Material Sciences
Vol. 12  No. 03 ( 2022 ), Article ID: 49832 , 7 pages
10.12677/MS.2022.123021

基于MOF材料制备OER催化电极Mn2O3@NF的研究

吴松,王海人*

湖北大学材料科学与工程学院,湖北 武汉

收稿日期:2022年2月25日;录用日期:2022年3月21日;发布日期:2022年3月29日

摘要

有机金属框架材料具有较大比表面积,以其作为前驱体制备得到的金属氧化物通常具有丰富的微孔结构,有利于提高催化性能。本文以泡沫镍为载体,首先通过溶剂热法制备了Mn-MOF74@NF材料,再通过管式炉退火得到Mn2O3@NF材料,并研究了该催化材料在碱性介质中的催化析氧性能。结果表明镍电极表面成功负载了晶态纳米柱状氧化锰,具有巨大的比表面积,在析氧电流密度为10 mA/cm2过电位仅为220 mV,塔菲尔斜率72.1 mV/dec,且具有较好的稳定性,证明该材料具备良好的OER催化性能。

关键词

MOF材料,氧化锰,电解水,催化性能,稳定性

Research on Preparation of OER Catalytic Electrode Mn2O3@NF Based on MOF Material

Song Wu, Hairen Wang*

School of Materials Science and Engineering, Hubei University, Wuhan Hubei

Received: Feb. 25th, 2022; accepted: Mar. 21st, 2022; published: Mar. 29th, 2022

ABSTRACT

MOF (metal-organic frame) material has a large specific surface area. The metal oxides prepared with MOF as precursor usually have rich microporous structure, which is conducive to improve the catalytic performance. In this paper, by using NF (foamed nickel) as carrier, Mn-MOF74@NF was prepared by solvothermal method, and then annealed in a tubular furnace to obtain Mn2O3@NF material. The OER catalytic performance of the catalytic material in alkaline medium was studied. The results show that crystalline nano columnar manganese oxide was successfully loaded on the surface of nickel electrode, which had a huge specific surface area. When the current density of oxygen evolution is 10 mA/cm2, the overpotential is only 220 mV, and the Tafel slope is 72.1 mV/dec. It is proved that the material has good OER catalytic performance.

Keywords:MOF Material, Manganese Oxide, Electrolytic Water, Catalytic Performance, Stability

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

面对能源需求的增加和化石燃料的枯竭,寻找发现地球丰富的替代能源和设计高效储能装置已经刻不容缓。氢能作为一种热值大、无污染、高效的新能源,被公认为代替化石燃料的最理想替代能源,电化学水分解是一种很有前途的制氢技术,它将可持续的再生能源资源(水)转化成理想的氢化学能源,并且原料获取不受环境等条件限制 [1]。电解水反应包括阴极析氢反应(HER)和阳极析氧反应(OER)两个半反应。为了使电解水在低能垒在进行,通常需要加入合适的催化剂,其中阳极的OER反应具有较高的活化能垒且动力学反应缓慢,是确定电解水效率的关键步骤。目前用于OER反应中最有效的是贵金属催化剂IrO2或RuO2,因成本高的问题在商业中受到巨大限制,因而开发低成本、高活性和高稳定性的非贵金属催化剂是电解水行业的重大课题。

迄今为止,锰基阳极材料在能源中的应用已有不少报道 [2] - [7],但其关注度不如Ni、Co化合物。事实上由于低成本的优势,锰系催化剂是很有前景的高效OER催化剂。目前的报道中有将Mn-MOF作为催化材料直接应用 [8] [9],或通过电沉积获得氧化锰催化层 [10],但其催化性能还有待进一步提高。本文以泡沫镍(NF)为基材,通过水热法在其上生长Mn-MOF74材料,再通过一步热处理法获得Mn2O3催化层,并对其微观结构和催化性能进行了研究。

2. 实验部分

2.1. 主要试剂

氢氧化钾(KOH),浓盐酸(HCl),四水氯化锰(MnCl2∙4H2O),2,5-二羟基对苯二甲酸(C8H6O6),无水乙醇(C2H5OH),N,N-二甲基甲酰胺(C3H7NO),以上试剂均为分析纯,产自国药集团化学试剂有限公司。

2.2. Mn2O3@NF材料的制备

2.2.1. 泡沫镍(NF)活化

首先,把泡沫镍裁剪成为1 cm × 2.5 cm规格大小,于60℃的3 mol/L HCl溶液中活化30 min,然后取出泡沫镍,用去离子水、无水乙醇分别洗涤5次,Ar气吹干放置。

2.2.2. Mn-MOF-74@NF材料的制备

称取四水氯化锰250 mg,溶解于20 mL DMF中,后加入60 mg 2,5-二羟基对苯二甲酸,超声溶解30 min后得到明亮的黄色溶液,加入2.4 mL的无水乙醇和2.4 mL的超纯水,搅拌10 min后将其转移至25 mL聚四氟乙烯内胆高压反应釜中,将活化后的泡沫镍悬挂其中,设置温度120℃,加热时间24 h,自然冷却至室温。取出后用超纯水和无水乙醇洗涤3~5次在空气中干燥,得到Mn-MOF-74@NF材料。

2.2.3. Mn2O3@NF材料的制备

将制备好的Mn-MOF-74@NF材料放于管式炉中,设置加热速率1℃/min,空气中加热至350℃保温3 h,冷却至室温后,得到Mn2O3@NF材料。

2.3. 材料的表征

样品的物相数据由德国布鲁克公司BrukerD8A25 X-射线衍测试得到。元素定性分析由X射线光电子能谱(Scientificcalab250Xi,美国赛默飞世尔科技公司)完成,并采用日本电子JSM6510LV型SEM观察样品微观形貌。

电化学性能由上海辰华CHI660电化学工作站于三电极体系中完成,介质为1 mol/L KOH,催化电极为工作电极,碳棒作为对电极,Hg/HgO为参比电极,其中催化电极的工作面积为1 cm2。极化曲线以1 mV∙s−1的扫描速率进行,电化学阻抗谱(electrochemical impedance spectroscopy, EIS)的交流扰动幅值为5 mV,测量频率范围为105~10−2 Hz。催化剂的稳定性测试采用恒电流电解法,以得到的电压-时间曲线判断其稳定性。

3. 结果与讨论

3.1. 微观表征

图1为所制备样品的SEM图,可清晰观察到Mn-MOF74在泡沫镍上完全生长,将泡沫镍全部覆盖。经过退火后的Mn2O3@NF表面结构和形貌发生了变化,退火过程中虽然长成尺寸更大的氧化锰纳米棒阵列晶体,但有机元素变成气体挥发,因此内部微孔结构会增多。

(a) (b)

Figure 1. SEM morphologies: (a) Mn-MOF74@NF; (b) Mn2O3@NF

图1. SEM形貌图:(a) Mn-MOF74@NF;(b) Mn2O3@NF

为了进一步对所制备的Mn2O3@NF材料进行晶型分析,通过X射线衍射(XRD)对所制备的样品进行了测试。如图2所示,在2θ为32.95˚、38.25˚、45.2˚、49.4˚、55.2˚、65.8˚的峰都很好的对应了Mn2O3标准卡片(PDF#41-1442)中的(222)、(400)、(332)、(431)、(440)、(622)晶面;2θ为44.5˚、51.8˚、76.3˚时的峰为泡沫镍基底所产生的峰,这些晶面和峰值对应了Ni的标准PDF卡片说明了Mn2O3@NF材料的成功制备。

所制备Mn2O3@NF材料的XPS图谱如图3所示,探测到材料中有Mn2p和O1s峰和Ni2p峰的存在。Ni峰来自于基材,Mn2p3/2和Mn2p1/2的峰分别位于641.63和653.5eV,对应于Mn3+ [11] [12] [13],证实氧化物主要是三氧化二锰。

Figure 2. XRD spectra of Mn2O3@NF

图2. Mn2O3@NF材料XRD谱图

Figure 3. XPS spectrum of Mn2O3@NF: (a) Full spectrum; (b) Mn2p spectrum

图3. Mn2O3@NF材料XPS谱图:(a) 全谱图;(b) Mn2p谱图

3.2. 催化性能表征

图4(a),图4(b)经过管式炉退火后所得到的Mn2O3@NF材料析氧过电位明显减小,其10 mA/cm2和100 mA/cm2时过电位分别为220 mV和280 mV,并且实现在350 mA/cm2大电流时,过电位仅为310 mV,远小于Mn-MOF74@NF (380 mV)、IrO2@NF (460 mV)。图4(c)中Mn2O3@NF的塔菲尔斜率最小,为72.1 mV/dec,其结果小于Mn-MOF74@NF (84.2 mV/dec)、IrO2@NF (124.8 mV/dec)、NF (197 mV/dec),与过电位测试结果一致,证明制备的Mn2O3@NF材料其OER催化性能最优。如图4(d),Mn2O3@NF的ECSA为4.47 mF/cm2,大于Mn-MOF74@NF的ECSA 3.32 mF/cm2,说明Mn2O3@NF自支撑材料具备更多的催化活性位点,具有更好的OER催化活性。阻抗图(图4(e))反应了所制备材料的析氧电化学反应的电化学反应电阻,由图可见,Mn2O3@NF的阻抗弧最小,与上述结果相符。图4(f)是Mn2O3@NF自支撑材料的电催化稳定性测试,在电流密度10 mA/cm2的条件下经过24 h测试,Mn2O3@NF材料的电位仅上升了8%,证明Mn2O3@NF材料的稳定性良好,在长时间的使用中电位变化较小。

Figure 4. The results of OER performance tested in 1 mol/L KOH solution: (a) Polarization curves; (b) Over potential values under different oxygen evolution current density; (c) Tafel slope; (d) Electrochemically active area; (e) Impedance diagram; (f) Stability test

图4. 电解质为1 mol/L KOH时OER电化学性能测试结果:(a) 极化曲线;(b) 不同析氧电流密度下过电位;(c) 塔菲尔斜率;(d) 电化学活性面积;(e) 阻抗图;(f) 稳定性测试

本文中基于MOF前驱体制备得到的Mn2O3@NF OER催化电极,相比类似文献报道中由电沉积法在二氧化硅薄膜基材上制备的Mn3O4-MOF催化剂 [10] (在1.0 mol/L KOH溶液作电解质,10 mA/cm2电流密度下过电位570 mV,塔菲尔斜率118.2mV/dec)以及电沉积法在玻璃碳上制备的Mn2O3催化剂 [14] (在1.0 mol/L KOH溶液作电解质,10 mA/cm2电流密度下过电位340 mV,塔菲尔斜率88.1 mV/dec)催化性能均更为优异,表明由MOF前驱体进行热处理制备氧化物催化电极的方法有利于得到高电化学活性的催化表面,是提高电极活性的重要途径。

4. 结论

通过溶剂热法在泡沫镍上合成了Mn-MOF74@NF,进一步由管式炉热处理获得了具备高效催化能力的Mn2O3@NF电极材料。SEM观察到Mn2O3@NF材料的微观结构为覆盖泡沫镍表面生长的纳米棒阵列;XRD谱图表明氧化物晶型结构完整,XPS测试证明锰的氧化物为Mn2O3。OER性能测试中,以1 mol/L KOH溶液为电解质,Mn2O3@NF材料在10 mA/cm2时过电位仅为220 mV,且在350 mA/cm2时,过电位仅为310 mV。证明了该材料具备在工业中量产使用的可能性。

文章引用

吴 松,王海人. 基于MOF材料制备OER催化电极Mn2O3@NF的研究
Research on Preparation of OER Catalytic Electrode Mn2O3@NF Based on MOF Material[J]. 材料科学, 2022, 12(03): 202-208. https://doi.org/10.12677/MS.2022.123021

参考文献

  1. 1. Souleymen, R., Wang, Z.T., Qiao, C., Naveed, M. and Cao, C.B. (2018) Microwave-Assisted Synthesis of Graphene-Like Cobalt Sulfide Freestanding Sheets as an Efficient Bifunctional Electrocatalyst for Overallwater Splitting. Journal of Materials Chemistry A, 6, 7592-7607. https://doi.org/10.1039/C8TA01266K

  2. 2. Bai, Z., Zhang, Y., Zhang, Y., Guo, C., Tang, B. and Sun, D. (2015) MOFs-Derived Porous Mn2O3 as High-Performance Anode Material for Li-Ion Battery. Journal of Materials Chemistry A, 3, 5266-5269. https://doi.org/10.1039/C4TA06292B

  3. 3. Zheng, F., Xia, G., Yang, Y. and Chen, Q. (2015) MOF-Derived Ultrafine MnO Nanocrystals Embedded in a Porous Carbon Matrix as High Performance Anodes for Lithium-Ion Batteries. Nanoscale, 7, 9637-9645. https://doi.org/10.1039/C5NR00528K

  4. 4. Zheng, F., Xu, S., Yin, Z., Zhang, Y. and Lu, L. (2016) Facile Synthe-sis of MOF-Derived Mn2O3 Hollow Microspheres as Anode Materials for Lithium-Ion Batteries. RSC Advances, 6, 93532-93538. https://doi.org/10.1039/C6RA19334J

  5. 5. Maiti, S., Pramanik, A. and Mahanty, S. (2016) Electrochemical Energy Storage in Mn2O3 Porous Nanobars Derived from Morphology Conserved Transformation of Benzenetricarboxylate-Bridged Metal-Organic Framework. CrystEngComm, 18, 450-461. https://doi.org/10.1039/C5CE01976A

  6. 6. Jing, D., Chen, D., Fan, G., Zhang, Q., Xu, J., Gou, S., Li, H. and Nie, F. (2016) From a Novel Energetic Coordination Polymer Precursor to Diverse Mn2O3 Nanostructures: Control of Pyrolysis Products Morphology Achieved by Changing the Calcination Atmosphere. Crystal Growth & Design, 16, 6849-6857. https://doi.org/10.1021/acs.cgd.6b00975

  7. 7. Ji, D., Zhou, H., Zhang, J., Dan, Y., Yang, H. and Yuan, A. (2016) Facile Synthesis of a Metal-Organic Framework-Derived Mn2O3 Nanowire Coated Three-Dimensional Graphene Network for High-Performance Free-Standing Supercapacitor Electrodes. Journal of Materials Chemistry A, 4, 8283-8290. https://doi.org/10.1039/C6TA01377E

  8. 8. Ladrak, T., Smulders, S., Roubeau, O., Teat, S.J., Gamez, P. and Reedijk, J. (2010) Manganese-Based Metal Organic Frameworks as Heterogeneous Catalysts for the Cyanosilylation of Acetaldehyde. European Journal of Inorganic Chemistry, 24, 3804-3812. https://doi.org/10.1002/ejic.201000378

  9. 9. Kamalpreet, S., Guillen, C., Filip, D., Hao, Z.M., Yuan, T.G. and Oleksandr, V. (2020) Manganese MOF Enables Efficient Oxygen Evolution in Acid. ACS Materials Letters, 7, 798-800. https://doi.org/10.1021/acsmaterialslett.0c00123

  10. 10. Ramírez, A., Hillebrand, P., Stellmach, D., May, M.M., Bogdanoff, P. and Fiechter, S. (2014) Evaluation of MnOx, Mn2O3 and Mn3O4 Electrodeposited Films for the Oxygen Evolution Reaction of Water. The Journal of Physical Chemistry C, 118, 14073-14081. https://doi.org/10.1021/jp500939d

  11. 11. Zahran, Z.N., Mohamed, E.A. and Naruta, Y. (2016) Kinetics and Mechanism of Heterogeneous Water Oxidation by α-Mn2O3 Sintered on an FTO Electrode. ACS Catalysis, 6, 4470-4476. https://doi.org/10.1021/acscatal.6b00413

  12. 12. Li, Q., Yin, L., Li, Z., Wang, X., Qi, Y. and Ma, J. (2013) Copper Doped Hollow Structured Manganese Oxide Mesocrystals with Vontrolled Phase Structure and Morphology as Anode Materials for Lithium Ion Battery with Improved Electrochemical Performance. ACS Applied Materials & Interfaces, 5, 10975-10984. https://doi.org/10.1021/am403215j

  13. 13. Xiao, Y. and Cao, M. (2015) Carbon-Anchored MnO Nanosheets as an Anode for High-Rate and Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 7, 12840-12849. https://doi.org/10.1021/acsami.5b02171

  14. 14. Kashyap, H., Chiranjita, G. and Himadri, S. (2018) Cubic Mn2O3 Nanoparticles on Carbon as Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Molecular Catalysis, 451, 153-160. https://doi.org/10.1016/j.mcat.2017.12.012

  15. NOTES

    *通讯作者。

期刊菜单