Advances in Applied Mathematics
Vol. 07  No. 12 ( 2018 ), Article ID: 27982 , 9 pages
10.12677/AAM.2018.712177

Zero Product Problem of Block Toeplitz Operator in Vector Value Bergman Space

Nan Zhang, Yin Guan, Wei Shang

Department of Mathematics, Liaoning Normal University, Dalian Liaoning

Received: Nov. 16th, 2018; accepted: Dec. 6th, 2018; published: Dec. 13th, 2018

ABSTRACT

We give a necessary and sufficient condition for the block Toeplitz operator on vector value Bergman space, where F is the bounded vector value function of general nature, G is harmonic polynomial.

Keywords:Vector Value Bergman Spaces, Block Toeplitz Operator, Zero Product, Mellin Transform

向量值Bergman空间上块Toeplitz算子 的零积问题

张楠,关印,尚巍

辽宁师范大学数学学院,辽宁 大连

收稿日期:2018年11月16日;录用日期:2018年12月6日;发布日期:2018年12月13日

摘 要

本文给出了向量值Bergman空间上块Toeplitz算子TFTG = 0的一个充分必要条件,其中F为一般本性有界向量值函数,G为调和多项式。

关键词 :向量值Bergman空间,块Toeplitz算子,零积,Mellin变换

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

记IN为自然数集,Z为整数集。定义D是复平面C上的开单位圆盘。dA表示D上正规化的面积测度,即

d A ( z ) = r π d r d θ = 1 π d x d y .

L 2 ( D , d A ) 是D上关于dA平方可积的函数全体构成的Hilbert空间,可表示为:

L 2 ( D , d A ) = { f : D | f ( z ) | 2 d A ( z ) < + } ,

对任意的 f , g L 2 ( D , d A ) L 2 ( D , d A ) 空间中内积为:

f , g = D f ( z ) g ( z ) ¯ d A ( z ) .

Bergman空间 L a 2 ( D , d A ) L 2 ( D , d A ) 上由全体解析函数构成的闭子空间。定义D上由关于dA的本性有界可测函数全体构成的Banach空间为 L ( D , d A ) ,P是从 L 2 ( D , d A ) L a 2 ( D , d A ) 上的正交射影,则有

( P f ) ( z ) = f , K z = D f ( w ) K z ( w ) ¯ d A ( w ) ,

K z ( w ) = 1 ( 1 z ¯ w ) 2 ( z , w D ) L a 2 ( D , d A ) 的再生核,令 k z ( w ) = K z ( w ) K z 为正规化的再生核。

定义1.1:设 λ L ( D,dA ) ,以 λ 为符号的Toeplitz算子定义如下:

T λ f = P ( λ f ) , f L a 2 ( d , d A ) .

说明:设 λ , μ L ( D , d A ) ,则Toeplitz算子具有以下性质:

1) a , b C T a λ + b μ = a T λ + b T μ

2) T f = T f ¯

M n × n 为C上的 n × n 矩阵的全体。定义 L 2 ( D , C n ) = L 2 ( D , d A ) C n 为D上关于dA平方可积的向量值函数空间。 L a 2 ( D , C n ) = L a 2 ( D , d A ) C n 为D上的向量值Bergman空间,其中“ ”为Hilbert张量积。以 Ψ ( z ) L ( D , d A ) M n × n 为符号的Toeplitz算子定义为

T Ψ h = P L a 2 ( D , C n ) ( Ψ h ) , h L a 2 ( D , C n ) ,

其中 P L a 2 ( D , C n ) 是从 L 2 ( D , C n ) L a 2 ( D , C n ) 的正交射影。

”表示直和 L ( D , C n ) = L ( D , d A ) L ( D , d A ) L a 2 ( D , C n ) = L a 2 ( D , d A ) L a 2 ( D , d A ) ,那么块Toeplitz T Ψ 有下列矩阵表示:

T Ψ = [ T Ψ 11 T Ψ 1 n T Ψ n 1 T Ψ n n ] ,

其中

Ψ = [ ψ 11 ψ 1 n ψ n 1 ψ n n ] .

块Toeplitz算子和块Toeplitz算子的截断行列式存在于在数学和物理学的各个分支中,并有着重要的应用,尤其是在量子力学的理论研究中。例如,经典的二聚体模型 [1] 和不相交行走模型 [2] 的研究应用了块Toeplitz算子的截断行列式理论;盖尔芬德迪基层次的研究 [3] 应用了块算子理论等。

Brown与Halmos证明在单位圆周上的Hardy空间上,若有 T f T g = 0 ,则符号f或g必定有一个为零 [4] 。1984年,美国数学家Axler访问四川大学时提出一个问题,若Hardy空间上n个Toeplitz算子的乘积为零,是否必定有其中一个为零? 1994年,郭坤宇 [5] 证明了 n = 5 时结论是对的。Gu证明结论对于 n = 6 也对 [6] 。 n > 6 的情况后来也被解决 [7] 。Bergman空间上的函数论与Hardy空间不一样,因此Bergman空间上的算子理论与Hardy空间上的算子理论也不一样。即使在D上的Bergman空间上,有些看来非常简单的问题解决起来也很困难。例如具有有界调和函数符号的两个Toeplitz算子的乘积为零是否必有一个为零?这个问题就悬置了很长时间。直到2001年才由Ahern和Čučković解决并发表在文 [8] 中。文 [8] 证明了若f和g是有界调和函数,使得 T f T g = 0 ,则f或g恒等于零。近年来,许多学者开始研究多圆盘和单位球上的Bergman空间。例如,卢玉峰等 [9] [10] 分别研究了多圆盘和单位球Bergman空间上的有界Toeplitz和Hankel乘积。于涛和朱若卫研究了单位球向量值Bergman空间上的Toeplitz乘积有界的充要条件 [11] 。

本文通过Mellin变换研究Bergman空间上两个Toeplitz算子乘积的有限和为零问题,并以此为基础研究向量值Bergman空间上两个块Toeplitz算子的零积问题。

定义1.2:对 φ [ 0 , 1 ] 上的可积函数,可定义Mellin变换:

φ ^ ( z ) = 0 1 φ ( r ) r z 1 d r ,

此时,它是半平面 { z : Re z > 1 } 上的有界解析函数。其中 L 2 ( D , d A ) 可分解为:

L 2 ( D , d A ) = k Z e i k θ , = { u : D C : 0 1 r | u ( r ) | 2 d r < } ,

因此对任意 f L 2 ( D , d A ) ,都有

f ( r e i θ ) = k = f k ( r ) e i k θ , f k .

引理1.1 [8] :若 f L 2 ( D , d A ) ,对 z = R e i θ ,则可定义f的Berezin变换 B f

( B f ) ( z ) = f k z , k z = 2 ( 1 R 2 ) 2 k = R | k | [ n = 1 n ( n + | k | ) f ^ k ( 2 n + | k | ) R 2 ( n 1 ) ] e . i k θ

引理1.2 [12] :若 φ { z : Re z > 1 } 上的有界解析函数,若存在自然数序列 { n k } k = 0 使得

φ ^ ( n k ) = 0 k = 0 1 n k =

ϕ = 0.

2. Bergman空间上两个Toeplitz算子乘积的有限和

定理2.1:假设 f ( p ) L ( D , d A ) g ( p ) = α p z j + β p z ¯ l α p , β p C α p , β p C ,且满足

p = 1 N ( α p + β p ) f ( p ) = 0.

那么有 p = 1 N T f ( p ) T g ( p ) = 0 当且仅当 p = 1 N α p f ( p ) 0

证明:必要性。因为 p = 1 N T f ( p ) T g ( p ) = 0 ,所以

p = 1 N T f ( p ) T g ( p ) k w = 0.

g 1 ( p ) = α p z j g ¯ 2 ( p ) = β p z ¯ l 。由 T g ( p ) k w = g 1 ( p ) k w + g ¯ 2 ( p ) ( w ) k w ( p = 1 , 2 , , N ) ,有

0 = p = 1 N T f ( p ) T g ( p ) k w , k w = p = 1 N T f ( p ) T g ( p ) k w , k w = p = 1 N ( T f ( p ) T g 1 ( p ) k w , k w + T f ( p ) T g ¯ 2 ( p ) k w , k w )

由引理1.1,上式可变成

p = 1 N [ B ( f ( p ) g 1 ( p ) ) ( w ) + g 2 ( p ) ( w ) ¯ B f ( p ) ( w ) ] = 0 ,

p = 1 N B ( f ( p ) g 1 ( p ) ) = p = 1 N g ¯ 2 ( p ) ( B f ( p ) ) . (1)

由引理1.1得

p = 1 N B ( f ( p ) g 1 ( p ) ) = 2 ( 1 R 2 ) 2 k = R | k | [ n = 1 n ( n + | k | ) R 2 n 2 p = 1 N α p ( r j f ^ k j ( p ) ( r ) ) ( 2 n + | k | ) ] e i k θ = 2 ( 1 R 2 ) 2 k = R | k | [ n = 1 n ( n + | k | ) R 2 n 2 p = 1 N α p f ^ k j ( p ) ( 2 n + | k | + j ) ] e . i k θ

再次运用引理1.1,

p = 1 N g ¯ 2 ( p ) B f ( p ) = 2 β ( 1 R 2 ) 2 k = R | k | [ n = 1 n ( n + | k | ) R 2 n + l 2 p = 1 N β p f ^ k ( p ) ( 2 n + | k | ) ] e i ( k l ) θ = 2 β ( 1 R 2 ) 2 k = R | k + l | [ n = 1 n ( n + | k + l | ) R 2 n + l 2 p = 1 N β p f ^ k + l ( p ) ( 2 n + | k + l | ) ] e . i k θ

对比式(1)两边 e i k θ 的系数,得

R | k | [ n = 1 n ( n + | k | ) p = 1 N α p f ^ k j ( p ) ( 2 n + | k | + j ) ] R 2 n 2 = R | k + l | [ n = 1 n ( n + | k + l | ) p = 1 N β p f ^ k + l ( p ) ( 2 n + | k + l | ) ] R 2 n + l 2 (2)

k I N 都成立。

k 0 时,式(2)变成

n = 1 n ( n + k ) p = 1 N α p f ^ k j ( p ) ( 2 n + k + j ) R 2 n 2 = n = 1 n ( n + k + l ) p = 1 N β p f ^ k + l ( p ) ( 2 n + k + l ) R 2 n + 2 l 2

n l 代n,等式右边变成

n = l + 1 ( n l ) ( n + k ) p = 1 N β p f ^ k + l ( p ) ( 2 n + k l ) R 2 n 2 ,

上式两边都是关于 0 R 1 的函数,故当 n l + 1 时,对 k 0

n p = 1 N α p f ^ k j ( p ) ( 2 n + k + j ) = ( n l ) p = 1 N β p f ^ k + l ( p ) ( 2 n + k l ) .

因此有界解析函数 ( z l ) p = 1 N β p f ^ k + l ( p ) ( 2 z + k l ) + z p = 1 N α p f ^ k j ( p ) ( 2 z + k + j ) 在几何级数 { l + 1 , l + 2 , } 上为零,由引理1.2,进而在 { z : Re z > 1 } 上等于零,所以有

( z l ) p = 1 N β p f ^ k + l ( p ) ( 2 z + k l ) = z p = 1 N α p f ^ k j ( p ) ( 2 z + k + j ) (3)

k 0 , Re z > 1 成立。

Re z > 1 , k 0 ,则有下面的等式成立:

( z l ) ( z l + ( j + l ) ) ( z l + m ( j + l ) ) p = 1 N β p f ^ k + l + m ( j + l ) ( p ) ( 2 z + k l + m ( j + l ) ) = z ( z + j + l ) ( z + m ( j + l ) ) p = 1 N α p f ^ k j ( p ) ( 2 ( z + m ( j + l ) ) + k + j ) (4)

证明:假设m时成立,下证 m + 1 时成立。

( z l ) ( z l + ( j + l ) ) ( z l + ( m + 1 ) ( j + l ) ) p = 1 N β p f ^ k + l + m ( j + l ) + j + l ( p ) ( 2 z + k l + ( m + 1 ) ( j + l ) )

k = k + j + l ,此时有

= ( z l + ( m + 1 ) ( j + l ) ) ( z l ) ( z l + ( j + l ) ) ( z l + m ( j + l ) ) p = 1 N β p f ^ k + l + m ( j + l ) ( p ) ( 2 z + k l + m ( j + l ) )

由归纳假设, k > 0 ,得到

= z ( z + j + l ) ( z + m ( j + l ) ) ( z + ( m + 1 ) ( j + l ) l ) p = 1 N α p f ^ k j ( p ) ( 2 ( z + m ( j + l ) ) + k + j ) = z ( z + j + l ) ( z + m ( j + l ) ) ( z + ( m + 1 ) ( j + l ) l ) p = 1 N α p f ^ k + l ( p ) ( 2 ( z + m ( j + l ) ) + k + 2 j + l ) (5)

因为 p = 1 N ( α p + β p ) f ( p ) = 0 ,所以(5)式等于

z ( z + j + l ) ( z + m ( j + l ) ) ( z + ( m + 1 ) ( j + l ) l ) p = 1 N β p f ^ k + l ( p ) ( 2 ( z + m ( j + l ) ) + k + 2 j + l )

作变量替换, z = z + ( m + 1 ) ( j + l ) ,此时上式变形为

= z ( z + j + l ) ( z + m ( j + l ) ) ( z l ) p = 1 N β p f ^ k + l ( p ) ( 2 z + k l )

运用(3), Re z > 1 ,得到

= z ( z + j + l ) ( z + m ( j + l ) ) ( z + ( m + 1 ) ( j + l ) ) p = 1 N α p f ^ k j ( p ) ( 2 ( z + ( m + 1 ) ( j + l ) ) + k + j )

证毕。

在(4)式中令 z = l ,有

p = 1 N α p f ^ k j ( p ) ( 2 m ( j + l ) + k + j + 2 l ) = 0.

对任意自然数m成立, k 0 。固定非负整数k, p = 1 N α p f ^ k j ( p ) ( z ) 在几何级数上为零,由引理1.2,故恒为零。于是得到

p = 1 N α p f k j ( p ) ( r ) = 0 ,

即对任意 k 0 ,有 p = 1 N α p f j ( p ) , p = 1 N α p f j + 1 ( p ) , , p = 1 N α p f 0 ( p ) , p = 1 N α p f 1 ( p ) , 都为零。

l k < 0 时,此时(2)式为

n = 1 n ( n k ) p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) R 2 n k 2 = n = 1 n ( n + k + l ) p = 1 N β p f ^ k + l ( p ) ( 2 n + k + l ) R 2 n + k + 2 l 2 , (6)

n + k + l 等替换上式(6)式中的n,得

= n = k + l + 1 n ( n k l ) p = 1 N β p f ^ k + l ( p ) ( 2 n k l ) R 2 n k 2 .

对比(6)式左右两端关于R的系数得当 n k + l + 1 时,

( n k ) p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) = ( n k l ) p = 1 N β p f ^ k + l ( p ) ( 2 n k l ) ,

整理得

p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) = n k l n k p = 1 N β p f ^ k + l ( p ) ( 2 n k l ) .

又由 p = 1 N ( α p + β p ) f ( p ) = 0 ,得到

p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) = n k l n k p = 1 N α p f ^ k + l ( p ) ( 2 n k l ) ,

又因为 k + l 0 ,运用 k 0 时的结论得, p = 1 N α p f l j ( p ) , p = 1 N α p f l j + 1 ( p ) , 为零。

2 l k < l 时,此时式(2)为

n = 1 n ( n k ) p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) R 2 n k 2 = n = 1 n ( n k l ) p = 1 N β p f ^ k + l ( p ) ( 2 n k l ) R 2 n k 2 .

于是得到当 n 1 时,有

( n k ) p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) = ( n k l ) p = 1 N β p f ^ k + l ( p ) ( 2 n k l ) ,

再次运用 p = 1 N ( α p + β p ) f ( p ) = 0 ,有

p = 1 N α p f ^ k j ( p ) ( 2 n k + j ) = n k l n k p = 1 N β p f ^ k + l ( p ) ( 2 n k l ) = n k l n k p = 1 N α p f ^ k + l ( p ) ( 2 n k l ) .

运用 l k < 0 时, p = 1 N α p f k + l ( p ) 0 ,得 p = 1 N α p f 2 l j ( p ) , p = 1 N α f 2 l j + 1 ( p ) , 为零。

如此循环下去,

p = 1 N α p f k ( p ) = 0 ( k Z ) .

进而

p = 1 N α p f ( p ) ( z ) 0.

充分性。因为 p = 1 N α p f ( p ) = 0 ,由 p = 1 N ( α p + β p ) f ( p ) = 0 ,得到 p = 1 N β p f ( p ) = 0 。那么有

p = 1 N T f ( p ) T g ( p ) = p = 1 N T f ( p ) T α p z j + β p z ¯ l .

由Toeplitz算子的性质,等式右边变为

p = 1 N T f ( p ) ( T α p z j + T β p z ¯ l ) ,

p = 1 N ( T f ( p ) T α p z j + T f ( p ) T β p z ¯ l ) = p = 1 N ( α p T f ( p ) T z j + β p T f ( p ) T z ¯ l ) = p = 1 N ( T α p f ( p ) T z j + T β p f ( p ) T z ¯ l ) = T p = 1 N α p f ( p ) T z j + T p = 1 N β p f ( p ) T z ¯ l = 0.

所以 p = 1 N T f ( p ) T g ( p ) = 0

3. 向量值Bergman空间上两个块Toeplitz算子的零积

定理3.1:假设 F = ( f p q ) N × N L ( D , d A ) M N × N G = ( δ p q ) N × N = A z j + B z ¯ l ,其中 A = ( α p q ) N × N M N × N B = ( β p q ) N × N M N × N α p q , β p q C j , l I N ,且满足

( A + B ) F = 0.

那么则有 T F T G = 0 当且仅当 A F = 0 ( A 表示矩阵A的转置)。

证明:必要性。由

F = [ f 11 f 12 f 1 N f 21 f 22 f 2 N f N 1 f N 2 f N N ] , G = [ δ 11 δ 12 δ 1 N δ 21 δ 22 δ 2 N δ N 1 δ N 2 δ N N ] ,

T F = [ T f 11 T f 12 T f 1 N T f 21 T f 22 T 2 N T f N 1 T f N 2 T f N N ] , T G = [ T δ 11 T δ 12 T δ 1 N T δ 21 T δ 22 T δ 2 N T δ N 1 T δ N 2 T δ N N ] ,

于是有

T F T G = [ T f 11 T f 12 T f 1 N T f 21 T f 22 T 2 N T f N 1 T f N 2 T f N N ] [ T δ 11 T δ 12 T δ 1 N T δ 21 T δ 22 T δ 2 N T δ N 1 T δ N 2 T δ N N ] = [ T f 11 T δ 11 + T f 12 T δ 21 + + T f 1 N T δ N 1 T f 11 T δ 1 N + T f 12 T δ 2 N + + T f 1 N T δ N N T f N 1 T δ 11 + T f N 2 T δ 21 + + T f N N T δ N 1 T f N 1 T δ 1 N + T f N 2 T δ 2 N + + T f N N T δ N N ] = 0.

进而,对 1 p , q N ,有

m = 1 N T f p m T δ m q = 0.

( A + B ) F = 0 ,得 m = 1 N ( α q m + β q m ) f m p = 0 ( 1 p , q N ) ,运用定理1.1的结论得

m = 1 N α q m f m p = 0

1 p , q N 成立。即

A F = 0.

充分性。由 ( A + B ) F = 0 ,得 m = 1 N ( α q m + β q m ) f m p = 0 ( 1 p , q N ) ,又 A F = 0 ,得到

m = 1 N α q m f m p = 0 , m = 1 N β q m f m p = 0 .

于是

m = 1 N T f m p T δ q m = m = 1 N T f m p ( T α q m z j + β q m z ¯ l ) = m = 1 N T α m q f m p T z j + T β m q f m p T z ¯ l = T m = 1 N α m q f m p T z j + T m = 1 N β m q f m p T z ¯ l = 0.

所以

( T F T G ) = 0 ,

T F T G = 0 ,定理证毕。

文章引用

张 楠,关 印,尚 巍. 向量值Bergman空间上块Toeplitz算子的零积问题
Zero Product Problem of Block Toeplitz Operator in Vector Value Bergman Space[J]. 应用数学进展, 2018, 07(12): 1521-1529. https://doi.org/10.12677/AAM.2018.712177

参考文献

  1. 1. Basor, E.L. and Ehrhardt, T. (2007) Asymptotics of Block Toeplitz Determinants and the Classical Dimer Model. Communications in Mathematical Physics, 274, 427-455. https://doi.org/10.1007/s00220-007-0276-5

  2. 2. Hikami, K. and Imamura, T. (2003) Vicious Walkers and Hook Young Tableaux. Journal of Physics A: Mathematical and General, 36, 3033-3048. https://doi.org/10.1088/0305-4470/36/12/311

  3. 3. Cafasso, M. (2008) Block Toeplitz Determinants, Constrained KP and Gelfand-Dickey Hierarchies. Mathematical Physics Analysis and Geometry, 11, 11-51. https://doi.org/10.1007/s11040-008-9038-7

  4. 4. Brown, A. and Halmos, P.R. (1964) Algebraic Properties of Toeplitz Operators. Journal für die reine und Angewandte Mathematik, 213, 89-102.

  5. 5. Guo, K. (1996) A Problem on Products of Toeplitz Operators. Proceedings of the American Mathematical Society, 124, 869-871. https://doi.org/10.1090/S0002-9939-96-03224-8

  6. 6. Gu, C. (2000) Products of Several Toeplitz Operators. Journal of Functional Analysis, 171, 483-527. https://doi.org/10.1006/jfan.1999.3547

  7. 7. Aleman, A. and Vukotic, D. (2009) Zero Products of Toeplitz Oper-ators. Duke Mathematical Journal, 148, 373-403. https://doi.org/10.1215/00127094-2009-029

  8. 8. Čučković, Ž. (2003) Berezin versus Mellin. Journal of Mathe-matical Analysis and Applications, 287, 234-243. https://doi.org/10.1016/S0022-247X(03)00546-8

  9. 9. Lu, Y.F. and Shang, S.X. (2009) Bounded Hankel Products on the Bergman Space of the Polydisk. Canadian Journal of Mathematics, 61, 190-204. https://doi.org/10.4153/CJM-2009-009-0

  10. 10. Lu, Y.F. and Liu, C.M. (2009) Toeplitz and Hankel Products on Bergman Spaces of the Unit Ball. Chinese Annals of Mathematics (Series B), 30, 293-310. https://doi.org/10.1007/s11401-007-0492-5

  11. 11. Yu, T. and Zhu, R.W. (2011) Toeplitz Products on Vector-Valued Bergman Spaces of the Unit Ball. Acta Mathematica Scientia, 31A, 1550-1558.

  12. 12. Remmert, R. (1998) Classical Topics in Complex Function Theory. Graduate Texts in Methematics. Springer, New York.

期刊菜单