌呤氧化酶是一种普遍存在于人体各个器官的酶,但尿酸主要在肝脏、肠道和血管内皮中合成,并由肾脏和肠道排出,肾脏可排出约三分之二的尿酸,而胃肠道消除三分之一的尿酸负荷 [1] [2] 。

2. 高尿酸血症

人体内尿酸盐稳态是一个复杂且高度可遗传的过程,涉及尿酸盐代谢生物合成、肾脏再吸收以及肾脏和肾外尿酸盐排泄等。高尿酸血症表现出一种长期的病理生理升高的血清尿酸盐浓度,这主要是由于肝脏生物合成增加或肾脏或肠道尿酸盐排泄减少引起的。一般来说,成人高尿酸血症的定义是:男性血尿酸浓度大于7.0 mg/dL (>420 µmol/L),女性血尿酸浓度大于6.0 mg/dL (>360 µmol/L)。高尿酸血症的特点是血液中尿酸水平高,导致尿酸结晶沉积在关节和肾脏 [3] 。

在人体内,尿酸的再吸收在调节血清尿酸中起着至关重要的作用,主要受肾近端小管细胞的影响,该细胞表达多种转运蛋白,参与尿酸盐的重吸收或者尿酸盐的排泄。例如葡萄糖转运蛋白9 (GLUT9,GLUT超家族的14个成员中的大多数转运葡萄糖或其他单糖,而GLUT9主要转运尿酸盐),尿酸转运蛋白1 (URAT1)和人ATP结合盒亚家族G2 (ABCG2)以及有机阴离子转运蛋白(OAT) 1,3和4。尿酸进入细胞,通过顶端的URAT1交换一羧酸盐,通过顶端的OAT4交换二羧酸盐。上皮细胞基底外侧膜上的OAT1和OAT3将尿酸从肾间质转运至肾近端小管上皮细胞。肾尿酸重吸收主要由URAT1和GLUT9介导。URAT1存在于近端小管上皮细胞的顶端膜中,UA再吸收过程中,顶端的GLUT9起重要作用,再吸收的尿酸通过基底外侧GLUT9排出细胞 [4] 。ABCG2是ATP驱动的外排泵,属于ABC(ATP 结合盒)转运蛋白超家族。通过全基因组关联分析和功能研究,已发现ABCG2基因多态性,尤其是错义单核苷酸多态性(rs2231142;Q141K)与高尿酸血症显著关联 [5] [6] 。ABCG2功能障碍已被证明是导致高尿酸血症和痛风的主要原因 [7] 。ABCG2是一种重要的尿酸转运体,其介导的肾脏尿酸盐分泌减少会导致肾脏尿酸盐再吸收增加,因此,肾脏尿酸盐排泄减少被认为是绝大多数痛风患者高尿酸血症的潜在机制 [8] 。除了肾功能障碍导致的尿酸排泄问题外,高尿酸血症也可由尿酸生成增加引起。例如,富含果糖的饮食会导致高尿酸水平,果糖是一种独特的糖分子,它能迅速消耗ATP,增加尿酸的含量 [9] 。此外,富含嘌呤的饮食(如红肉、内脏、海鲜) [10] ,饮酒或接触铅也会导致高尿酸水平。

3. 血清尿酸与心肌梗死风险

既往流行病学研究发现,高血清尿酸浓度与肥胖、高血压、血脂异常和糖尿病相关,有助于心血管疾病的病理生理。目前,血清尿酸是公认的心血管疾病的独立危险因素,研究显示高尿酸血症与冠心病、外周动脉疾病 [11] [12] 、房颤 [13] 有显著相关性。此外,尿酸与心血管死亡和心源性猝死的风险均显著相关 [14] 。多项研究也报道了血清尿酸水平在心肌梗死患者中的作用。

在基于417,734参与者的AMORIS研究中,作者发现随着尿酸水平的升高,急性心肌梗死发生的风险逐渐增加。与男性相比,女性尿酸与急性心肌梗死之间的关系更密切,在没有心血管疾病的中年受试者中,中等水平的尿酸似乎与急性心肌梗死发病率的增加有关,且从尿酸的低水平到高水平,这些关联似乎逐渐增加 [15] 。同样的,鹿特丹研究也提出高血清尿酸水平与心肌梗死高风险相关 [16] 。在心肌梗死患者中,高尿酸血症是目前公认的不良心血管事件的危险因素,包括心血管死亡,独立于代谢综合征的存在 [17] 。基于2824例患者的前瞻性研究,Dyrbuś等发现高尿酸血症患者多支冠状动脉病变及左主干狭窄发生率明显增高 [18] 。此外,高尿酸血症可能可以替代不稳定冠状动脉斑块,因此具有非常重要的实际临床价值 [19] 。在1920例急性心肌梗死患者中,高血尿酸是早发急性心肌梗死的独立影响因素(OR = 1.02, 95% CI: 1.01~1.04, P < 0.01) [20] 。心脏健康尿酸(Uric Acid Right for Heart Health, URRAH)研究指出,在校正了潜在的混杂变量后,血清尿酸水平是致死性心梗的独立危险因素,并建立了最优预测致命性心肌梗死和全因死亡率的血清尿酸临界值,分别为5.7 mg/dL和4.7 mg/dL [21] 。然而,也有一些研究未发现血清尿酸升高与心肌梗死,冠心病或心力衰竭之间的因果关系 [22] [23] [24] 。

近年来有一些研究关注血清尿酸水平的变化及其对心血管疾病风险的预测价值。Brisighella心脏研究指出,血清尿酸的改善可以对普通人群中与年龄相关的收缩压和空腹血糖的恶化产生积极影响 [25] 。在韩国进行的一项大型队列研究发现,随着时间的推移,血清尿酸浓度随时间的增加应被视为高血压的独立危险因素 [26] ,且研究证实血清尿酸水平升高与高血压相关 [27] ,而高血压是心肌梗死的重要危险因素。在一项包含71,449例患者的大型前瞻性研究中,Tian等指出在血清尿酸基线浓度较高的个体中,只有随着时间的推移,血清尿酸稳定较高或增加,才与心肌梗死发生风险增加相关。此外,血清尿酸变化对心肌梗死的影响不受年龄、性别、高血压、糖尿病或估算的肾小球滤过率水平的影响;任何其他方向的血清尿酸水平变化或基线时的高血清尿酸水平与心肌梗死风险无关,与稳定的低血清尿酸相比,风险比为1.42 (95% CI: 1.02~1.92, P = 0.03);基线高尿酸血症与心肌梗死之间没有相关性 [28] 。这项研究提示,血清尿酸的纵向变化比基线值有更高的风险预测价值。因此,在临床实践中监测血清尿酸变化的纵向模式是重要的。

4. 血清尿酸与心肌梗死预后相关性

在急性心肌梗死的情况下,越来越多的证据表明高血清尿酸水平可能与不良结果相关。血尿酸水平与Killip等级、左室衰竭及病死率有显著相关性,即血尿酸水平越高,Killip等级越高,左室功能障碍越严重,病死率越高 [29] 。血清尿酸水平高的患者在ST段抬高型心肌梗死后Killip分级较高(P = 0.001),与正常UA组比较,高血清尿酸组cTnI升高(2.68 ± 0.09 vs 4.09 ± 0.42, P = 0.001),血压升高(P = 0.009),心房颤动(AF)发生率升高(P = 0.03),左心室射血分数低(39.5 ± 9.6 vs. 34.6 ± 11.6) [30] 。血清尿酸浓度升高与短期、中期和长期预后显著恶化相关,全因死亡率均显著增高,血清尿酸升高可作为12个月和36个月随访时全因死亡率的独立预测因子 [18] 。在急性冠状动脉综合征患者中,入院时血尿酸水平高于当前国际参考限度(6.0 mg/dL)与显著增加了总体人群的住院死亡风险(OR = 2.9, 95% CI: 1.4~6.1; P = 0.0057),且独立于肾功能 [31] 。在549例非ST段抬高型心肌梗死患者中,与正常脑卒中患者相比,血清尿酸水平升高与死亡率增加1.5倍相关,与住院死亡率增加相关,且血清尿酸浓度是非ST段抬高型心肌梗死患者长期死亡的独立危险因素 [32] 。高血清尿酸水平与急性冠状动脉综合征患者住院不良结局和死亡率独立相关,将血清尿酸纳入GRACE风险评分能更准确地预测研究人群的住院死亡率 [33] 。此外,在接受经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)的急性心肌梗死患者中,手术前高尿酸血症与长期死亡率增加独立相关 [34] 。

先前的研究探讨了血清尿酸与ST段抬高型心肌梗死患者在接受PCI后死亡率之间的关系,但结果存在争议。Kaya等人表明,血清尿酸水平升高(女性为>6 mg/dL,男性为>7 mg/dL)与较高的住院死亡率(9% vs 2%, P < 0.001)和长期死亡率(10% vs 4%, P < 0.001)相关 [35] 。关于ST段抬高型心肌梗死的长期结局,GISSI-Prevenzione试验显示,血清尿酸水平升高,特别是高于6.8 mg/dL,显著增加全因心血管疾病死亡的风险 [36] 。Lazzeri等人发现,在466例ST段抬高型心肌梗死患者中,血清尿酸水平为>6.5 mg/dL的患者与较高的住院死亡率独立相关(OR = 2.02, 95% CI: 1.47~2.78, P < 0.001) [37] 。然而,同一组的研究未能在856例ST段抬高型心肌梗死患者中证明这一独立关联:尽管血清尿酸升高与较高的死亡率相关,但在校正肌钙蛋白和肾功能后,结果没有显著性 [38] 。

在心血管危险因素异常高发的人群中,入院时的高尿酸血症仍与ST段抬高型心肌梗死患者的短期死亡率相关。高尿酸血症和正常尿酸血症患者在冠状动脉护理病房每天的死亡率分别为1.7和0.7例/100例。相比之下,未观察到主要不良心血管事件的发生。经过多因素调整后,短期死亡率的独立预测因素只有Killip 2级(HR = 13.15; 95% CI: 5.29~29.85; P < 0.0001)和血清尿酸水平升高(HR = 1.99; 95% CI: 1.08~3.66; P = 0.026) [39] 。在接受PCI治疗的ST段抬高型心肌梗死患者中,Mandurino-Mirizzi等发现血清尿酸升高与短期和长期死亡率显著相关,且独立于年龄、性别、血清肌酐、血糖和血红蛋白、体重指数、糖尿病、左心室射血分数和三支冠状动脉疾病。值得注意的是,将人口按四分位数进行分层,作者发现四分位数和前三个四分位数之间的短期和长期死亡率存在显著差异。这些结果与血清尿酸水平(6.7 mg/dL)对ST段抬高型心肌梗死后死亡率的阈值效应假说一致 [40] 。通过阿托伐他汀降低血清尿酸水平可以改善急性ST段抬高型心肌梗死患者PCI术后的再流 [41] 。有研究表明,血清尿酸升高可触发细胞内氧化应激和炎症反应,最终导致在经原发性PCI的ST段抬高型心肌梗死患者更大的缺血/再灌注损伤、冠状动脉微血管阻塞和更大的梗死面积 [42] 。入院时的血浆尿酸水平是ST段抬高型心肌梗死患者原发性PCI术后冠状动脉血流不良和院内主要不良心脏事件的一个强有力的独立预测指标,PCI后冠状动脉血流受损显著相关 [43] [44] 。无/慢复流现象(No-/slow-reflow, NRP)是ST段抬高型心肌梗死患者接受原发性PCI的严重并发症。研究发现高尿酸血患者心肌梗死溶栓(Thrombolysis in myocardial infarction, TIMI)-NRP (24.9% vs. 14.0%, P < 0.001)和TIMI心肌灌注分级-NRP (33.0% vs. 24.9%, P = 0.03)发生率比较高,且表现较差的左心室射血分数(51.5% vs. 54.0%, P = 0.002) [45] 。室性心动过速和心室颤动(ventricular tachycardia and fibrillation, VT/VF)是引起急性心肌梗死心脏衰竭的致命心律失常。心室室速是急性心肌梗死患者校正年龄、糖尿病和左心室射血分数后一个显著的心源性猝死的预测指标。即使在PCI时代,VT/VF仍与所有ST段抬高型心肌梗死患者的住院死亡率和高危ST段抬高型心肌梗死患者较高的5年死亡率相关 [46] 。血清尿酸水平与急性心肌梗死再灌注室性心律失常相关,高血清尿酸组再灌注VT/VF频率明显高于低血清尿酸组(17.1% vs. 4.0%, p < 0.001) [47] 。Hu等回顾性分析了634例接受原发性PCI的ST段抬高型心肌梗死患者的数据,其中高尿酸血症患者PCI后VT/VF发生率明显高于非高尿酸血症患者(19.0% vs. 9.4%, P = 0.001)。高尿酸血症与VF/VT风险显著增高相关(OR = 2.11; 95% CI: 1.11~4.03; P = 0.024)。调整PCI患者的年龄、性别、高血压史、估计的肾小球滤过率、超敏C反应蛋白、血浆钠、肌钙蛋白I峰值、空腹血糖、和b型利钠肽后,这种相关性在统计学上仍然存在(校正后OR = 2.73; 95% CI: 1.19~6.27; P = 0.018) [48] 。

5. 血尿酸影响心肌梗死患者预后的病理生理机制

血清尿酸升高与心肌梗死不良预后的病理生理机制还不完全清楚,但已经假设了几种理论。基础科学证据表明,高尿酸血症通过诱导炎症反应、氧化应激、内皮功能障碍、血管平滑肌细胞增殖和激活肾素–血管紧张素系统,在心肌梗死的发展中发挥重要作用 [49] 。

1) 诱导炎症反应

先前的研究结果表明,血清尿酸可能会诱导炎性反应。炎症状态是动脉粥样硬化进展和静脉系统血栓形成的重要危险因素,其通过促进凝血、降低抗凝机制的活性、抑制纤溶和产生内皮损伤来干扰凝血系统。一项超过23,000名参与者的研究表明,炎症评分与心血管健康评分之间存在显著负相关(β = −0.052, P < 0.001) [50] 。在接受原发性PCI治疗的ST段抬高型心肌梗死患者中,血清尿酸水平与高敏感性CRP和白细胞介素-6 (IL-6)峰值之间存在显著相关性 [51] 。在Mandurino-Mirizzi等人的研究中,血清尿酸升高组的CRP水平明显高于其余患者,此外与正常血清尿酸患者相比,血清尿酸升高患者在原发性PCI后的前48小时内,表现出较高的中性粒细胞计数和淋巴细胞比值(Neutrophil to Lymphocyte Ratio, NLR) [40] 。高NLR与pPCI后冠状动脉血流受损以及ST段抬高型心肌梗死后较高的短期和长期死亡率相关 [52] 。这些数据表明血清尿酸升高与更大的炎症反应之间可能存在关联。此外,尿酸本身即使在正常浓度下,也会对血管细胞产生促炎作用。尿酸钠单晶通过激活巨噬细胞中NLR (核脱结合寡聚化结构域样受体)家族pyrin结构域包含3 (NLRP3)炎症小体,并触发炎性Caspase 1的激活和强大的促炎细胞因子如IL-1β和IL-18的产生和分泌 [53] 。此外,不形成晶体的可溶性尿酸可以激活NLRP3炎症小体,并通过巨噬细胞中线粒体活性氧(ROS)产生的氧化还原状态改变来诱导IL-1β的产生 [54] 。在急性心肌梗死损伤反应中,NLRP3负责IL-1β的产生和随后的全身炎症反应。动物实验研究表明NLRP3炎症定向治疗可能是一种可行的策略,可以减少AMI后的梗死面积和预防心力衰竭 [53] 。

2) 氧化应激

从生物学上讲,尿酸不仅具有促氧化作用,而且具有抗氧化作用。细胞外尿酸主要是一种抗氧化剂,在细胞外水平,尿酸与超氧化物反应生成尿囊素,与过氧亚硝酸盐反应生成三聚脲,或与一氧化氮(NO)反应生成6-氨基尿嘧啶,这些都反应了尿酸的抗氧化特性。尿酸是人体主要的抗氧化产物之一,其细胞外清除自由基的能力高达55%。它是一种自由基清除剂,可以稳定血清中的维生素C,主要是由于它的铁螯合特性和淬灭过氧亚硝酸盐(一种潜在的有害氧化剂),导致体外形成稳定的一氧化氮(NO)供体。在接近人体生理水平的浓度下,尿酸可以防止过氧化氢引起的细胞外超氧化物歧化酶(ecSOD)的失活,这种酶可以清除超氧化物阴离子。与细胞外的双重作用相比,细胞内的尿酸通过激活烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶,降低内皮细胞中抗氧化性NO的水平,激活过氧亚硝酸盐介导的脂质氧化来执行促氧化作用 [55] 。

氧化应激通常被定义为我们体内自由基和抗氧化剂之间的失衡,被认为是细胞损伤和疾病发展的主要原因之一。参与ROS生产的酶包括:NADPH氧化酶、黄嘌呤氧化酶、髓过氧化物酶、脂氧合酶和解偶联NO合酶等。尿酸是黄嘌呤氧化酶催化嘌呤代谢的最终产物。在嘌呤代谢过程中,包括超氧化物在内的活性氧与尿酸的产生同时产生,过量生成的超氧阴离子伴随尿酸生成的增加直接与NO发生高亲和力的反应,不仅通过降解和失活NO导致NO的生物利用度降低,还会增加过氧亚硝酸盐(ONOO)的形成,一种能引起脱氧核糖核酸损伤、细胞死亡和脂质过氧化的强效氧化剂 [56] 。细胞氧化还原状态的一个主要决定因素是NADPH,其水平驱动黄嘌呤氧化酶和去乙酰化酶1之间的反比关系,而乙酰化酶1是一种营养剥夺传感器,发挥重要的抗氧化和心脏保护作用 [57] 。黄嘌呤氧化酶可以与NADPH氧化酶相互激活,NADPH氧化酶参与ROS的产生,通过丝裂原活化蛋白激酶(MAPKs)导致促炎信号传导。此外,尿酸可能通过作为一种促进脂蛋白氧化的氧化剂,在冠状动脉粥样硬化斑块的进展中发挥作用。研究发现,动脉粥样硬化斑块含有大量的尿酸 [58] ,升高的血清尿酸水平可能通过诱导低密度脂蛋白胆固醇氧化和脂质过氧化、促进血小板聚集和尿酸晶体的形成来促进冠状动脉血栓的形成,从而破坏动脉内膜 [59] 。既往研究报道尿酸作用下的细胞可观察到氧化应激伴随ROS的产生 [60] 。

3) 内皮功能障碍

尿酸水平升高通过降低NO生物利用度与内皮功能障碍相关。初步研究表明,尿酸在被内皮细胞吸收后,可引起氧化应激、炎症反应和内皮型一氧化氮合酶(eNOS)去磷酸化,通过降低NO生物利用度导致内皮功能障碍 [61] 。黄嘌呤氧化酶存在于内皮细胞中,可以刺激LOX-1的表达 [62] 。LOX-1是介导血管内皮细胞识别、内化和降解氧化修饰低密度脂蛋白(oxLDL)的受体,在动脉粥样硬化斑块形成中发挥重要作用 [63] 。OxLDL是动脉粥样硬化的标志,可诱导血管内皮细胞激活和功能障碍,导致促炎症反应、促氧化条件和凋亡。内皮功能障碍存在时,内皮素-1、血小板活化因子促进血管收缩,组织因子、纤溶酶原激活物抑制剂-1、血管性血友病因子、血小板活化因子的表达变化从而促进血栓形成 [56] 。在内皮细胞中,尿酸降低一氧化氮的生物利用度,抑制细胞迁移和增殖,部分是由CRP的表达介导的 [64] 。氧化应激、炎症反应和内皮功能障碍的增加导致血管平滑肌细胞增殖和血管收缩,使组织缺氧程度进一步加深。

4) 血管平滑肌细胞增殖

尿酸可以刺激血管平滑肌细胞增殖 [65] [66] 。有报道称,血清尿酸本身可能通过存在于血管内皮细胞和血管平滑肌细胞中的尿酸转运体流入细胞,通过尿酸转运体引起血管平滑肌细胞增殖,导致血管损伤,促进心肌梗死的病理过程。体外研究表明,尿酸可诱导趋化因子和生长因子的基因表达,如单核细胞趋化蛋白-1 (MCP-1)和血小板源性生长因子,并刺激血管平滑肌细胞的增殖。此外,抗氧化剂可减弱尿酸诱导的血管平滑肌细胞中MCP-1的表达,表明其与氧化还原依赖机制有关。在血管平滑肌细胞中,尿酸激活关键的促炎途径并刺激细胞增殖。

5) 激活肾素–血管紧张素系统

实验数据表明,血清尿酸可以上调肾素–血管紧张素系统和血管紧张素II,引起人内皮细胞和脂肪组织活性氧产生增加 [67] 。临床研究发现,高尿酸血症与高血压患者血浆肾素活性升高有关。用尿酸酶抑制剂治疗的轻度高尿酸血症模型在几周后由于尿酸介导的肾血管收缩和肾素血管紧张素系统(RAS)的激活而发生高血压 [68] ,这一机制可能为血清尿酸影响血压提供了途径。高血压可导致脂质沉积和动脉粥样硬化斑块的形成,被认为是心肌梗死的重要危险因素,支持了高血压在其中起中介作用的假说。

6. 小结

本综述全面论述了血尿酸水平增加与心血管疾病,尤其是心肌梗死的发生风险以及预后的相关性,得出尿酸水平增加是心肌梗死发生的危险因素,且增加心肌梗死患者的不良预后及全因死亡率;尿酸水平升高与如氧化应激增加、炎症和内皮功能障碍等多种病理过程有关,因此,尿酸水平增加与心肌梗死各种不良结局相关并不奇怪。降低尿酸水平是否对急性心肌梗死有益,以及血尿酸在心肌梗死的预防,临床管理和治疗方面的价值需要进一步研究。

文章引用

杨彦萍,孟 霞. 血尿酸水平在心肌梗死发生发展中的研究进展
Research Progress of Serum Uric Acid in the Occurrence and Development of Myocardial Infarction[J]. 临床医学进展, 2022, 12(12): 11389-11398. https://doi.org/10.12677/ACM.2022.12121642

参考文献

  1. 1. Linden, J., Koch-Nolte, F. and Dahl, G. (2019) Purine Release, Metabolism, and Signaling in the Inflammatory Response. Annual Review of Immunology, 37, 325-347. https://doi.org/10.1146/annurev-immunol-051116-052406

  2. 2. El Ridi, R. and Tallima, H. (2017) Physiological Functions and Pathogenic Potential of Uric Acid: A Review. Journal of Advanced Research, 8, 487-493. https://doi.org/10.1016/j.jare.2017.03.003

  3. 3. Zhang, S., et al. (2019) Hyperuricemia and Cardiovascular Disease. Current Pharmaceutical Design, 25, 700-709. https://doi.org/10.2174/1381612825666190408122557

  4. 4. Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article No. 9221. https://doi.org/10.3390/ijms22179221

  5. 5. Dong, Z., et al. (2015) Association between ABCG2 Q141K Poly-morphism and Gout Risk Affected by Ethnicity and Gender: A Systematic Review and Meta-Analysis. International Journal of Rheumatic Diseases, 18, 382-391. https://doi.org/10.1111/1756-185X.12519

  6. 6. Stiburkova, B., Pavelcova, K., Pavlikova, M., Ješina, P. and Pavelka, K. (2019) The Impact of Dysfunctional Variants of ABCG2 on Hyperuricemia and Gout in Pediatric-Onset Patients. Arthritis Research & Therapy, 21, Article No. 77. https://doi.org/10.1186/s13075-019-1860-8

  7. 7. Eckenstaler, R. and Benndorf, R.A. (2021) The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout-An Update. International Journal of Molecular Sciences, 22, Article No. 6678. https://doi.org/10.3390/ijms22136678

  8. 8. Latourte, A., Dumurgier, J., Paquet, C. and Richette, P. (20121) Hyperuricemia, Gout, and the Brain—An Update. Current Rheumatology Reports, 23, Article No. 82. https://doi.org/10.1007/s11926-021-01050-6

  9. 9. Danve, A., Sehra, S.T. and Neogi, T. (2021) Role of Diet in Hyperuricemia and Gout. Best Practice & Research Clinical Rheumatology, 35, Article ID: 101723. https://doi.org/10.1016/j.berh.2021.101723

  10. 10. Aihemaitijiang, S., et al. (2020) The Association between Pu-rine-Rich Food Intake and Hyperuricemia: A Cross-Sectional Study in Chinese Adult Residents. Nutrients, 12, Article No. 3835. https://doi.org/10.3390/nu12123835

  11. 11. White, J., et al. (2016) Plasma Urate Concentration and Risk of Coronary Heart Disease: A Mendelian Randomisation Analysis. The Lancet Diabetes and Endocrinology, 4, 327-336. https://doi.org/10.1016/S2213-8587(15)00386-1

  12. 12. Gill, D., et al. (2021) Urate, Blood Pressure, and Cardiovascular Disease: Evidence from Mendelian Randomization and Meta-Analysis of Clinical Trials. Hypertension, 77, 383-392. https://doi.org/10.1161/HYPERTENSIONAHA.120.16547

  13. 13. Hong, M., et al. (2020) A Mendelian Randomi-zation Analysis: The Causal Association between Serum Uric Acid and Atrial Fibrillation. European Journal of Clinical Investigation, 50, e13300. https://doi.org/10.1111/eci.13300

  14. 14. Kleber, M.E., et al. (2015) Uric Acid and Cardiovascular Events: A Mendelian Randomization Study. Journal of the American Society of Nephrology, 26, 2831-2838. https://doi.org/10.1681/ASN.2014070660

  15. 15. Holme, I., Aastveit, A.H., Hammar, N., Jungner, I. and Walldius, G. (2009) Uric Acid and Risk of Myocardial Infarction, Stroke and Congestive Heart Failure in 417,734 Men and Women in the Apolipoprotein MOrtality RISk Study (AMORIS). Journal of Internal Medicine, 266, 558-570. https://doi.org/10.1111/j.1365-2796.2009.02133.x

  16. 16. Bos, M.J., Koudstaal, P.J., Hofman, A., Witteman, J.C.M. and Breteler, M.M.B. (2006) Uric Acid Is a Risk Factor for Myocardial Infarction and Stroke: The Rotterdam Study. Stroke, 37, 1503-1507. https://doi.org/10.1161/01.STR.0000221716.55088.d4

  17. 17. Pugliese, N.R., et al. (2021) The Importance of In-cluding Uric Acid in the Definition of Metabolic Syndrome When Assessing the Mortality Risk. Clinical Research in Cardiology, 110, 1073-1082. https://doi.org/10.1007/s00392-021-01815-0

  18. 18. Dyrbuś, M., et al. (2021) Serum Uric Acid Is an Independent Risk Factor of Worse Mid- and Long-Term Outcomes in Patients with Non-ST-Segment Elevation Acute Coronary Syndromes. Cardiology Journal, 2021, Article No. 0156. https://doi.org/10.5603/CJ.a2021.0156

  19. 19. Saito, Y., Nakayama, T., Sugimoto, K., Fujimoto, Y. and Kobayashi, Y. (2015) Relation of Lipid Content of Coronary Plaque to Level of Serum Uric Acid. The American Journal of Cardiology, 116, 1346-1350. https://doi.org/10.1016/j.amjcard.2015.07.059

  20. 20. 许晶晶, 姜琳, 宋莹, 姚懿, 贾斯达, 刘越, 袁德山, 李天瑜, 陈珏, 吴元, 张峻, 陈纪林, 杨跃进, 高润霖, 乔树宾, 徐波, 袁晋青. 早发急性心肌梗死的影响因素及其PCI术后远期预后[J]. 中华心血管病杂志, 2020, 48(8): 655-660. https://doi.org/10.3760/cma.j.cn112148-20191208-00738

  21. 21. Casiglia, E., et al. (2020) Serum Uric Acid and Fatal Myocardial Infarction: Detection of Prognostic Cut-off Values: The URRAH (Uric Acid Right for Heart Health) Study. Journal of Hypertension, 38, 412-419. https://doi.org/10.1097/HJH.0000000000002287

  22. 22. Efstathiadou, A., Gill, D., McGrane, F., Quinn, T. and Dawson, J. (2019) Genetically Determined Uric Acid and the Risk of Cardiovascular and Neurovascular Diseases: A Mendelian Randomization Study of Outcomes Investigated in Randomized Trials. Journal of the American Heart As-sociation, 8, e012738. https://doi.org/10.1161/JAHA.119.012738

  23. 23. Keenan, T., et al. (2016) Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases through a Mendelian Randomization Study. Journal of the American College of Cardiology, 67, 407-416. https://doi.org/10.1016/j.jacc.2015.10.086

  24. 24. Zalawadiya, S.K., et al. (2015) Uric Acid and Cardiovascular Disease Risk Reclassification: Findings from NHANES III. European Journal of Preventive Cardiology, 22, 513-518. https://doi.org/10.1177/2047487313519346

  25. 25. Cicero, A.F., et al. (2017) Serum Uric Acid Change and Modi-fication of Blood Pressure and Fasting Plasma Glucose in an Overall Healthy Population Sample: Data from the Brisighella Heart Study. Annals of Medicine, 49, 275-282. https://doi.org/10.1080/07853890.2016.1222451

  26. 26. Sung, K.-C., et al. (2017) Baseline and Change in Uric Acid Concentration Over Time Are Associated with Incident Hypertension in Large Korean Cohort. American Journal of Hypertension, 30, 42-50. https://doi.org/10.1093/ajh/hpw091

  27. 27. Ma, H., et al. (2019) Distinct Uric Acid Trajectories Are Associated with Different Risks of Incident Hypertension in Middle-Aged Adults. Mayo Clinic Proceedings, 94, 611-619. https://doi.org/10.1016/j.mayocp.2018.08.042

  28. 28. Tian, X., et al. (2020) Associations between Changes in Serum Uric Acid and the Risk of Myocardial Infarction. International Journal of Cardiology, 314, 25-31. https://doi.org/10.1016/j.ijcard.2020.03.083

  29. 29. Kumar, N., Kumar, H., Kumar, V. and Nayyer, P.S. (2020) A Study of the Serum Uric Acid Level as Prognostic Indicator in Acute Myocardial Infarction. The Journal of the Asso-ciation of Physicians of India, 68, 31-34.

  30. 30. Hajizadeh, R., Ghaffari, S., Salehi, R., Mazani, S. and Aghavali, S. (2016) Association of Serum Uric Acid Level with Mortality and Morbidity of Patients with Acute ST-Elevation Myocardial Infarction. Journal of Cardiovascular and Thoracic Research, 8, 56-60. https://doi.org/10.15171/jcvtr.2016.11

  31. 31. Magnoni, M., et al. (2017) Serum Uric Acid on Admission Predicts In-Hospital Mortality in Patients with Acute Coronary Syndrome. International Journal of Cardiology, 240, 25-29. https://doi.org/10.1016/j.ijcard.2017.04.027

  32. 32. Kuźma, Ł., et al. (2020) The Effect of Serum Uric Acid Levels on the Long-Term Prognosis of Patients with Non-ST-Elevation Myocardial Infarction. Advances in Clinical and Ex-perimental Medicine, 29, 1255-1263. https://doi.org/10.17219/acem/127145

  33. 33. Centola, M., et al. (2020) Impact of Admission Serum Acid Uric Levels on In-Hospital Outcomes in Patients with Acute Coronary Syndrome. European Journal of Internal Medicine, 82, 62-67. https://doi.org/10.1016/j.ejim.2020.07.013

  34. 34. Guo, W., et al. (2019) Hyperuricemia and Long-Term Mortality in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Annals of Translational Medicine, 7, Article No. 636. https://doi.org/10.21037/atm.2019.10.110

  35. 35. Kaya, M.G., et al. (2012) Prognostic Value of Uric Acid in Patients with ST-Elevated Myocardial Infarction Undergoing Primary Coronary Intervention. The American Journal of Cardiology, 109, 486-491. https://doi.org/10.1016/j.amjcard.2011.09.042

  36. 36. Levantesi, G., et al. (2013) Uric Acid: A Cardiovascular Risk Factor in Patients with Recent Myocardial Infarction. International Journal of Cardiology, 167, 262-269. https://doi.org/10.1016/j.ijcard.2011.12.110

  37. 37. Lazzeri, C., et al. (2010) Uric Acid in the Acute Phase of ST Elevation Myocardial Infarction Submitted to Primary PCI: Its Prognostic Role and Relation with Inflammatory Markers: A Single Center Experience. International Journal of Cardiology, 138, 206-209. https://doi.org/10.1016/j.ijcard.2008.06.024

  38. 38. Lazzeri, C., Valente, S., Chiostri, M., Picariello, C. and Gensini, G.F. (2012) Uric Acid in the Early Risk Stratification of ST-Elevation Myocardial Infarction. Internal and Emergency Medicine, 7, 33-39. https://doi.org/10.1007/s11739-011-0515-9

  39. 39. Mora-Ramírez, M., Estevez-Garcia, I.O., Irigoyen-Camacho, M.E., Bojalil, R., González-Pacheco, H. and Amezcua-Guerra, L.M. (2017) Hyperuricemia on Admission Predicts Short-Term Mortality Due to Myocardial Infarction in a Population with High Prevalence of Cardiovascular Risk Factors. Revista de Investigación Clínica, 69, 247-253. https://doi.org/10.24875/RIC.17002167

  40. 40. Mandurino-Mirizzi, A., et al. (2021) Elevated Serum Uric Acid Is Associated with a Greater Inflammatory Response and with Short- and Long-Term Mortality in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Nutrition, Metabolism and Cardiovascular Diseases, 31, 608-614. https://doi.org/10.1016/j.numecd.2020.10.020

  41. 41. 严凌, 叶露, 汪坤, 周杰, 朱春甲. 阿托伐他汀可改善急性ST段抬高型心肌梗死患者经皮冠状动脉介入治疗后无复流现象[J]. 浙江大学学报(医学版), 2016, 45(5): 530-535.

  42. 42. Mandurino-Mirizzi, A., et al. (2018) Elevated Serum Uric Acid Affects Myocardial Reperfusion and Infarct Size in Patients with ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Journal of Cardiovascular Medicine, 19, 240-246. https://doi.org/10.2459/JCM.0000000000000634

  43. 43. Akpek, M., et al. (2011) The Association of Serum Uric Acid Levels on Coronary Flow in Patients with STEMI Undergoing Primary PCI. Atherosclerosis, 219, 334-341. https://doi.org/10.1016/j.atherosclerosis.2011.07.021

  44. 44. Wang, R., et al. (2017) Determination of Risk Factors Affecting the In-Hospital Prognosis of Patients with Acute ST Segment Elevation Myocardial Infarction after Percuta-neous Coronary Intervention. BMC Cardiovascular Disorders, 17, Article No. 243. https://doi.org/10.1186/s12872-017-0660-9

  45. 45. Hu, X., et al. (2022) Elevated Uric Acid Is Related to the No-/Slow-Reflow Phenomenon in STEMI Undergoing Primary PCI. European Journal of Clinical Investigation, 52, e13719. https://doi.org/10.1111/eci.13719

  46. 46. Masuda, M., et al. (2016) Clinical Impact of Ventricular Tachy-cardia and/or Fibrillation During the Acute Phase of Acute Myocardial Infarction on In-Hospital and 5-Year Mortality Rates in the Percutaneous Coronary Intervention Era. Circulation Journal, 80, 1539-1547. https://doi.org/10.1253/circj.CJ-16-0183

  47. 47. Watanabe, S. and Usui, M. (2021) Serum Uric Acid Level Is Asso-ciated with Reperfusion Ventricular Arrhythmias in Acute Myocardial Infarction. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15, Article ID: 102198. https://doi.org/10.1016/j.dsx.2021.102198

  48. 48. Hu, X., Fu, S. and Wang, S. (2022) Hyperuricemia Is Associated with an Increased Prevalence of Ventricular Tachycardia and Fibrillation in Patients with ST-Elevation Myocardial In-farction after Primary Percutaneous Coronary Intervention. BMC Cardiovascular Disorders, 22, Article No. 199. https://doi.org/10.1186/s12872-022-02635-4

  49. 49. Kajana, V., et al. (2022) Serum Uric Acid in Patients with ST-Segment Elevation Myocardial Infarction: An Innocent Bystander or Leading Actor? Nutrition, Metabolism and Cardiovascular Diseases, 32, 1583-1589. https://doi.org/10.1016/j.numecd.2022.03.023

  50. 50. Mazidi, M., Katsiki, N., Mikhailidis, D.P. and Banach, M. (2019) Association of Ideal Cardiovascular Health Metrics with Serum Uric Acid, Inflammation and Atherogenic Index of Plasma: A Population-Based Survey. Atherosclerosis, 284, 44-49. https://doi.org/10.1016/j.atherosclerosis.2018.09.016

  51. 51. Mandurino-Mirizzi, A., et al. (2020) Serum Uric Acid May Modulate the Inflammatory Response after Primary Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction. Journal of Cardiovascular Medicine, 21, 337-339. https://doi.org/10.2459/JCM.0000000000000926

  52. 52. Machado, G.P., et al. (2018) Comparison of Neutro-phil-to-Lymphocyte Ratio and Mean Platelet Volume in the Prediction of Adverse Events after Primary Percutaneous Coronary Intervention in Patients with ST-Elevation Myocardial Infarction. Atherosclerosis, 274, 212-217. https://doi.org/10.1016/j.atherosclerosis.2018.05.022

  53. 53. Toldo, S. and Abbate, A. (2018) The NLRP3 Inflammasome in Acute Myocardial Infarction. Nature Reviews Cardiology, 15, 203-214. https://doi.org/10.1038/nrcardio.2017.161

  54. 54. Dalbeth, N., Merriman, T.R. and Stamp, L.K. (2016) Gout. Lancet, 388, 2039-2052. https://doi.org/10.1016/S0140-6736(16)00346-9

  55. 55. Gherghina, M.E., et al. (2022) Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairment. International Journal of Molecular Sciences, 23, Article No. 3188. https://doi.org/10.3390/ijms23063188

  56. 56. Maruhashi, T., Hisatome, I., Kihara, Y. and Higashi, Y. (2018) Hyperuricemia and Endothelial Function: From Molecular Background to Clinical Perspectives. Atherosclerosis, 278, 226-231. https://doi.org/10.1016/j.atherosclerosis.2018.10.007

  57. 57. Packer, M. (2020) Uric Acid Is a Biomarker of Oxida-tive Stress in the Failing Heart: Lessons Learned from Trials with Allopurinol and SGLT2 Inhibitors. Journal of Cardiac Failure, 26, 977-984. https://doi.org/10.1016/j.cardfail.2020.08.015

  58. 58. Singh, J.A. (2015) When Gout Goes to the Heart: Does Gout Equal a Cardiovascular Disease Risk Factor? Annals of the Rheumatic Diseases, 74, 631-634. https://doi.org/10.1136/annrheumdis-2014-206432

  59. 59. Maloberti, A., et al. (2020) Hyperuricemia and Risk of Cardiovascular Outcomes: The Experience of the URRAH (Uric Acid Right for Heart Health) Project. High Blood Pressure & Cardiovascular Prevention, 27, 121-128. https://doi.org/10.1007/s40292-020-00368-z

  60. 60. Yasutake, Y., et al. (2017) Uric Acid Ameliorates Indometha-cin-Induced Enteropathy in Mice through Its Antioxidant Activity. Journal of Gastroenterology and Hepatology, 32, 1839-1845. https://doi.org/10.1111/jgh.13785

  61. 61. Johnson, R.J., et al. (2018) Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. American Journal of Kidney Diseases, 71, 851-865. https://doi.org/10.1053/j.ajkd.2017.12.009

  62. 62. Dai, Y., Cao, Y., Zhang, Z., Vallurupalli, S. and Mehta, J.L. (2017) Xanthine Oxidase Induces Foam Cell Formation through LOX-1 and NLRP3 Activation. Cardiovascular Drugs and Therapy, 31, 19-27. https://doi.org/10.1007/s10557-016-6706-x

  63. 63. Kattoor, A.J., Kanuri, S.H. and Mehta, J.L. (2019) Role of Ox-LDL and LOX-1 in Atherogenesis. Current Medicinal Chemistry, 26, 1693-1700. https://doi.org/10.2174/0929867325666180508100950

  64. 64. Hisatome, I., et al. (2021) Uric Acid as a Risk Factor for Chronic Kidney Disease and Cardiovascular Disease—Japanese Guideline on the Management of Asymptomatic Hyperuricemia. Circulation Journal, 85, 130-138. https://doi.org/10.1253/circj.CJ-20-0406

  65. 65. Doğru, S., Yaşar, E. and Yeşilkaya, A. (2022) Uric Acid Can En-hance MAPK Pathway-Mediated Proliferation in Rat Primary Vascular Smooth Muscle Cells via Controlling of Mito-chondria and Caspase-Dependent Cell Death. Journal of Receptors and Signal Transduction, 42, 293-301. https://doi.org/10.1080/10799893.2021.1931320

  66. 66. Li, H., Qian, F., Liu, H. and Zhang, Z. (2019) Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Medical Science Monitor, 25, 8457-8464. https://doi.org/10.12659/MSM.916667

  67. 67. Zhang, J., Lin, X., Xu, J. and Tang, F. (2019) Apelin-13 Reduces Oxidative Stress Induced by Uric Acid via Downregulation of Renin-Angiotensin System in Adipose Tissue. Toxicology Letters, 305, 51-57. https://doi.org/10.1016/j.toxlet.2019.01.014

  68. 68. Zhang, J.-X., Zhang, Y.-P., Wu, Q.-N. and Chen, B. (2015) Uric Acid Induces Oxidative Stress via an Activation of the Renin-Angiotensin System in 3T3-L1 Adipocytes. Endocrine, 48, 135-142. https://doi.org/10.1007/s12020-014-0239-5

  69. NOTES

    *通讯作者。

期刊菜单