Advances in Clinical Medicine
Vol.07 No.04(2017), Article ID:22311,6 pages
10.12677/ACM.2017.74040

Application of Magnetic Resonance Diffusion Tensor Imaging in Peripheral Nervous System Diseases

Anni Zhu1, Weifei Wu2,3*

1Medical College of Nanchang University, Nanchang Jiangxi

2Department of Orthopedics, The People’s Hospital of Three Gorges University, Yichang Hubei

3The First People’s Hospital of Yichang, Yichang Hubei

Received: Sep. 28th, 2017; accepted: Oct. 9th, 2017; published: Oct. 16th, 2017

ABSTRACT

Peripheral nervous system (PNS) due to the structure of fine walking complex, and the surrounding tissue structure should not be resolved; it is difficult to use conventional imaging methods to obtain a satisfactory image. Therefore, the current diagnosis of PNS diseases is mainly dependent on clinical history, physical examination and electrophysiological examination of the data. Diffusion tensor imaging (DTI) is a method of image developed on the basis of diffusion weighted imaging. It is used to image the anisotropy of water molecule motion, which can accurately show the microfluid structure. The quantitative data of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) obtained by DTI technique can quantitatively evaluate the pathophysiological changes and structural features of nerve fiber bundles. DTI is often used in peripheral neurological disease research, the aim of the article was to review the DTI technology application in cranial nerve compression syndrome, lumbar disc herniation, tumor location and nerve injury repair.

Keywords:Diffusion Tensor Imaging, Peripheral Nervous System, Microstructural Properties of Nerve, Application

磁共振扩散张量成像在外周神经系统疾病中 应用的研究进展

朱安妮1,伍伟飞2,3*

1南昌大学医学院,江西 南昌

2三峡大学人民医院骨科,湖北 宜昌

3宜昌市第一人民医院,湖北 宜昌

收稿日期:2017年9月28日;录用日期:2017年10月9日;发布日期:2017年10月16日

摘 要

周围神经系统(peripheral nervous system, PNS)由于结构纤细走行复杂,与周围组织结构不宜分辨,难以利用常规影像学检查方法获得满意的图像。因此目前诊断周围神经系统疾病的主要是依靠临床病史、体格检查和电生理检查的数据。核磁共振扩散张量成像(diffusion tensor imaging, DTI)是在弥散加权成像基础进一步上发展而来的影像检查方法,利用水分子运动的各向异性进行成像,从而能精确地显示神经纤维内部的细微结构。通过DTI技术获得的各向异性分数(fractional anisotropy, FA)、表观扩散系数(apparent diffusion coefficient, ADC)等量化数据能够进行定量的评价神经纤维束的病理生理改变及结构形态的特点。DTI经常应用于周围神经系统病变的研究,现就DTI技术在颅神经压迫综合征、腰椎间盘突出症、肿瘤的定位及神经损伤修复等方面进行综述。

关键词 :DTI,周围神经系统,神经微观结构,应用

Copyright © 2017 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

周围神经系统(peripheral nervous system, PNS)是指除脑和脊髓以外的所有遍布全身各处的神经,包括神经节、神经干、神经丛及神经终末装置。它联络中枢神经与其他器官,进行信号传递。根据发出的部位不同,周围神经可分为连于脑的12对颅神经和连与脊髓的3l对脊神经。和中枢神经相比,周围神经由于结构纤细走行复杂,与周围组织结构不宜分辨,难以利用常规影像学检查方法获得满意的图像。因此目前诊断周围神经系统疾病的主要是依靠临床病史、体格检查和电生理检查的数据,虽然利用神经传导研究评价周围神经病变是可靠、敏感的,不过此研究仍有一定的局限性,尤其是对于神经病变部位的定量分析及准确定位方面的效果不尽人意。核磁共振扩散张量成像(diffusion tensor imaging, DTI)是在弥散加权成像基础进一步上发展而来的影像检查方法,利用水分子运动的各向异性进行成像,从而能精确地显示神经纤维内部的细微结构。通过DTI技术获得的各向异性分数(fractional anisotropy, FA)、表观扩散系数(apparent diffusion coefficient, ADC)等量化数据能够进行定量的评价神经纤维束的病理生理改变及结构形态的特点。自1996年首次实现人脑弥散张量成像以来,DTI经常应用于脑功能成像、中枢神经系统疾病及脊髓病变等领域 [1] [2] [3] [4] [5] 。近年来,由于高场强磁共振的产生及后处理技术的不断完善,DTI技术逐渐应用于周围神经系统病变的研究,现就DTI技术在颅神经压迫综合征、腰椎间盘突出症、肿瘤的定位及神经损伤修复等方面进行综述。

2. 周围神经DTI扫描技术简介

周围神经较纤细,感兴趣区域(region of interest, ROI)并且容易受到磁敏感伪影、运动伪影等因素而影响成像,因此选择适合的扫描技术成为得到满意神经图像的关键因素之一。DTI成像的扫描技术主要包括:单次激发平面回波成像(echo-planar imaging, EPI)、线阵扫描弥散成像(line scarl diffusion imaging, LSDI)、导航自旋回波弥散加权成像及半傅立叶探测单发射快速自旋回波成像等 [6] [7] 。EPI技术扫描优点是时间短,图像信噪比高,缺点是容易出现几何变形及化学位移伪影。LSDI技术图像质量较高,因为其很少几何失真,磁敏感伪影及化学移位伪影也很少存在,缺点是扫描时间较长。单次激发快速自旋回波成像(single, shot echo-planar imaging, SSEPI)技术空间分辨率不高,但是优点是可以缩短采集时间和恢复时间(echo time, TE),并且能降低磁敏感伪影和运动伪影,因此,SSEPI技术更多的应用于周围神经系统成像 [8] 。另外,在DTI参数中b值大小的设置也具有重要的意义。虽然选取较高的b值能增加组织内水分子的扩散权重,但随之造成图像的信噪比的降低,此时易产生部分容积效应,产生人为误差。国内外学者在研究不同部位的神经时对b值的选取不尽相同,对于腰神经根及臂丛等较粗大的纤维,b值的取值范围约在900~1000 s/mm2,而对于三叉神经和正中神经等较细小的神经,b值的取值范围约为900~1200 s/mm2 [9] - [14] 。

3. 利用DTI技术对正常人周围神经研究

由于周围神经结构的差异和DTI设置参数不一致等各种复杂因素的影响,获得的周围神经ADC值、FA值差别较大,目前尚未出现统一的标准对其进行标准的定量评定 [15] [16] [17] [18] [19] 。研究表明 [15] [16] [17] [18] 在不同性别之间神经纤维束的相关参数无差异,周围神经纤维的FA值随着年龄的增长逐渐减低,ADC值随着年龄的增长逐渐升高,同一健康个体的左右周围神经的DTI参数值无差异,在对腰神经根及的臂丛的测量评定中,不同层面神经根的DTI相关参数值无统计学差异,和末梢神经相比,神经根的FA值要低,这可能是由于神经根和末梢神经不同的生理结构所致。神经内膜是一层疏松结缔组织,具有支持、保护神经中的神经纤维之功能。神经内膜含有胶原蛋白,而外周神经内膜中的胶原蛋白要比脊神经根丰富。相比之下,脊神经根结构较简单,无束膜,并且缺少发达的神经外膜,同一神经纤维束在其不同的走行区域的FA值及ADC值会存在差异。例如走行在即腕管水平和走行在远端腕关节层面的正中神经FA值或ADC值常存在一定差异。对于这种差异,Goga等 [19] 指出正中神经在腕管层面走行时,此部位的解剖结构较复杂,组织结构较紧密,因此组织外间隙较小,导致走行在此的正中神经纤维密度指数高于其它部位,纤维束内的水分子弥散运动受限。所以走行于组织结构紧密处的神经纤维与走行于其它部位的同一神经纤维相比的,FA值会降低,相应伴有ADC值的升高,这是纤维束生理性受压后,其内水分子弥散受限的表现。

4. DTI技术对周围神经系统疾病的研究

4.1. DTI技术对腰椎间盘突出症的研究

腰椎间盘突出症是以坐骨神经痛及腰腿痛为主要表现的疾病,是骨科的常见病、多发病。常规MRI检查是诊断椎间盘突出症最常用的工具,主要表现为硬膜囊局部或者神经根受压 [1] 。常规MRI仅从宏观上评估神经根形态和信号的变化,而有时神经根损伤程度与患者临床症状和体征并不完全相符,部分患者临床症状的发生先于神经根受压 [20] 。DTI技术能清楚地显示活体组织的扩散特性,提供组织结构特征信息 [21] [22] [23] [24] 。利用DTI技术显示腰神经的研究目前还处于初步阶段。在一项包含19例椎间盘突出坐骨神经痛及19例正常志愿者的腰神经丛DTI研究 [21] ,采用1.5 T磁共振进行DTI定量测量及DTT腰神经丛神经纤维束重建,该研究报道病例组腰神经丛定量测量FA值出现显著下降,ADC值出现显著上升,病例组患侧FA值较健侧显著将低。该研究认为DTI可以发现常规MR显示正常的椎间盘相关腰腿放射痛、坐骨神经痛。在椎间孔狭窄的患者中,FA值显著低于正常神经根FA值 [22] 。有研究表明,腰椎间盘突出导致的受压神经根FA值约为0.18,而正常神经根约0.22,且受压侧显著低于正常侧,且无论是在1.5 T或3.0T MRI,受压神经根FA值显著降低 [21] [25] 。Eguchi等22在3T磁共振下对8例椎间盘突出单侧坐骨神经痛及8例正常志愿者的L3至S1腰骶神经丛DTI研究。该研究中定量测量病例组患侧FA值出现显著下降,ADC值出现显著上升,病例组患侧FA值较健侧显著将低。DTT神经纤维束重建显示,患侧神经根神经纤维束走行出现异常,包括稀疏、变细、中断及缺口等。常规磁共振下在椎间盘突出压迫神经根部显著的病例中,DTI测量神经根FA值及DTT重建神经纤维束均出现了显著异常。椎间盘突出患者腰神经的FA值比健康志愿者腰神经的FA值降低。研究已经表明,FA 值是评价微观组织变化的良好参数。研究等认为 [26] [27] [28] [29] 以下两点因素是造成FA值的改变的主要原因:1) 由于神经受到长期的慢性受压及压迫造成的慢性刺激局部缺血、髓鞘代谢障碍,继而引发的受压神经脱髓鞘改变;2) 神经受到的长期压迫造成的刺激会引发神经纤维无菌性炎症,促进有关炎性介质的释放,作用于周围组织的血管,造成神经水肿及静脉淤血。这些因素都会影响轴突正常的生理活动,而神经纤维中水分子运动的各向异性主要是依赖轴突及髓鞘的存在。ADC值反映水分子在各个方向上的平均扩散能力,其与水分子的扩散能力呈正相关,即ADC值越大,水分子运动的扩散能力越强,ADC值越小,水分子运动的扩散能力越弱。而ADC值升高。在腰椎间盘突出症患者中,有关ADC值的研究尚存在争议 [30] [31] [32] 。有研究认为受压神经根处ADC值明显升高,然而有研究发现受压神经根处ADC值相比正常侧无明显变化,同时发现ADC值与症状持续时间、疼痛评分等无相关性 [31] [32] 。在对神经根DTI参数进行测量时,为了减少部分容积效应造成的误差,可以选取某段纤维束的相关数值进行测量,此方法可以获得比较准确的数值。腰骶神经丛DTI研究还有许多有待进一步拓展的区域,在腰骶丛病变坐骨神经痛中不同节段的神经根FA值的变化,椎间盘压迫急慢性期神经根病变和FA值改变的相关性,病变恢复阶段FA值得变化,神经根减压术后病人神经根FA值的变化等,受压神经根损伤程度及其与临床症状相关性的评估,这些都有待于进一步研究。

4.2. DTI技术对神经损伤修复过程的研究

根据临床症状及体征,国内外很多学者都对损伤后神经功能进行过评估。部分学者利用背景信号抑制弥散加权成像序列(diffusion weighted imaging with background signal suppression, DWIBS)来显示臂丛神经损伤的部位及受累范围,由于采用了背景抑制技术,此技术能更好的能区分细小的神经及血管,但是对于损伤的神经,DWIBS技术难以进行定量的评 [33] 。Poretti等 [34] 利用DTI动态观察正中神经损伤的患者,患者正中神经受伤后首次行DTI检查仅能观察到损伤后的正中神经近端,受伤2个月后,DTI能够显示出新生的神经纤维出现在正中神经损伤的远段。因此,利用DTI技术能观察神经的再生,与其他技术相比,此种方法无创并且能进行动态观察。Byun等 [35] 在坐骨神经损伤后的不同时间点利用DTI技术测量了FA值及ADC值,受损伤的坐骨神经纤维束在伤后3小时FA值大幅下降,之后又缓慢恢复,大约在3周后恢复到受伤前水平。受损伤的坐骨神经在伤后4天内可在显微镜下观察到脱髓鞘样改变及轴突的缺失,巨噬细胞和髓鞘的碎片在随后的修复的过程中逐渐减少,到损伤后的第12周恢复正常。FA值的变化与轴突的受损和再生修复具有相关性,而且神经FA值与髓鞘的厚度及密度、轴突的直径及密度有关,其中与轴突的直径及密度的关系更加密切。Toro等 [36] 研究发现FA值在神经损伤后发生脱髓鞘改变时降低,但受损神经进行修复过程中增高。不过,尚未进行相关体内实验并证实FA值是否可以作为预测神经损伤后恢复的相关指标。

5. 问题与展望

DTI作为MR成像的一项新技术,应用于周围神经系统损伤疾病诊断的历史较短,但就目前的成像技术来看,DTI技术是唯一一个可以在活体内无创的、直观的对纤维束进行成像的影像学方法,产生的图像除了可以准确的显示纤维束的走行,同时也可间接对神经束病变的病理生理学改变进行评价,用以对I临床诊断进行辅助。但目前DTI参数在国内外没有进行统一的标准化,国内外学者对DTI参数与受损周围神经的病理改变之间关系也持有不同的观点。今后关于神经纤维FA值、ADC值变化的临床意义、病理机制及与预后评价的相关研究将是神经病学与影像学研究的重要领域。

文章引用

朱安妮,伍伟飞. 磁共振扩散张量成像在外周神经系统疾病中应用的研究进展
Application of Magnetic Resonance Diffusion Tensor Imaging in Peripheral Nervous System Diseases[J]. 临床医学进展, 2017, 07(04): 242-247. http://dx.doi.org/10.12677/ACM.2017.74040

参考文献 (References)

  1. 1. Brayda-Bruno, M., Tibiletti, M., Ito, K., Fairbank, J., Galbusera, F., et al. (2014) Advances in the Diagnosis of Degen-erated Lumbar Discs and Their Possible Clinical Application. European Spine Journal, 23, 315-323. https://doi.org/10.1007/s00586-013-2960-9

  2. 2. Bohlken, M.M., Mandl, R.C., Brouwer, R.M., van den Heuvel, M.P., Hedman, A.M., et al. (2014) Heritability of Structural Brain Network Topology: A DTI Study of 156 Twins. Human Brain Mapping. https://doi.org/10.1002/hbm.22550

  3. 3. Li, X.H., Li, J.B., He, X.J., Wang, F., Huang, S.L., et al. (2015) Timing of Diffusion Tensor Imaging in the Acute Spinal Cord Injury of Rats. Scientific Reports, 5, 12639. https://doi.org/10.1038/srep12639

  4. 4. Rajasekaran, S., Kanna, R.M. and Shetty, A.P. (2012) Diffusion Tensor Imaging of the Spinal Cord and Its Clinical Applications. The Journal of Bone and Joint Surgery. British Volume, 94, 1024-1031. https://doi.org/10.1302/0301-620X.94B8.29618

  5. 5. Yang, E., Nucifora, P.G. and Melhem, E.R. (2011) Diffusion MR Imaging: Basic Principles. Neuroimaging Clinics of North America, 21, 1-25. https://doi.org/10.1016/j.nic.2011.02.001

  6. 6. Hilbert, F., Wech, T., Neubauer, H., Veldhoen, S., Bley, T.A., et al. (2017) Comparison of Turbo Spin Echo and Echo Planar Imaging for Intravoxel Incoherent Motion and Diffusion Tensor Imaging of the Kidney at 3Tesla. Zeitschrift für Medizinische Physik, 27, 193-201. https://doi.org/10.1016/j.zemedi.2016.12.001

  7. 7. Hori, M., Aoki, S., Okubo, T., Ishigame, K., Kumagai, H., et al. (2005) Line-Scan Diffusion Tensor MR Imaging at 0.2 T: Feasibility Study. Journal of Magnetic Resonance Imaging, 22, 794-798. https://doi.org/10.1002/jmri.20440

  8. 8. Nana, R., Zhao, T. and Hu, X. (2008) Single-Shot Multiecho Parallel Echo-Planar Imaging (EPI) for Diffusion Tensor Imaging (DTI) with Improved Signal-to-Noise Ratio (SNR) and Reduced Distortion. Magnetic Resonance in Medicine, 60, 1512-1517. https://doi.org/10.1002/mrm.21770

  9. 9. Farquharson, S., Tournier, J.D., Calamante, F., Fabinyi, G., Schneider, G.D., et al. (2013) White Matter Fiber Tractography: Why We Need to Move beyond DTI. Journal of Neurosurgery, 6, 1367-1377.

  10. 10. Fernandez, J.C., Pathak, S., Engh, J., Jarbo, K., Verstynen, T., et al. (2012) High-Definition Fiber Tractography of the Human Brain: Neuroanatomical Validation and Neurosurgical Applications. Neurosurgery, 71, 430-453. https://doi.org/10.1227/NEU.0b013e3182592faa

  11. 11. Sweet, J.A., Walter, B.L., Gunalan, K., Chaturvedi, A., McIntyre, C.C., et al. (2014) Fiber Tractoography of the Axonal Pathways Linking the Basal Ganglia and Cerebellum in Parkinson Disease: Implications for Targeting in Deep Brain Stimulation. Journal of Neurosurgery, 120, 988-996. https://doi.org/10.3171/2013.12.JNS131537

  12. 12. Baur, V., Brühl, A.B., Herwig, U., Eberle, T., Rufer, M., et al. (2013) Evidence of Frontotemporal Structural Hypoconnectivity in Social Anxiety Disorder: A Quantitative Fiber Trac-tography Study. Human Brain Mapping, 34, 437-446. https://doi.org/10.1002/hbm.21447

  13. 13. Brienza, M., Pujia, F., Colaiacomo, M.C., Anastasio, M.G., Pierelli, F., et al. (2014) 3T Diffusion Tensor Imaging and Electroneurography of peripheral Nerve: A Morphofunctional Analysis in Carpal Tunnel Syndrome. Journal of Neuroradiology Journal de Neuroradiologie, 41, 124-130. https://doi.org/10.1016/j.neurad.2013.06.001

  14. 14. Sakai, T., Miyagi, R., Yamabe, E., Fujinaga, Y., Bhatia N, N., et al. (2014) Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation. The journal of Medical Investigation: JMI, 61, 197-203. https://doi.org/10.2152/jmi.61.197

  15. 15. Sridharan, A., Bendlin, B.B., Gallagher, C.L., Oh, J.M., Willette, A.A., et al. (2014) Effect of Age and Calorie Restriction on Corpus Callosal Integrity in Rhesus Macaques: A Fibert-Ractography Study. Neuroscience Letters, 21, 38-42. https://doi.org/10.1016/j.neulet.2014.03.047

  16. 16. Kuhnt, D., Bauer, M.H., Egger, J., Richter, M., Kapur, T., et al. (2013) Fiber Tractography Based on Diffusion Tensor Imaging Compared with High-Angular-Resolution Diffusion Imaging with Compressed Sensing: Initial Experience. Neurosurgery, 73, 165-175.

  17. 17. Miyagi, R., Sakai, T., Yamabe, E. and Yoshioka, H. (2015) Consecutive Assessment of FA and ADC Values of Normal Lumbar Nerve Roots from the Junction of the Dura Mater. BMC Musculoskeletal Disorders, 16, 156. https://doi.org/10.1186/s12891-015-0576-4

  18. 18. Li, X., Chen, J., Hong, G., Sun, C., Wu, X., et al. (2013) In Vivo DTI Longitudinal Measurements of Acute Sciatic Nerve Traction Injury and the Association with Pathological and Functional Changes. European Journal of Radiology, 82, 707-714. https://doi.org/10.1016/j.ejrad.2013.07.018

  19. 19. Cristina, G., Zeynep, F., Klara, B. and Florian, I.S. (2014) Meyer’s Loop Anatomy Demonstrated Using Diffusion Tensor MR Imaging and Fiber Tractography at 3T. Acta Medica Marisiensis, 60, 215-222.

  20. 20. Mostofi, K. and Karimi Khouzani, R. (2015) Reliability of the Path of the Sciatic Nerve, Congruence between Patients' History and Medical Imaging Evidence of Disc Herniation and Its Role in Surgical Decision Making. Asian Spine Journal, 9, 200-204. https://doi.org/10.4184/asj.2015.9.2.200

  21. 21. Balbi, V., Budzik, J.F., Duhamel, A., Bera-Louville, A., Le Thuc, V., et al. (2011) Tractography of Lumbar Nerve Roots: Initial Results. European Radiology, 21, 1153-1159. https://doi.org/10.1007/s00330-010-2049-3

  22. 22. Eguchi, Y., Ohtori, S., Orita, S., Kamoda, H., Arai, G., et al. (2011) Quantitative Evaluation and Visualization of Lumbar Foraminal Nerve Root Entrapment by Using Diffusion Tensor Imaging: Preliminary Results. American Journal of Neuroradiology, 32, 1824-1829. https://doi.org/10.3174/ajnr.A2681

  23. 23. Li, J., Wang, Y., Wang, Y., Lv, Y. and Ma, L. (2016) Study on Lumbosacral Nerve Root Compression Using DTI. Biomedical Reports, 5, 353-356. https://doi.org/10.3892/br.2016.734

  24. 24. Kanamoto, H., Eguchi, Y., Suzuki, M., Oikawa, Y., Yamanaka, H., Tamai, H., Kobayashi, T., Orita, S., Yamauchi, K., Suzuki, M., et al. (2016) The Diagnosis of Double-Crush Lesion in the L5 Lumbar Nerve Using Diffusion Tensor Imaging. Spine Journal, 16, 315-321. https://doi.org/10.1016/j.spinee.2015.11.003

  25. 25. Dallaudiere, B., Lincot, J., Hess, A., Balbi, V., Cornelis, F., et al. (2014) Clinical Relevance of Diffusion Tensor Imaging Parameters in Lumbar Disco-Radicular Conflict. Diagnostic and Interventional Imaging, 95, 63-68. https://doi.org/10.1016/j.diii.2013.08.019

  26. 26. Sasiadek, M.J., Szewczyk, P. and Bladowska, J. (2012) Application of Diffusion Tensor Imaging (DTI) in Pathological Changes of the Spinal Cord. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 18, 73-79. https://doi.org/10.12659/MSM.882891

  27. 27. Goh, S.Y., Irimia, A., Torgerson, C.M., Tubi, M.A., Real, C.R., et al. (2015) Longitudinal Quantification and Visualization of Intracerebral Haemorrhage Using Multimodal Magnetic Res-onance and Diffusion Tensor Imaging. Brain Injury, 29, 438-445. https://doi.org/10.3109/02699052.2014.989907

  28. 28. Chiang, C.Y., Sheu, M.L., Cheng, F.C., Chen, C.J., Su, H.L., et al. (2014) Comprehensive Analysis of Neurobehavior Associated with Histomorphological Alterations in a Chronic Constrictive Nerve Injury Model through Use of the CatWalk XT System. Journal of Neurosurgery, 120, 250-262. https://doi.org/10.3171/2013.9.JNS13353

  29. 29. Li, J., Wei, G.H., Huang, H., Lan, Y.P., Liu, B., et al. (2013) Nerve Injury-Related Autoimmunity Activation Leads to Chronic Inflammation and Chronic Neuropathic Pain. Anesthesiology, 118, 416-429. https://doi.org/10.1097/ALN.0b013e31827d4b82

  30. 30. Reinhold, M., Ederer, C., Henninger, B., et al. (2014) Dif-fusion-Weighted Magnetic Resonance Imaging for the Diagnosis of Patients with Lumbar Nerve Root Entrapment Syndromes: Results from a Pilot Study. European Spine Journal, 24, 319-326. https://doi.org/10.1007/s00586-014-3602-6

  31. 31. Li, C.T., Wang, Q.Z., Xiao, W.F., et al. (2014) 3.0T MRI Trac-tography of Lumbar Nerve Roots in Disc Herniation. Acta Radiologica, 55, 969-975. https://doi.org/10.1177/0284185113508179

  32. 32. Takashima, H., Takebayashi, T., Yoshimoto, M., et al. (2013) Efficacy of Diffusion-Weighted Magnetic Resonance Imaging in Diagnosing Spinal Root Disorders in Lumbar Disc Herniation. Spine, 38, 998-1002. https://doi.org/10.1097/BRS.0b013e31829862d3

  33. 33. 李新春, 陈健宇, 刘庆余, 等. 正常臂丛节后神经MR神经成像术[J]. 中国医学影像技术, 2004, 20(1): 105-107.

  34. 34. Poretti, A., Meoded, A., Rossi, A., Raybaud, C. and Huisman, T.A. (2013) Diffusion Tensor Imaging and Fiber Tractography in Brain Malformations. Pediatric Radiology, 43, 28-54. https://doi.org/10.1007/s00247-012-2428-9

  35. 35. Byun, W.M., Jang, H.W. and Kim, S.W. (2012) Three-Dimensional Magnetic Resonance Rendering Imaging of Lumbosacral Radiculography in the Diagnosis of Symptomatic Extraforaminal Disc Herniation with or without Foraminal Extension. Spine, 37, 840-844. https://doi.org/10.1097/BRS.0b013e3182374465

  36. 36. Toro, J., Díaz, C., Reyes, S., Jeanneret, V. and Burbano, L.E. (2014) Superficial Siderosis Related to a Thoracic Disc Herniation with Associated Dural Injury. CNS Neuroscience & Therapeutics, 20, 469-472. https://doi.org/10.1111/cns.12253

  37. NOTES

    *通讯作者。

期刊菜单