Pure Mathematics
Vol. 11  No. 07 ( 2021 ), Article ID: 43736 , 7 pages
10.12677/PM.2021.117146

一类具有Caputo导数的非线性分数阶微分方程耦合系统的正解

齐超凡,薛春艳

北京信息科技大学,理学院,北京

收稿日期:2021年5月27日;录用日期:2021年6月29日;发布日期:2021年7月7日

摘要

本文研究了一类非线性分数阶微分方程耦合系统的正解存在性,此耦合系统具有Caputo导数和边界条件。通过运用一个新的研究具有矢量的算子的不动点方法,Krasnoselskii锥不动点定理,得到系统的正解存在性。进一步拓展定理得到正解的局限性和多重性。

关键词

分数阶微分方程系统,Caputo导数,Krasnoselskii锥不动点定理,局限性和多重性,正解

Positive Solutions for Coupled System of Nonlinear Fractional Differential Equations with Caputo Derivative

Chaofan Qi, Chunyan Xue

School of Applied Science, Beijing Information Science & Technology University, Beijing

Received: May 27th, 2021; accepted: Jun. 29th, 2021; published: Jul. 7th, 2021

ABSTRACT

In this paper, we study the existence of positive solutions for a class of nonlinear coupled system of fractional-order differential equations with Caputo derivatives and boundary conditions. By using a new method to study the fixed points of operators with vectors, Krasnoselskii fixed point theorem of cone, the existence of positive solutions of the system is obtained. We also investigate the localization and multiplicity of the positive solutions by further extending the theorem.

Keywords:System of Fractional Differential Equations, Caputo Derivative, Krasnoselskii Fixed Point Theorem, Localization and Multiplicity, Positive Solutions

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

本文中,研究如下一类非线性分数阶微分方程耦合系统:

{ D 0 + C t ν u 1 ( t ) + q 1 ( t ) f 1 ( u 1 ( t ) , u 2 ( t ) ) = 0 , 0 < t < 1 D 0 + C t ν u 2 ( t ) + q 2 ( t ) f 2 ( u 1 ( t ) , u 2 ( t ) ) = 0 , 0 < t < 1 u 1 ( 0 ) = δ u 1 ( 1 ) , u 2 ( 0 ) = δ u 2 ( 1 ) u 1 ( 0 ) = γ u 1 ( 1 ) , u 2 ( 0 ) = γ u 2 ( 1 ) (1.0)

其中, D 0 C t υ u ( t ) 是Caputo分数阶导数, δ γ 是两个实数, δ ( 0 , 1 ) γ ( 0 , 1 ) ν ( 1 , 2 ]

分数阶微分方程模型在很多学科领域都有广泛的应用,例如信号控制和处理、高分子材料解链、自动控制系统理论、生物医学等 [1] [2] [3] [4] [5] 都可以应用微分方程模型来描述。因此,在分数阶微分方程研究领域,解的存在性是一个非常重要的课题。分数阶微分方程耦合系统的研究在应用性质的各种问题 [6] [7] [8] 中也很重要。受上述应用及许多结果 [9] - [18] 的启发,本文考虑完全非线性微分方程耦合系统,且运用Radu Precup研究出的最新的不动点理论,Krasnoselskii锥不动点定理,来研究此算子方程组正解的存在性、局限性和多重性。

另外,我们列出以下条件:

(H1) q i C ( [ 0 , 1 ] ) 且为非负;

(H2) f i C ( R + 2 , R + 2 ) i = 1 , 2 R + = [ 0 , + )

文章余下内容框架如下:第二部分,给出本文所需的定义,基本定理和符号;第三部分通过构建一个新的锥,运用Krasnoselskii锥不动点定理,求得算子的不动点,进而得到系统正解的存在性,并拓展得到正解的局限性和多重性。

2. 预备知识

定义2.1 函数 u ( t ) α 阶Riemann-Liouville分数阶积分定义如下,

( I a + t α u ) ( t ) : = 1 Γ ( α ) a t ( t s ) α 1 u ( s ) d s , t [ a , b ]

其中 Γ ( α ) = 0 t α 1 e t d t α > 0 ,是Gamma函数。

定义2.2 函数 u ( t ) α 阶Caputo分数阶导数定义如下,

( D a + C t α ) u ( t ) = ( I a + t n α u ( n ) ) ( t ) = 1 Γ ( n α ) a t u ( n ) ( s ) ( t s ) α + 1 n d s , t [ a , b ]

其中 α > 0 n = [ α ] + 1 [ α ] 表示不大于 α 的最大整数。

通过定义2.1和定义2.2可知,

( I a + t α ( D a + C t α u ) ) ( t ) = u ( t ) + C 1 + C 2 t + + C n t n 1

X = C ( [ 0 , 1 ] ) 是一个实Banach空间,其中定义的范数为 u = max t J | u ( x ) | j = [ 0 , 1 ] ,令 K X 中所有非负函数组成的锥。

定理2.1 [19] 令 ( X , ) 是一个赋范线性空间, K 1 K 2 X 中的两个锥, K = K 1 × K 2 ;对于 i = 1 , 2 r , R R + 2 0 < r i < R i ,定义 K r , R : = { u = ( u 1 , u 2 ) K : r i u i R i , i = 1 , 2 } ,令 N : = K r , R K N = ( N 1 , N 2 ) 为一个紧映射。假设对于 i = 1 , 2 K r , R 满足下列条件之一:

a) 若 u i = r i ,则 u i N i ( u ) K i ,且若 u i = R i ,则 N i ( u ) u i K i

b) 若 u i = r i ,则 N i ( u ) u i K i ,且若 u i = R i ,则 u i N i ( u ) K i

那么 N 有一个不动点使得 u i = N i ( u 1 , u 2 ) r i < u i < R i i = 1 , 2

推论2.1 [19] 在定理2.1的假设下, u K r , R 有四种可能情况:

1) 若 u 1 = r 1 ,则 u 1 N 1 ( u ) K 1 ;若 u 1 = R 1 ,则 N 1 ( u ) u 1 K 1

u 2 = r 2 ,则 u 2 N 2 ( u ) K 2 ;若 u 2 = R 2 ,则 N 2 ( u ) u 2 K 2

2) 若 u 1 = r 1 ,则 u 1 N 1 ( u ) K 1 ;若 u 1 = R 1 ,则 N 1 ( u ) u 1 K 1

u 2 = r 2 ,则 N 2 ( u ) u 2 K 2 ;若 u 2 = R 2 ,则 u 2 N 2 ( u ) K 2

3) 若 u 1 = r 1 ,则 N 1 ( u ) u 1 K 1 ;若 u 1 = R 1 ,则 u 1 N 1 ( u ) K 1

u 2 = r 2 ,则 u 2 N 2 ( u ) K 2 ;若 u 2 = R 2 ,则 N 2 ( u ) u 2 K 2

4) 若 u 1 = r 1 ,则 N 1 ( u ) u 1 K 1 ;若 u 1 = R 1 ,则 u 1 N 1 ( u ) K 1

u 2 = r 2 ,则 N 2 ( u ) u 2 K 2 ;若 u 2 = R 2 ,则 u 2 N 2 ( u ) K 2

引理2.1 假设条件(H1),(H2)成立,那么 u 是系统(1.0)的解,当且仅当 u i X i = 1 , 2 ,为下述积分方程的解: u i ( t ) = 0 1 G ( t , s ) q i ( s ) f i ( u 1 ( s ) , u 2 ( s ) ) d s

其中:

G ( t , s ) = 1 Γ ( ν ) { ( 1 ν ) δ γ ( 1 t ) + γ t ( 1 γ ) ( 1 δ ) ( 1 s ) ν 2 δ 1 δ ( 1 s ) ν 1 ( t s ) ν 1 , 0 s t 1 ( 1 ν ) δ γ ( 1 t ) + γ t ( 1 γ ) ( 1 t ) ( 1 s ) ν 2 δ 1 δ ( 1 s ) ν 1 , 0 t s 1 .

证明:假设 u ( t ) 是(1.0)的解,则

( I 0 t υ ( D 0 C t υ u i ) ) ( t ) + I 0 t υ ( q i ( t ) u i ( t ) ) = 0 .

由定义式,得到

u i ( t ) = C 1 + C 2 t 1 Γ ( υ ) 0 t ( t s ) υ 1 q i ( s ) u i ( s ) d s .

u i ( 0 ) = δ u i ( 1 ) ,可得

C 1 = δ C 1 + δ C 2 δ Γ ( υ ) 0 1 ( 1 s ) υ 1 q i ( s ) u i ( s ) d s ,

u i ( 0 ) = γ u i ( 1 ) ,可得

C 2 = γ ( υ 1 ) Γ ( υ ) ( γ 1 ) 0 1 ( 1 s ) υ 2 q i ( s ) u i ( s ) d s ,

因此

C 1 = δ γ ( υ 1 ) Γ ( υ ) ( 1 δ ) ( 1 γ ) 0 1 ( 1 s ) υ 2 q i ( s ) u i ( s ) d s δ Γ ( υ ) ( 1 δ ) 0 1 ( 1 s ) υ 1 q i ( s ) u i ( s ) d s

进而,得到

u i ( t ) = δ γ ( υ 1 ) Γ ( υ ) ( 1 δ ) ( γ 1 ) 0 1 ( 1 s ) υ 2 q i ( s ) u i ( s ) d s δ Γ ( υ ) ( 1 δ ) 0 1 ( 1 s ) υ 1 q i ( s ) u i ( s ) d s + γ ( υ 1 ) t Γ ( υ ) ( γ 1 ) 0 1 ( 1 s ) υ 2 q i ( s ) u i ( s ) d s 1 Γ ( υ ) 0 t ( t s ) υ 1 q i ( s ) u i ( s ) d s = 0 1 G ( t , s ) q i ( s ) u i ( s ) d s ,

其中

G ( t , s ) = 1 Γ ( υ ) { ( 1 υ ) δ γ ( 1 t ) + γ t ( 1 γ ) ( 1 δ ) ( 1 s ) υ 2 δ 1 δ ( 1 s ) υ 1 ( t s ) υ 1 , 0 s t 1 , ( 1 υ ) δ γ ( 1 t ) + γ t ( 1 γ ) ( 1 δ ) ( 1 s ) υ 2 δ 1 δ ( 1 s ) υ 1 , 0 t s 1.

推论2.2 对于任意 δ ( 0 , 1 ) γ ( 0 , 1 ) G ( t , s ) 满足以下结论 [20]:

i) G ( t , s ) 0 ( t , s ) [ 0 , 1 ] × [ 0 , 1 ]

ii) 对于任意 s [ 0 , 1 ] max 0 t 1 | G ( t , s ) | = G ( 1 , s )

iii) 0 1 | G ( t , s ) | d s γ ( ν 1 ) + 1 Γ ( ν + 1 ) ( 1 δ ) ( 1 γ )

3. 主要结论

K X 中所有非负函数组成的锥 [21] [22],根据(H1)和引理1.3,令

A i = min { G ( t , s ) q i ( s ) : 0 < t < 1 , 0 < s < 1 } B i = max { G ( t , s ) q i ( s ) : 0 < t < 1 , 0 < s < 1 } M i = A i B i ,则有 A i > 0 B i > 0 0 < M i < 1

V K u i ( t ) = 0 1 G ( t , s ) q i ( s ) V ( s ) d s ,且 u i ( t 0 ) = u i i = 1 , 2 ,那么对于任意 t ( 0 , 1 ) ,有:

u i ( t ) = 0 1 G ( t , s ) q i ( s ) V ( s ) d s A i 0 1 V ( s ) d s = M i B i 0 1 V ( s ) d s = M i 0 1 B i V ( s ) d s M i 0 1 G ( t 0 , s ) q i ( s ) V ( s ) d s = M i u i

因此,在 X = C ( [ 0 , 1 ] ) 中定义锥 P i ( i = 1 , 2 ): P i : = { u i k : u i ( t ) M i u i , t ( 0 , 1 ) } i = 1 , 2 。那么,在 X 2 中则有对应的锥 P = P 1 × P 2

考虑算子 T u = ( T 1 u , T 2 u ) ,其中 T i u ( t ) = 0 1 G ( t , s ) q i ( s ) f i ( u 1 ( s ) , u 2 ( s ) ) d s ,其中 T : P P 是一个全连续算子 [20]。

引理3.1 若 u 1 , u 2 C ( [ 0 , 1 ] ) ,则 u = ( u 1 , u 2 ) 为分数阶微分方程系统(1.0)在 X 2 中的解,当且仅当 u = ( u 1 , u 2 ) u P T u = u X 2 中的不动点。

对于 α i , β i > 0 , α i β i ,为了方便,记 r i = min { α i , β i } R i = max { α i , β i } i = 1 , 2 ,且 M = min { M 1 , M 2 } 0 < M < 1

N 1 = min { f 1 ( u 1 , u 2 ) : M β 1 u 1 β 1 , M r 2 u 2 R 2 } ,

N 2 = i n f { f 2 ( u 1 , u 2 ) : M r 1 u 1 R 1 , M β 2 u 2 β 2 } ,

L 1 = max { f 1 ( u 1 , u 2 ) : 0 u 1 α 1 , 0 u 2 R 2 } ,

L 2 = max { f 2 ( u 1 , u 2 ) : 0 u 1 R 1 , 0 u 2 α 2 } .

定理3.1 若存在 α i , β i > 0 α i β i i = 1 , 2 ,使得: B 1 L 1 < α 1 A 1 N 1 > β 1 B 2 L 2 < α 2 A 2 N 2 > β 2 ,那么系统(1.0)至少存在一个正解 u = ( u 1 , u 2 ) ,且 r i < u i < R i i = 1 , 2 ,其中 r i = min { α i , β i } R i = max { α i , β i } ,且对于 t ( 0 , 1 ) u 的轨迹是包含在一个矩阵域 ( M r 1 , R 1 ) × ( M r 2 , R 2 ) 中。

证明:首先若 u P r , R ,且 r 1 < u 1 < R 1 r 2 < u 2 < R 2 ,那么根据锥 P 的定义,对于任意 t ( 0 , 1 ) ,有

M r 1 < u 1 ( t ) < R 1 , M r 2 < u 2 ( t ) < R 2 ;

同样若 u i = α i ,则有 u i ( t ) α i ,且对于任意 t ( 0 , 1 ) M α i u i α i i = 1 , 2

下证明对于任意 u P r , R i = { 1 , 2 } ,满足定理2.1的条件,即:

u i = α i ,则有 T i ( u ) u i P i (2.1)

u i = β i ,则有 u i T i ( u ) P i (2.2)

假设若 u 1 = α 1 ,则存在 T 1 u u 1 P 1 ,那么,对于任意 t ( 0 , 1 ) 有:

u 1 T 1 u = 0 1 G ( t , s ) q 1 ( s ) f 1 ( u 1 ( s ) , u 2 ( s ) ) d s B 1 0 1 f 1 ( u 1 ( s ) , u 2 ( s ) ) d s B 1 L 1 < α 1

这就产生矛盾 α 1 < α 1

假设若 u 1 = β 1 ,则存在 u 1 T u 1 P 1 ,那么,对于任意 t ( 0 , 1 ) 有:

u 1 T 1 u = 0 1 G ( t * , s ) q 1 ( s ) f 1 ( u 1 ( s ) , u 2 ( s ) ) d s A 1 0 1 f 1 ( u 1 ( s ) , u 2 ( s ) ) d s A 1 N 1 > β 1

这就产生矛盾 β 1 > β 1

因此,(2.1)和(2.2)在 i = 1 时成立,同理, i = 2 时也成立。

根据定理1.1可知,算子 T 至少存在一个不动点 u ,即系统(1.0)至少存在一个正解 u = ( u 1 , u 2 )

推论3.1 注意在条件(2.0)中表明函数 f 1 , f 2 R + 2 的某区域内,是为了证明正解的存在性和局限性。

定理3.2 假设存在一个自然数 N 1 α i k , β i k > 0 ,且 α i k β i k i = 1 , 2 k = 1 , 2 , , N ,使得对于 k = 1 , 2 , , N ,有:

R 1 k r 1 k + 1 , R 2 k r 2 k + 1 ,

B 1 L 1 k < α 1 k , A 1 N 1 k > β 1 k ,

B 2 L 2 k < α 2 k , A 2 N 2 k > β 2 k ,

其中, r i k = min { α i k , β i k } R i k = max { α i k , β i k } i = 1 , 2

N 1 k = m i n { f 1 ( u 1 k , u 2 k ) : M β 1 k u 1 k β 1 k , M r 2 k u 2 k R 2 k } ,

N 2 k = min { f 2 ( u 1 k , u 2 k ) : M r 1 k u 1 k R 1 k , M β 2 k u 2 k β 2 k } ,

L 1 k = max { f 1 ( u 1 k , u 2 k ) : 0 u 1 k α 1 k , 0 u 2 k R 2 k } ,

L 2 k = max { f 2 ( u 1 k , u 2 k ) : 0 u 1 k R 1 k , 0 u 2 k α 2 k } ,

那么,系统(1.0)至少存在 N 个不同的正解 u k = ( u 1 k , u 2 k ) r i k < u i k < R i k i = 1 , 2 k = 1 , 2 , , N

证明:应用定理2.2,对于任意 k { 1 , 2 , , N } ,存在一个正解 u k 满足: r i k < u i k < R i k i = 1 , 2

根据(2.2),可知对于任意 k { 1 , 2 , , N 1 } ,有:

( r i k , R i k ) ( r i k + 1 , R i k + 1 ) = ,对于 i = 1 i = 2 都成立;

综上所得,系统(1.0)存在 K 个不同的解 u k k = 1 , 2 , , N

推论3.2 特殊地,若 f 1 f 2 关于 t 是独立的,则 f 1 = f 1 ( u 1 , u 2 ) f 2 ( u 1 , u 2 ) f 1 f 2 关于 u 1 u 2 具有单调性质,其中 u 1 [ M r 1 , R 1 ] u 2 [ M r 2 , R 2 ] ,那么可以明确值 N 1 N 2 L 1 L 2 。举例:

1) 若 f 1 f 2 关于 u 1 u 2 是单调递减的,则:

L 1 = f 1 ( 0 , 0 ) , N 1 = f 1 ( β 1 , R 2 ) ;

L 2 = f 2 ( 0 , 0 ) , N 2 = f 2 ( R 1 , β 2 ) .

2) 若 f 1 关于 u 1 是单调递减的,关于 u 2 是单调递增, f 2 关于 u 1 是单调递增的,关于 u 2 是单调递减的,则:

L 1 = f 1 ( 0 , R 2 ) , N 1 = f 1 ( β 1 , M r 2 ) ;

L 2 = f 2 ( R 1 , 0 ) , N 2 = f 2 ( M r 1 , β 2 ) .

3) 若 f 1 f 2 关于 u 1 是单调递增的,关于 u 2 是单调递减的,则:

L 1 = f 1 ( α 1 , 0 ) , N 1 = f 1 ( M β 1 , R 2 ) ;

L 2 = f 2 ( R 1 , 0 ) , N 2 = f 2 ( M r 1 , β 2 ) .

文章引用

齐超凡,薛春艳. 一类具有Caputo导数的非线性分数阶微分方程耦合系统的正解
Positive Solutions for Coupled System of Nonlinear Fractional Differential Equations with Caputo Derivative[J]. 理论数学, 2021, 11(07): 1309-1315. https://doi.org/10.12677/PM.2021.117146

参考文献

  1. 1. Zhang, X., Feng, M. and Ge, W. (2009) Existence Result of Second-Order Differential Equations with Integral Boundary Conditions at Resonance. Journal of Mathematical Analysis and Applications, 353, 311-319. https://doi.org/10.1016/j.jmaa.2008.11.082

  2. 2. Bnchohra, O., Nieto, J. and Ouahab, A. (2011) Second-Order Boundary Value Problem with Integral Boundary Conditions. Boundary Value Problems, 2011, Article ID: 260309. https://doi.org/10.1155/2011/260309

  3. 3. Feng, M., Zhang, X. and Ge, W. (2011) New Existence Results for Higher-Order Nonlinear Fractional Differential Equation with Integral Boundary Conditions. Boundary Value Problems, 2011, Article ID: 720702. https://doi.org/10.1186/1687-2770-2011-720702

  4. 4. Ahmad, B. and Sivasundaram, S. (2010) Existence of Solu-tions for Impulsive Integral Boundary Value Problems of Fractional Order. Nonlinear Analysis: Hybrid Systems, No. 4, 134-141. https://doi.org/10.1016/j.nahs.2009.09.002

  5. 5. Wang, G. (2010) Boundary Value Problems for Systems of Nonlinear Integro-Differential Equations with Deviating Arguments. Journal of Computational and Applied Mathematics, 234, 1356-1363. https://doi.org/10.1016/j.cam.2010.01.009

  6. 6. Lakshmikantham, V. and Vatsala, A. (2007) Theory of Fractional Differential Inequalities and Applications. Communications in Applied Analysis, 11, 395-402.

  7. 7. Lakshmikantham, V. and Vatsala, A. (2008) General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations. Applied Mathematics Letters, 21, 828-834. https://doi.org/10.1016/j.aml.2007.09.006

  8. 8. Lazarevic, M. (2006) Finite Time Stability Analysis of PD Fractional Control of Robotic Time-Delay Systems. Mechanics Research Com-munications, 33, 269-279. https://doi.org/10.1016/j.mechrescom.2005.08.010

  9. 9. Hao, X., Liu, L., Wu, Y., et al. (2010) Positive Solutions for Nonlinear Nth-Order Singular Eigenvalue Problem with Nonlocal Conditions. Nonlinear Analysis, 73, 1653-1662. https://doi.org/10.1016/j.na.2010.04.074

  10. 10. Bai, Z. and Lv, H. (2005) Positive Solu-tions for Boundary Value Problem of Nonlinear Fractional Differential Equation. Journal of Mathematical Analysis and Applications, 31, 495-505. https://doi.org/10.1016/j.jmaa.2005.02.052

  11. 11. Yuan, C., Jiang, D. and Xu, X. (2009) Singular Positone and Semipositone Boundary Value Problems of Nonlinear Fractional Differential Equations. Mathematical Problems in Engineering, 2009, Article ID: 535209. https://doi.org/10.1155/2009/535209

  12. 12. Wang, Y., Liu, L. and Wu, Y. (2011) Positive Solutions for a Class of Fractional Boundary Value Problem with Changing Sign Nonlinearity. Nonlinear Analysis, 74, 6434-6441. https://doi.org/10.1016/j.na.2011.06.026

  13. 13. Gnana Bhaskar, T., Lakshmikantham, V. and Leela, S. (2009) Frac-tional Differential Equations with a Krasnoselskii-Krein Type Condition. Nonlinear Analysis: Hybrid Systems, 3, 734-737. https://doi.org/10.1016/j.nahs.2009.06.010

  14. 14. Precup, R. (2009) Existence, Localization and Multiplicity Results for Positive Radial Solutions of Semilinear Elliptic Systems. Journal of Mathematical Analysis and Applications, 352, 48-56. https://doi.org/10.1016/j.jmaa.2008.01.097

  15. 15. Precup, R. (2013) Existence and Nonexistence Results for a Class of Fractional Boundary Value Problems. Journal of Applied Mathematics and Computing, 41, 17-31. https://doi.org/10.1007/s12190-012-0590-8

  16. 16. Parthiban, V. and Balachandran, K. (2013) Solutions of System of Fractional Partial Differential Equations. Applications and Applied Mathematics, 1, 289-304.

  17. 17. Bai, Z. (2012) Eigenvalue Intervals for a Class of Fractional Boundary Value Problem. Computers & Mathematics with Applications, 64, 3253-3257. https://doi.org/10.1016/j.camwa.2012.01.004

  18. 18. Zhang, Y., Bai, Z. and Feng, T. (2011) Existence Results for a Coupled System of Nonlinear Fractional Three-Point Boundary Value Problems at Resonance. Computers & Mathematics with Applications, 61, 1032-1047. https://doi.org/10.1016/j.camwa.2010.12.053

  19. 19. Precup, R. (2007) A Vector Version of Krasnoselskii’s Fixed Point Theorem in Cones and Positive Periodic Solutions of Nonlinear Systems. SIAM Journal of Fixed Point Theory and Applications, 2, 141-151. https://doi.org/10.1007/s11784-007-0027-4

  20. 20. Ma, D.X. and Yang, Z.F. (2020) Lyapunov-Type Inequality and Solution for a Fractional Differential Equation. Journal of Inequalities and Applications, 2020, Article No. 181. https://doi.org/10.1186/s13660-020-02448-z

  21. 21. Deimling, K. (1985) Nonlinear Function Analysis. Spring-er-Velag, New York. https://doi.org/10.1007/978-3-662-00547-7

  22. 22. 郭大钧. 非线性泛函分析[M]. 第3版. 北京: 高等教育出版社, 2015.

期刊菜单