Hans Journal of Biomedicine
Vol. 11  No. 03 ( 2021 ), Article ID: 43881 , 8 pages
10.12677/HJBM.2021.113022

CXXC锌指蛋白5研究进展

闵继斌1*,王志坚2

1嘉善县中医院普外科,浙江 嘉兴

2嘉兴学院医学院,浙江 嘉兴

收稿日期:2021年6月11日;录用日期:2021年6月25日;发布日期:2021年7月15日

摘要

CXXC锌指蛋白5 (CXXC finger protein 5, CXXC5)属于CXXC锌指蛋白家族。CXXC5基因是视色素反应基因,编码视色素诱导的核因子,又可称为RINF。CXXC5除了作为表观遗传调控因子外,还可以通过调控Wnt/β-catenin通路参与细胞的生长和分化过程;CXXC5多种恶性肿瘤的发生发展相关,可以作为TGF-β的靶基因,可活化激活TNF-α,参与调控肿瘤细胞的生长代谢过程,CXXC5表达情况对肿瘤治疗的预后也有参考作用;CXXC5对氧反应元件起抑制作用,参与细胞能量代谢等生物学过程。本文对近年来CXXC5的研究进展作一综述。

关键词

CXXC5,肿瘤细胞,细胞分化,细胞凋亡

Research Progress of CXXC Zinc Finger Protein 5

Jibin Min, Zhijian Wang

1Department of General Surgery, Jiashan County Hospital of Traditional Chinese Medicine, Jiaxing Zhejiang

2School of Medicine, Jiaxing University, Jiaxing Zhejiang

Received: Jun. 11th, 2021; accepted: Jun. 25th, 2021; published: Jul. 15th, 2021

ABSTRACT

CXXC finger protein 5 (CXXC5) belongs to the CXXC zinc finger protein family.CXXC5 gene, also known as RINF, is a visual pigment response gene that encodes the nuclear factor of visual pigment induction. In addition to acting as an epigenetic regulator, CXXC5 also participates in the process of cell growth and differentiation by regulating the Wnt/β-catenin pathway. CXXC5 is related to the occurrence and development of a variety of malignant tumors. It can be used as a target gene of TGF-β, activate TNF-α, and participate in the regulation of the growth and metabolism of tumor cells. The expression of CXXC5 also plays a reference role in the prognosis of tumor therapy. CXXC5 inhibits oxygen response elements and participates in biological processes such as cell energy metabolism. In this paper, the research progress of CXXC5 in recent years is reviewed.

Keywords:CXXC5, Tumorcells, Cell Differentiation, Cell Apoptosis

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

锌指蛋白具有不同的保守结构域,可以同DNA、RNA或不同蛋白质互相作用,作为哺乳动物基组中最大的蛋白超家族之一,锌指蛋白在进化和功能上可有不同。CXXC含有CXXCXXC序列,是锌指结构域的一种,约40~60个氨基酸长度,含有CXXC结构域蛋白质的功能多为参与调控细胞表观遗传的相关因子 [1],可结合非修饰CpG、组蛋白甲基转移酶(Mixed-lineage leukemia, MLL)和DNA甲基转移酶1 (DNA Methyltransferase 1, DNMTl)等参与染色质重塑。目前研究较多的CXXC锌指结构域蛋白有CXXC1编码的锌指蛋白1 (CXXC finger protein 1, cfp1)即(CpG binding protein, CGBP),CXXC锌指蛋白4 (CXXC4)即IDAX (Inhibition of the Dvl and Axin complex),CXXC锌指蛋白5 (CXXC5)即RINF (Retinoid-inducible nuclear factor)。CXXC锌指蛋白家族中的CXXC锌指蛋白5 (CXXC finger protein 5, CXXC5),是由定位于5号染色体长臂5q31.3,大小为35.5 KD的基因编码,CXXC5基因即视黄色素应答基因,编码视黄色素诱导核因子(Retinoid-inducible nuclear factor, RINF),CXXC5也称为RINF [2]。CXXC5定位于胞质或细胞核取决于不同组织中特定的细胞类型,在早幼粒白血病细胞中观察到CXXC5的细胞核定位 [3]。CXXC5蛋白定位于细胞核中,其锌指结构域的N末端具有核定位信号,在257与262位氨基酸残基为KKKRKR,其它几种入核蛋白也存在该种氨基酸残基 [4] [5]。CXXC5在人各种组织中均有表达,但不同组织表达水平不同 [6]。近来的研究发现,CXXC5可作为表观遗传调节剂,如CXXC5可诱导组蛋白H3赖氨酸9甲基化,这也是是抑制CD40配体在CD8(+)细胞毒性T细胞表达的关键分子之一 [7]。此外,CXXC5还与各种恶性肿瘤的发生、发展相关,并参与细胞分化、细胞凋亡、内皮细胞侵袭和能量代谢等多种生物学过程。

2. CXXC5与细胞分化

CXXC5调控Wnt/β-catenin通路,参与细胞生长、分化调控。在骨上的研究发现,Wnt/β-catenin通路是成骨细胞分化的主要途径 [8] [9] [10]。散乱蛋白(Dishevelled, Dvl)在Wnt信号传导中起着至关重要的作用,CXXC5可作为与Dvl结合的关键分子,CXXC5通过结合Dvl对Wnt/β-catenin通路负调控。而抑制Dvl-CXXC5结合,激活Wnt/β-catenin通路,可促进成骨细胞分化,因此,Dvl-CXXC5相互作用也被认为是治疗骨质疏松症的理想靶点 [11],使用竞争肽抑制Dvl-CXXC5相互作用可激活Wnt/β-catenin通路和成骨细胞分化,并加速体外培养颅骨的厚度生长,而CXXC5缺乏可导致小鼠骨密度升高 [12]。CXXC5抑制包括骨骺活动在内长骨生长。随着骨骺板在青春期的衰老,长骨生长停止,而CXXC5-/-小鼠生长板衰老延迟,胫骨延长 [13]。牙龈卟啉单胞菌与牙周病密切相关,是根尖周炎的主要病原菌,牙龈卟啉单胞菌通过诱导炎症反应和抑制细胞分化,抑制成牙骨质矿化能力。CXXC5在牙龈卟啉单胞菌侵犯引起的受损牙骨质再生中具有重要作用,CXXC5在牙龈卟啉单胞菌处理的OCCM-30细胞和根尖周炎模型中表达下降,但在矿化过程中逐渐增加。CXXC5过表达促进了细胞分化,从而减弱了牙龈卟啉单胞菌的抑制作用。此外,Erk1/2、p38和PI3K-Akt由于CXXC5的沉默而失活,而CXXC5过表达后促其活化,Wnt/β-catenin表达则表现相反的趋势 [14]。在影响细胞分化上,Wilms肿瘤基因WT1 (Wilms tumor type 1, WT1)通过其靶基因CXXC5负性调控Wnt/β-catenin通路,WT1通过上游增强子区域激活CXXC5转录。哺乳动物肾脏的发育需要WT1和Wnt/β-catenin信号通路的参与。CXXC5可作为WT1诱导的Dvl抑制剂 (WT1-induced Inhibitor of Dishevelled, WID),以WT1为转录靶点,负调控Wnt/β-catenin信号通路。在肾脏发育过程中,CXXC5和Wt1在成熟肾单位足细胞中共同表达,CXXC5通过其C端CXXC锌指和散状结合域与细胞相互作用,在体外和体内均能有效抑制Wnt/β-catenin信号通路。CXXC5在进化上比较保守,通过反义吗啡寡核苷酸在斑马鱼胚胎中敲低CXXC5,也可以干扰其胚胎肾脏发育 [15]。CXXC5作为Wnt/β-catenin通路的负调控因子,通过调控Wnt/β-catenin通路影响毛囊发育和头发再生。CXXC5在人秃头头皮的微细毛囊和毛状肌中上调。在人毛囊真皮乳头细胞上的研究表明,CXXC5对ALP活性和细胞增殖有抑制作用。CXXC5-/-小鼠上的研究显示,CXXC5敲除后可以加速小鼠毛发再生,并用糖原合成酶激酶3β抑制剂丙戊酸治疗,激活Wnt/β-catenin途径,进一步诱导CXXC5-/-小鼠毛发再生 [16]。

CXXC5通过作用于骨形态发生蛋白(Bone morphogenetic proteins, BMP),在神经系统中发挥作用。研究发现不同脱髓鞘疾病中发现BMP表达异常,BMP可能参与了这些脱髓鞘疾病的发生发展。CXXC5为主要髓磷脂基因的转录激活因子,因特异性表达在白质的CXXC5通过在BMP启动子上的CXXC 5的CXXC DNA结合基序直接结合诱导髓磷脂基因表达。在CXXC5-/-小鼠神经干细胞(Neural stem cells, NSCs)分化过程中,髓磷脂基因表达同时降低。CXXC5-/-小鼠胼胝体髓磷脂基因表达严重降低,髓磷脂结构异常。CXXC5-/-小鼠髓磷脂结构完整性受损,导致胼胝体电导振幅降低。这些结果表明,CXXC5调控髓磷脂基因表达对于形成参与胼胝体轴突电信号传递的髓磷脂结构具有重要意义 [17]。BMP4作为TGFβ家族的一员,影响大脑发育过程中的多个重要事件,如分化、增殖和迁移 [18] [19] [20],BMP4对于端脑前脑结构的正常发育和诱导端脑神经干细胞分化为包括星形胶质细胞、神经元细胞和间充质细胞在内的多种细胞结构至关重要。有研究发现,在识别脑末期神经干细胞中BMP4信号的新靶点的筛选中,在BMP4刺激下,CXXC5因子的mRNA水平可被上调,而且在体内,CXXC5在在作为端脑的背侧区域,包括脉络膜丛中与BMP4相邻的Wnt3a表达重叠。CXXC5与CXXC4,即IDAX (Inhibition of the Dvl and axin complex protein)具有部分同源性,IDAX可以与Wnt信号中间蛋白 Dvl相互作用。研究发现,CXXC5和Dvl在细胞质中共定位并在免疫共沉淀实验中相互作用,荧光共振能量转移(Fluorescence resonance energy transfer, FRET)实验也验证了CXXC5和Dvl2在神经干细胞中具有近空间邻近性。过表达CXXC5或暴露于BMP4抑制了正常Wnt信号靶蛋白Axin2的水平,而CXXC5的RNA干扰减弱了BMP4介导的Axin2水平下降,促进了神经干细胞对Wnt3a的反应 [21]。胼胝体的髓鞘化通过在大脑不同区域间传递神经信息,对正常的大脑功能起着重要的作用。CXXC5 RNA干扰显著抑制成牙骨质细胞分化,表现为骨相关标志物Osterix、骨钙素(Osteocalcin, OCN)和碱性磷酸酶(Alkaline phosphatase, ALP)下降,OCN是成骨细胞产生的非胶原蛋白,主要在调节胰岛素分泌、葡萄糖代谢和能量消耗过程中起作用,是骨和调节能量代谢器官中各类信号通路中的关键分子 [22] [23]。不同胚胎来源的组织中也发现了CXXC5的表达,CXXC5可能参与正常和病理组织的发育和/或稳态。CXXC5是激活血管内皮生长因子受体胎肝激酶-1 (Fetal liver kinase-1, Flk-1)的转录因子,在小鼠胚胎干细胞(Mouse embryonic stem cells, mESCs)中,尤其是在内皮细胞中,CXXC5和Flk-1分别在细胞核和细胞膜中积累。CXXC5过表达诱导Flk-1在内皮分化的mESCs和人脐静脉内皮细胞(Human umbilical vein endothelial cells, HUVECs)中转录。体外DNA结合试验表明,CXXC5在Flk-1启动子区域直接相互作用,其DNA结合基序突变消除了转录活性。BMP4在细胞中诱导CXXC5转录,BMP信号抑制剂抑制了BMP4诱导CXXC5和随后的Flk-1诱导。CXXC5敲低后,导致HUVECs中BMP4诱导的应力纤维形成和迁移受阻。CXXC5作为Flk-1的转录激活因子,可介导内皮细胞和血管形成分化和迁移的BMP信号 [24]。

CXXC5肌组织分化中的作用。在骨骼肌中表达,有研究使用荧光素酶基因报告器筛选CXXC5可能参与的信号通路,发现CXXC5显著提高了骨骼肌分化相关基因启动子的活性。通过研究CXXC5在C2C12成肌细胞骨骼肌生成过程中的作用,发现在C2C12成肌细胞中,CXXC5过表达可促进肌细胞分化,而CXXC5的RNAi干扰明显抑制了C2C12成肌细胞的分化,CXXC5在调节骨骼肌生成中可能起重要作用 [25]。CXXC5还可以通过TGFβ相关信号通路调节心脏发育和心脏循环,斑马鱼中的研究发现,CXXC5和SMAD通过ZF-CXXC和MH1区域相互作用,在心肌细胞中过表达CXXC5,可增强TGFβ信号通路的荧光素酶报告活性,CXXC5表达谱显示其在心脏发生过程中持续表达。而斑马鱼中敲低CXXC5后,出现循环缺陷,心脏发育异常,心包水肿、和收缩能力下降,同时伴随心脏循环下游Tgfβ信号通路基因表达下调,如nkx2.5,hand2和has2,注射hand2 mRNA和CXXC5吗啉基可以对心脏循环有恢复作用 [26]。

3. CXXC5与肿瘤的发生、发展和预后相关

CXXC5与乳腺癌很多肿瘤细胞中均有CXXC5表达,CXXC5与各种恶性肿瘤的发生、发展有关。局部进展期乳腺肿瘤、转移性恶性黑素瘤和甲状腺乳头状癌的活检中可检测CXXC5 mRNA表达。在局部进展期乳腺癌中评估CXXC5表达,发现CXXC5过表达与实体肿瘤的恶性表型有关,CXXC5过表达是乳腺肿瘤预后不良的独立分子标志物 [27],通过基因表达综合数据库和bc-GenExMiner,发现CXXC5在不同乳腺癌亚型中的预后预测有重要作用。CXXC5过表达与雌激素受体阳性(ER+)乳腺癌预后不良有关,通过分析CXXC5相关基因及其丰富的基因本体(GO),其中,GO:0070062(胞外外泌体)的相关基因数量最多,GO:0000122 (RNA聚合酶II启动子转录负调控)和GO:0008134(转录因子结合)含有CXXC5的相关基因,表明在ER+乳腺癌中,CXXC5的过表达是一个非常差的预后因素 [28]。17β-雌二醇(17β-estradiol, E2)通过雌激素受体(Estrogen receptor α, ERα)介导乳房组织的生理和病理生理功能,CXXC5是一个E2-ERα反应基因,受E2-ERα与该基因初始翻译密码子上游区域的ERE相互作用。通过结合E2, ERα调节包括调控细胞增殖的靶基因表达主要通过与特定DNA序列即雌激素反应元件(EREs)结合,研究表明,E2-ERα调节CXXC5表达,作为ZF-CXXC家族的成员,CXXC5可与非甲基化的CpG核苷酸结合,由于E2-ERα信号在乳房组织的重要性,CXXC5转录/合成的变化可能参与E2介导的细胞活动 [29]。

CXXC5与白血病CXXC5在人类急性髓系白血病(Acute myeloid leukemia, AML)细胞中高表达同样与不良预后相关。分析48例连续病例AML细胞的整体基因表达谱,发现CXXC5高表达和低表达的细胞在细胞外交流和细胞内信号传导方面表现出显著差异,对PI3K-Akt-mTOR信号和/或转录调控重要的细胞内信号介导物(CREB, PDK1, SRC, STAT1, p38, STAT3, rpS6)的磷酸化状态有显著差异。CXXC5高表达也与多个干细胞相关转录调控因子的高mRNA表达有关,其中与WT1、GATA2、RUNX1、LYL1、DNMT3、SPI1、MYB的相关最强。AML细胞株敲低CXXC5可显著增加潜在肿瘤抑制基因结节性硬化复合体2 (Tuberoussclerosiscomplex 2, TSC2)和编码生长因子受体kit基因的表达,细胞因子血管生成素1和含硒糖蛋白P的表达也增加。高表达的CXXC5影响白血病的发生,包括细胞内事件和细胞外的信号交流 [30]。5q31上的CXXC5基因在伴有del(5q)的急性髓系白血病AML中也经常缺失,提示CXXC5的失活可能与白血病发生有关。CXXC5 mRNA在AML中通过MLL重排、t(8;21)和GATA2突变下调,5年内,CXXC5表达低于中位水平的患者,其复发率较低,有更好的整体生存率和无病生存期。在基因表达谱分析中,CXXC5的低表达与细胞周期基因的上调和与白细胞发生相关的基因(wt1、gta 2、ml、dnmt3b、runx 1)的共同下调有关。分析显示CXXC5抑制白血病细胞增殖和Wnt信号传导,并影响p53依赖的DNA损伤反应。在AML中,CXXC5起肿瘤抑制作用。CXXC 5的失活与不同的白血病途径有关 [31]。研究发现,CXXC5在正常骨髓形成过程中有重要作用。通过检测CXXC5/RINF在594例原发性人类AML 细胞中的表达,发现未成熟的白血病骨髓母细胞和未成熟的急性淋巴细胞白血病细胞中CXXC5/RINF mRNA的水平存在较大差异。此外,与高风险异常患者相比,低风险细胞遗传学异常患者的水平明显较低,且高RINF/CXXC5/mRNA水平与急性髓系白血病接受强化化疗患者整体生存率降低有关 [32]。AML中,10号与11号染色体易位,使得MLL基因与一个新基因发生融合,即TET (Ten eleven translocation, TET),在哺乳动物中,TET蛋白家族包括TET1、TET2和TET3,其中,TET2在白血病细胞中易突变,影响TET2蛋白活性,TET2结构上无CXXC结构域,但其与CXXC4蛋白可以发生关联,这种关联对于TET2蛋白的基因定位起重要作用 [33]。CXXC5与TET2也有一定的联系,研究发现,CXXC5可作为浆细胞样树突状细胞(Plasmacytoid dendritic cells, pDCs)介导的抗病毒反应的表观遗传调节剂。TLR7/9信号能够在病毒感染后立即在pDC中启动大量干扰素(Interferon, IFN)应答,CXXC5在pDCs中高度表达,在TLR7/9和病毒诱导的IFN应答中发挥着关键作用,CXXC5负责招募DNA去甲基化酶Tet2,以维持CGIs一个子集的低甲基化。CXXC5的基因切除可导致Irf7基因中含有Cpg的岛屿(CGI)异常甲基化,影响pDCs中Irf7的表达,CXXC5缺陷小鼠早期IFN应答受损,极易感染单纯疱疹病毒和水疱性口炎病毒 [34]。白血病相关细胞中,CXXC5与髓系分化和骨髓肿瘤有关蛋白可促进Tet2降解 [35],肿瘤细胞中,CXXC4和CXXC5表达变化均会影响Tet2表达水平。

CXXC5与前列腺癌、食管癌和肝癌。CXXC5在前列腺癌的发生过程中起作用,CXXC5转录本在大鼠和人来源的转移性前列腺癌细胞系中都有差异表达 [36] [37]。qPCR、显色原位杂交和免疫组织化学方法检测CXXC5在人良性前列腺组织、增生性炎性萎缩、高级前列腺上皮内瘤变和前列腺癌中的mRNA和蛋白表达模式,发现CXXC5 mRNA和蛋白在前列腺癌、高级别前列腺上皮内瘤变和增生性炎性萎缩中的表达明显增高。在相同的组织标本中,恶性腺泡的CXXC5表达明显强于相邻的良性腺泡,CXXC5的免疫染色主要局限于良性上皮细胞的细胞核以及恶性上皮细胞的细胞核和细胞质 [38]。MicroRNA-32 (miR-32)在某些癌症中作为癌基因发挥作用,是调控参与重要生物学和病理功能的基因,可促进肿瘤生长和肿瘤细胞转移,miR-32可靶向作用CXXC5的3'-非翻译区域(3'-UTR),抑制CXXC5的mRNA和蛋白水平,CXXC5与miR-32表达呈负相关。在miR-32调控食管鳞状细胞癌(Esophageal squamous cell carcinoma, ESCC)恶性转化的研究中发现,miR-32在ESCC组织和细胞中表达显著增加,miR-32的下调抑制ESCC细胞系(EC9706和KYSE450)的迁移、侵袭、粘附以及体外上皮–间充质转化(Epithelial-mesenchymaltransition, EMT)标志蛋白水平,在体内,miR-32抑制剂降低肿瘤大小、肿瘤重量和转移结节的数量。在EC9706和KYSE450细胞与si-CXXC5和miR-32抑制剂共转染后,细胞迁移、侵袭和粘附能力明显降低,EMT蛋白表达和TGF-β信号也会降低 [39]。可变多聚腺苷酸化(Alternative polyadenylation, APA)是指一个基因上有多个多聚腺苷酸化位点,从而使得一个基因可以产生多条带有不同长度3'UTR的mRNA,或产生不同编码序列的转录本。APA是一种重要的转录后调控机制,涉及包括癌症在内的许多疾病。Nudix水解酶(21nudix hydrolase 21, NUDT21)又称CFIm25,是NUDT21编码的裂解因子I的亚基,是3'RNA裂解和聚腺苷酸化所必需的。研究发现,肝细胞癌(Hepatocellular carcinoma, HCC)中NUDT21与相邻的非肿瘤室相比,HCC组织中NUDT21表达减少。与NUDT21高表达的患者相比,NUDT21低表达的HCC患者术后总生存率和无病生存率较低。抑制NUDT21可促进HCC细胞增殖、转移和肿瘤发生,而NUDT21表达增加则有相反的结果。PSMB2和CXXC5为NUDT21调控基因,NUDT21基因敲低增加了PSMB2和CXXC5 3' UTRs中近端聚腺苷酸化位点的使用,导致PSMB2和CXXC5表达显著增加。此外,抑制PSMB2或CXXC5抑制肝癌细胞增殖和侵袭。NUDT21通过抑制PSMB2和CXXC5,至少部分抑制了HCC的增殖、转移和肿瘤发生 [40]。

4. 问题与展望

CXXC5通过调控Wnt/β-catenin通路参与细胞的生长和分化过程,双氢青蒿素(Dihydroartemisinin, DHA)作为青蒿的活性成分之一,临床上可用来治疗疟疾同时还可以具备抗癌和免疫调节的功能。在对人骨髓间充质干细胞(Human mesenchymal stem cells, hMSCs)成骨分化中的研究发现,DHA可能通过ERK1/2和Wnt/β-catenin通路促进其成骨分化 [41],Wnt/β-catenin通路在补肾中药靶向治疗骨质疏松中也有一定应用 [42],作为Wnt/β-catenin通路的调控者之一,CXXC5有可能在药物诱导分化中作为相关靶点来起作用。CXXC5在不同肿瘤中表达不同,作用也不尽相同,在AML、ESCC、HCC、转移性恶性黑色素瘤、乳腺癌、前列腺癌、甲乳癌和MPNSTs等肿瘤细胞中,CXXC5表达明显异常。在部分肿瘤细胞中,CXXC5可以作为TGF-β的靶基因,CXXC5还可以活化激活TNF-α,进而参与调控肿瘤细胞的生长代谢过程,相关肿瘤的靶向治疗中,CXXC5将会作为靶标而起作用,因此,CXXC5的表达在后续的肿瘤诊断和治疗中或许会有一定的参考意义。

基金项目

嘉善县科技局项目(No.2019A66);浙江省实验动物科技计划项目(No. LGD19C090002)。

文章引用

闵继斌,王志坚. CXXC锌指蛋白5研究进展
Research Progress of CXXC Zinc Finger Protein 5[J]. 生物医学, 2021, 11(03): 168-175. https://doi.org/10.12677/HJBM.2021.113022

参考文献

  1. 1. Long, H.K., Blackledge, N.P. and Klose, R.J. (2013) ZF-CXXC Domain-Containing Proteins, CpG Islands and the Chromatin Connection. Biochemical Society Transactions, 41, 727-740. https://doi.org/10.1042/BST20130028

  2. 2. Ravasi, T., Huber, T., Zavolan, M., et al. (2003) Systematic Characterization of the Zinc-Finger-Containing Proteins in the Mouse Transcriptome. Genome Research, 13, 1430-1442. https://doi.org/10.1101/gr.949803

  3. 3. Pendino, F., Nguyen, E., Jonassen, I., et al. (2009) Functional Involvement of RINF, Retinoid-Inducible Nuclear Factor (CXXC5), in Normal and Tumoral Human Myelopoiesis. Blood, 113, 3172-3181. https://doi.org/10.1182/blood-2008-07-170035

  4. 4. Rost, B., et al. (2000) Finding Nuclear Localization Signals. EMBO Journal, 1, 411-415. https://doi.org/10.1093/embo-reports/kvd092

  5. 5. Kalderon, D., Roberts, B.L., Richardson, W.D., et al. (1984) A Short Amino Acid Sequence Able to Specify Nuclear Location. Cell, 39, 499-509. https://doi.org/10.1016/0092-8674(84)90457-4

  6. 6. Wang, X., Liao, P., Fan, X., et al. (2013) CXXC5 Associates with Smads to Mediate TNF-α Induced Apoptosis. Current Molecular Medicine, 13, 1385-1396. https://doi.org/10.2174/15665240113139990069

  7. 7. Tsuchiya, Y., Naito, T., Tenno, M., et al. (2016) ThPOK Represses CXXC5, Which Induces Methylation of Histone H3 Lysine 9 in Cd40lg Promoter by Association with SUV39H1: Implications in Repression of CD40L Expression in CD8+ Cytotoxic T Cells. Journal of Leukocyte Biology, 100, 327-338. https://doi.org/10.1189/jlb.1A0915-396RR

  8. 8. Long, F. (2012) Building Strong Bones: Molecular Regulation of the Osteoblast Lineage. Nature Reviews Molecular Cell Biology, 13, 27-38. https://doi.org/10.1038/nrm3254

  9. 9. Rachner, T.D., Khosla, S. and Hofbauer, L.C. (2011) Osteoporosis: Now and the Future. The Lancet, 377, 1276-1287. https://doi.org/10.1016/S0140-6736(10)62349-5

  10. 10. Regard, J.B., Zhong, Z., Williams, B.O., et al. (2012) Wnt Signaling in Bone Development and Disease: Making Stronger Bone with Wnts. Cold Spring Harbor Perspectives in Biology, 4, 1-17. https://doi.org/10.1101/cshperspect.a007997

  11. 11. Lee, I., Choi, S., Yun, J.H., et al. (2017) Crystal Structure of the PDZ Domain of Mouse Dishevelled 1 and Its Interaction with CXXC5. Biochemical and Biophysical Research Communications, 485, 584-590. https://doi.org/10.1016/j.bbrc.2016.12.023

  12. 12. Kim, H.-Y., Yoon, J.-Y., Yun, J.-H., et al. (2015) CXXC5 Is a Negative-Feedback Regulator of the Wnt/β-Catenin Pathway Involved in Osteoblast Differentiation. Cell Death & Differentiation, 22, 912-920. https://doi.org/10.1038/cdd.2014.238

  13. 13. Choi, S., Kim, H.Y., Cha, P.H., et al. (2019) CXXC5 Mediates Growth Plate Senescence and Is a Target for Enhancement of Longitudinal Bone Growth. Life Science Alliance, 2, e201800254. https://doi.org/10.26508/lsa.201800254

  14. 14. Ma, L., Wang, X., Liu, H., et al. (2019) CXXC5 Mediates P. gingivalis-Suppressed Cementoblast Functions Partially via MAPK Signaling Network. International Journal of Biological Sciences, 15, 1685-1695. https://doi.org/10.7150/ijbs.35419

  15. 15. Kim, M.S., Yoon, S.K., Bollig, F., et al. (2010) A Novel Wilms Tumor 1 (WT1) Target Gene Negatively Regulates the WNT Signaling Pathway. Journal of Biological Chemistry, 285, 14585-14593. https://doi.org/10.1074/jbc.M109.094334

  16. 16. Lee, S.H., Seo, S.H., Lee, D.H., et al. (2017) Targeting of CXXC5 by a Competing Peptide Stimulates Hair Re-Growth and Wound-Induced Hair Neogenesis. Journal of Investigative Dermatology, 137, 2260-2269. https://doi.org/10.1016/j.jid.2017.04.038

  17. 17. Kim, M.Y., Kim, H.Y., Hong, J., et al. (2016) CXXC5 Plays a Role as a Transcription Activator for Myelin Genes on Oligodendrocyte Differentiation. Glia, 64, 350-362. https://doi.org/10.1002/glia.22932

  18. 18. PrithiRajan, D.M., et al. (2003) BMPs Signal Alternately through a SMAD or FRAP-STAT Pathway to Regulate Fate Choice in CNS Stem Cells. Journal of Cell Biology, 161, 911-921. https://doi.org/10.1083/jcb.200211021

  19. 19. Shimogori, T., Banuchi, V., Ng, H.Y., et al. (2004) Embryonic Signaling Centers Expressing BMP, WNT and FGF Proteins Interact to Pattern the Cerebral Cortex. Development, 131, 5639-5647. https://doi.org/10.1242/dev.01428

  20. 20. Hébert, J.M., Mishina, Y. and McConnell, S.K. (2002) BMP Signaling Is Required Locally to Pattern the Dorsal Telencephalic Midline. Neuron, 35, 1029-1041. https://doi.org/10.1016/S0896-6273(02)00900-5

  21. 21. Andersson, T., Södersten, E., Duckworth, J.K., et al. (2009) CXXC5 Is a Novel BMP4-Regulated Modulator of Wnt Signaling in Neural Stem Cells. Journal of Biological Chemistry, 284, 3672-3681. https://doi.org/10.1074/jbc.M808119200

  22. 22. Pi, M. and Quarles, L.D. (2012) Multiligand Specificity and Wide Tissue Expression of GPRC6A Reveals New Endocrine Networks. Endocrinology, 153, 2062-2069. https://doi.org/10.1210/en.2011-2117

  23. 23. Lee, N.K., Sowa, H., Hinoi, E., et al. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469. https://doi.org/10.1016/j.cell.2007.05.047

  24. 24. Kim, H.Y., Yang, D.H., Shin, S.W., et al. (2014) CXXC5 Is a Transcriptional Activator of Flk-1 and Mediates Bone Morphogenic Protein-Induced Endothelial Cell Differentiation and Vessel Formation. The FASEB Journal, 28, 615-626. https://doi.org/10.1096/fj.13-236216

  25. 25. Li, G., Ye, X., Peng, X., et al. (2014) CXXC5 Regulates Differentiation of C2C12 Myoblasts into Myocytes. Journal of Muscle Research and Cell Motility, 35, 259-265. https://doi.org/10.1007/s10974-014-9400-2

  26. 26. Peng, X., Li, G., Wang, Y., et al. (2016) CXXC5 Is Required for Cardiac Looping Relating to TGF β Signaling Pathway in Zebrafish. International Journal of Cardiology, 214, 246-253. https://doi.org/10.1016/j.ijcard.2016.03.201

  27. 27. Knappskog, S., Myklebust, L.M., Busch, C., et al. (2011) RINF (CXXC5) Is Overexpressed in Solid Tumors and Is an Unfavorable Prognostic Factor in Breast Cancer. Annals of Oncology, 22, 2208-2215. https://doi.org/10.1093/annonc/mdq737

  28. 28. Fang, L., Wang, Y., Gao, Y., et al. (2018) Overexpression of CXXC5 Is a Strong Poor Prognostic Factor in ER+ Breast Cancer. Oncology Letters, 16, 395-401. https://doi.org/10.3892/ol.2018.8647

  29. 29. Yasar, P., Ayaz, G., Muyan, M., et al. (2016) Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway. Scientific Reports, 25, Article No. 37808. https://doi.org/10.1038/srep37808

  30. 30. Bruserud, Ø., Reikvam, H., Fredly, H., et al. (2015) Expression of the Potential Therapeutic Target CXXC5 in Primary Acute Myeloid Leukemia Cells—High Expression Is Associated with Adverse Prognosis as Well as Altered Intracellular Signaling and Transcriptional Regulation. Oncotarget, 6, 2794-2811. https://doi.org/10.18632/oncotarget.3056

  31. 31. Kuhnl, A., Valk, P.J., Sanders, M.A., et al. (2015) Downregulation of the Wnt Inhibitor CXXC5 Predicts a Better Prognosis in Acute Myeloid Leukemia. Blood, 125, 2985-2994. https://doi.org/10.1182/blood-2014-12-613703

  32. 32. Astori, A., Fredly, H., Aloysius, T.A., et al. (2013) CXXC5 (Retinoid-Inducible Nuclear Factor, RINF) Is a Potential Therapeutic Target in High-Risk Human Acute Myeloid Leukemia. Oncotarget, 4, 1438-1448. https://doi.org/10.18632/oncotarget.1195

  33. 33. Ko, M., An, J., Bandukwala, H.S., et al. (2013) Modulation of TET2 Expression and 5-Methylcytosine Oxidation by the CXXC Domain Protein IDAX. Nature, 497, 122-126. https://doi.org/10.1038/nature12052

  34. 34. Ma, S., Wan, X., Deng, Z., et al. (2017) Epigenetic Regulator CXXC5 Recruits DNA Demethylase Tet2 to Regulate TLR7/9-Elicited IFN Response in pDCs. Journal of Experimental Medicine, 214, 1471-1491. https://doi.org/10.1084/jem.20161149

  35. 35. Kojima, T., Shimazui, T., Hinotsu, S., et al. (2009) Decreased Expression of CXXC4 Promotes a Malignant Phenotype in Renal Cell Carcinoma by Activating Wntsignaling. Oncogene, 28, 297-305. https://doi.org/10.1038/onc.2008.391

  36. 36. Reyes, I., Tiwari, R., Geliebter, J., et al. (2007) DNA Microarray Analysis Reveals Metastasis-Associated Genes in Rat Prostate Cancer Cell Lines. Biomedica, 27, 190-203. https://doi.org/10.7705/biomedica.v27i2.215

  37. 37. Bettin, A., Reyes, I., Reyes, N., et al. (2016) Gene Expression Profiling of Prostate Cancer-Associated Genes Identifies Fibromodulin as Potential Novel Biomarker for Prostate Cancer. The International Journal of Biological Markers, 31, e153-e162. https://doi.org/10.5301/jbm.5000184

  38. 38. Benedetti, I., DeMarzo, A.M., Geliebter, J., et al. (2017) CXXC5 Expression in Prostate Cancer: Implications for Cancer Progression. International Journal of Experimental Pathology, 98, 234-243. https://doi.org/10.1111/iep.12241

  39. 39. Liu, Y.T., Zong, D., Jiang, X.S., et al. (2019) miR-32 Promotes Esophageal Squamous Cell Carcinoma Metastasis by Targeting CXXC5. Journal of Cellular Biochemistry, 120, 6250-6263. https://doi.org/10.1002/jcb.27912

  40. 40. Tan, S., Li, H., Zhang, W., et al. (2018) NUDT21 Negatively Regulates PSMB2 and CXXC5 by Alternative Polyadenylation and Contributes to Hepatocellular Carcinoma Suppression. Oncogene, 37, 4887-4900. https://doi.org/10.1038/s41388-018-0280-6

  41. 41. Ni, L.C., Kuang, Z.H., Gong, Z., et al. (2019) Dihydroartemisinin Promotes the Osteogenesis of Human Mesenchymal Stem Cells via the ERK and Wnt/β-Catenin Signaling Pathways. BioMed Research International, 2019, Article ID: 3456719. https://doi.org/10.1155/2019/3456719

  42. 42. 陈世海, 谢兴文, 李建国, 等. Wnt/β-catenin信号通路在补肾中药靶向治疗骨质疏松症中应用的研究进展[J]. 中国骨质疏松杂志, 2019, 25(4): 559-563.

  43. NOTES

    *通讯作者。

期刊菜单