Advances in Applied Mathematics
Vol. 10  No. 11 ( 2021 ), Article ID: 46326 , 9 pages
10.12677/AAM.2021.1011386

一类具P-Laplacian算子的分数阶奇异微分方程反周期边值问题解的存在性与唯一性

张婷婷,胡卫敏

伊犁师范大学数学与统计学院,新疆 伊宁

收稿日期:2021年10月5日;录用日期:2021年10月26日;发布日期:2021年11月8日

摘要

研究一类具 -Laplacian算子的分数阶微分方程奇异反周期边值问题,运用Krasnosel’skiis不动点定理及Banach压缩映像原理,证明了解的存在性与唯一性。

关键词

反周期边值条件,不动点定理,P-Laplacian算子,奇异

Existence and Uniqueness on Solutions for Anti-Periodic Boundary Value Problems of Singular Fractional Differential Equations with P-Laplacian Operator

Tingting Zhang, Weimin Hu

School of Mathematics and Statistic, Yili Normal University, Yining Xinjiang

Received: Oct. 5th, 2021; accepted: Oct. 26th, 2021; published: Nov. 8th, 2021

ABSTRACT

The existence and uniqueness of solutions about anti-periodic boundary value problems of singular fractional differential equations with P-Laplacian operator will be studied. I will apply Krasnosel’skiis fixed point theorem and Banach compression image principle, to carry out the existence and uniqueness upon the solution of the equation.

Keywords:Anti-Periodic Boundary Value Problems, Fixed Point Theorem, P-Laplacian Operator, Singular

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

分数阶微分方程作为一个重要的数学工具,具有良好的研究意义,其中反周期边值问题因在不少学科中起到了关键性作用,故引起了数学工作者浓厚的研究兴趣,并取得了一定的研究成果 [1] [2] [3] [4]。P-Laplacian算子在非牛顿流体力学、多孔介质湍流及非线性粘弹性力学等多领域起到重要作用。因此也引得大量学者对其进行研究 [5] [6] [7] [8] [9]。但很少有文献研究具P-Laplacian算子的分数阶奇异微分方程反周期边值问题,故文章是对该类问题的补充与完善。

文献 [8] 中研究了一类具P-Laplacian算子的非线性分数阶微分方程反周期边值问题

{ ( φ p ( D c 0 + α u ( t ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] ; u ( 0 ) = u ( T ) , D c 0 + β u ( 0 ) = D c 0 + β u ( T ) , (1)

解的存在性与唯一性,其中 1 < α 2 , 0 < β 1 , T > 0 φ p ( s ) = | s | p 2 s , φ p 1 = φ q ,其中 1 p + 1 q = 1 D c 0 + α 是标准的Caputo导数。

文献 [10] 研究了分数阶微分方程奇异边值问题

{ D 0 + α u ( t ) = f ( t , u ( t ) ) , 0 < t < 1 ; u ( 0 ) = u ( 0 ) = u ( 0 ) = u ( 1 ) = 0 , (2)

D 0 + α 是标准的Riemann-Liouville型分数阶导数, f : ( 0 , 1 ] × [ 0 , + ) [ 0 , + ) ,且f在 t = 0 处有奇性。

受上述文献启发,本文将研究如下具有P-Laplacian算子的奇异分数阶微分方程反周期边值问题

{ D c 0 + β ( φ p ( D c 0 + α u ( t ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] ; u ( 0 ) = u ( T ) , D c 0 + γ u ( 0 ) = D c 0 + γ u ( T ) , (3)

解的存在性与唯一性,其中 D c 0 + α , D c 0 + β D c 0 + γ 是Caputo型分数阶导数, 1 < α 2 , 0 < β 1 , 0 < γ 1 , T > 0 ,非线性项 f : ( 0 , T ] × [ 0 , + ) [ 0 , + ) ,并且 lim t 0 + f ( t , ) = + (即f在 t = 0 时是奇异的),并且满足存在实数 σ > 0 ,使得 t σ f : [ 0 , 1 ] × [ 0 , + ) [ 0 , + ) φ p ( s ) = | s | p 2 s , φ p 1 = φ q 1 p + 1 q = 1

2. 预备知识

定义1.1 [1] 函数 f : [ 0 , + ) R α > 0 阶分数阶积分是指

I 0 + α f ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s

其中右边是在 [ 0 , + ) 逐点定义的。

定义1.2 [1] 函数 f : [ 0 , + ) R α > 0 阶Caputo型分数阶微分是指

D c 0 + α f ( t ) = D 0 + α ( f ( t ) k = 0 n 1 f ( k ) ( 0 ) k ! t k )

其中右边是在 [ 0 , + ) 逐点定义的 n = [ α ] + 1 ,特别的,当 α = n 时, D c 0 + n f ( t ) = f n ( t )

引理1.1 [1] 设 α > 0 ,及 u [ 0 , 1 ] ,则 D c 0 + α I 0 + α u ( t ) = u ( t )

引理1.2 [1] 设 α > 0 D c 0 + α u ( t ) [ 0 , 1 ] L [ 0 , 1 ] ,则 D c 0 + α I 0 + α u ( t ) = u ( t ) + C 0 + C 1 t + + C n 1 t n 1 ,其中 C i R , i = 1 , 2 , , n , n = [ α ] + 1

引理1.3 [3] (Banach压缩映像原理)设E是Banach空间X的非空闭子集,如果映射T是E到其自身内的映像,它在E内满足Lipschit条件,即对任意 x , y E

T x T y l x y , ( 0 l 1 )

则必有唯一的 x E ,使得 T x = x ,即T在E上有唯一不动点。

引理1.4 [8] (Krasnosel’skiis不动点定理)设 Ω 为Banach空间X上的有界闭凸非空子集,其中有算子 Φ , Ψ 满足:1) Φ u + Ψ v Ω ,其中 u , v Ω ;2) 算子 Φ 是全连续的;3) 算子 Ψ 是压缩印象,则存在 z Ω ,使得 z = Φ z + Ψ z

引理1.5 [6] 如果 p > 2 ,并且 | x | , | y | M ,则对P-Laplacian算子 φ p ,下列不等式成立 | φ p ( x ) φ p ( y ) | ( p 1 ) M P 2 | x y |

引理1.6 假设 h : ( 0 , T ] R + 是连续函数, 1 < α 2 , 0 < β 1 ,则边值问题

{ D c 0 + β ( φ p ( D c 0 + α u ( t ) ) ) = f ( t , u ( t ) ) , t [ 0 , T ] ; u ( 0 ) = u ( T ) , D c 0 + γ u ( 0 ) = D c 0 + γ u ( T ) , (4)

有唯一解

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s + ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s

证明:由引理1.2,对方程两端进行 β 阶积分,有

φ p ( D c 0 + α u ( t ) ) = 1 Γ ( β ) 0 t ( t s ) β 1 h ( s ) d s a 0

由Caputo分数阶微分性质可知: D c 0 + β u ( 0 ) = 0 ,所以 a 0 = 0

对上式两边作用 φ p 的逆算子 φ q ,由P-Laplacian算子的性质,有 D c 0 + α u ( t ) = φ q ( 1 Γ ( β ) 0 t ( t s ) β 1 h ( s ) d s )

由引理1.1及引理1.2,对上式两边进行 α 阶积分,有

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s C 0 C 1 t

再由Caputo导数的性质,即 D c 0 + γ t r = Γ ( r + 1 ) Γ ( r + 1 γ ) t r γ ,有 D c 0 + γ C = 0

D c 0 + γ u ( t ) = 1 Γ ( α γ ) 0 t ( t s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s C 1 1 Γ ( 2 γ ) t 1 r

最后由边值条件 u ( 0 ) = u ( T ) , D c 0 + γ u ( 0 ) = D c 0 + γ u ( T ) ,有

C 0 = 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s T γ Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s

C 1 = T γ Γ ( 2 γ ) Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s

故有

u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s + T γ Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s t T γ 1 Γ ( 2 γ ) Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s

= 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s + ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 h ( τ ) d τ ) d s

3. 主要结果

定义 E = C ( ( 0 , T ] , R + ) ,则E是以 u = sup t J | u ( t ) | 为范数的Banach空间。

定义算子 F : E E 为:

F u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) d s 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) d s + ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) d s

在本节中,需附加以下条件来确保解的存在性与唯一性。

(H1) 对于实数 σ > 0 ,使得 t σ f ( t , u ( t ) ) [ 0 , T ] × [ 0 , + ) 上连续,并且存在常数 M 1 > 0 ,有 | t σ f ( t , u ( t ) ) | < M 1

(H2) 对任意 u ( t ) , v ( t ) E ,存在实数 M 2 > 0 ,有 | t σ f ( t , u ( t ) ) t σ f ( t , v ( t ) ) | M 2 sup t J | u v |

(H3) 记 η = M 2 Γ ( 1 σ ) ( q 1 ) ξ q 2 T α + β σ 2 Γ ( β σ + 1 ) [ 3 Γ ( α + 1 ) + Γ ( 2 γ ) T γ Γ ( α γ + 1 ) ] 1

(H4) 记 N = M 2 Γ ( 2 γ ) Γ ( 1 σ ) ( q 1 ) ξ q 2 T α + β σ 2 Γ ( α γ + 1 ) Γ ( β σ + 1 ) 1

为方便下文计算,我们 H ( t ) = φ q ( 1 Γ ( β ) 0 t ( t s ) β 1 f ( s , u ( s ) ) d s )

定理2.1 假如 1 < p < 2 ,若条件(H1)成立,则 H ( t ) = φ q ( 1 Γ ( β ) 0 t ( t s ) β 1 s σ s σ f ( s , u ( s ) ) d s ) [ 0 , T ] 上连续,且存在实数 L > 0 ,对任意 t [ 0 , T ] ,有 | H ( t ) | L

证明:由于 1 < p < 2 时,根据 1 p + 1 q = 1 ,可得 q > 2 ,并且有

1 Γ ( β ) 0 t ( t s ) β 1 s σ s σ f ( s , u ( s ) ) d s W Γ ( 1 σ ) Γ ( β σ + 1 ) : = ξ 1 .

则对 t , t 0 [ 0 , T ] | t t 0 | < δ ,有

| H ( t ) H ( t 0 ) | | φ q ( 1 Γ ( β ) 0 t ( t s ) β 1 s σ s σ f ( s , u ( s ) ) d s ) | φ q ( 1 Γ ( β ) 0 t 0 ( t 0 s ) β 1 s σ s σ f ( s , u ( s ) ) d s ) | M 1 Γ ( β ) ( q 1 ) ξ q 2 | 0 t 0 ( t 0 s ) β 1 s σ d s 0 t 0 ( t 0 s ) β 1 s σ d s | M 1 Γ ( β ) ( q 1 ) ξ q 2 B ( 1 σ , β ) | t β σ t 0 β σ | 0 , t t 0

| H ( t ) | [ 0 , 1 ] 上连续,故 | H ( t ) | L

定理2.2 若条件(H1)成立,根据定理2.1及引理1.3,可知边值问题(4)有唯一解。

证明:定义集合 Ω = { u E | u < r } ,这里 r = L T α 2 ( 3 Γ ( α γ + 1 + Γ ( 2 γ ) Γ ( α + 1 ) ) Γ ( α + 1 ) Γ ( α γ + 1 ) )

首先 F : Ω Ω 证明,对任意 u Ω ,有

F u ( t ) 1 Γ ( α ) 0 t ( t s ) α 1 | H ( S ) | d s + 1 2 Γ ( α ) 0 T ( T s ) α 1 | H ( S ) | d s + ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 | H ( s ) | d s L Γ ( α ) 0 t ( t s ) α 1 d s + L 2 Γ ( α ) 0 T ( T s ) α 1 d s + T γ Γ ( 2 γ ) L 2 Γ ( α γ ) 0 T ( T s ) α γ 1 d s L 2 T α [ 3 Γ ( α γ + 1 ) + Γ ( 2 γ ) Γ ( α + 1 ) Γ ( α + 1 ) Γ ( α γ + 1 ) ] r

F : Ω Ω ,故 F : Ω Ω 成立。

其次,对 u ( t ) , v ( t ) Ω ,当 t [ 0 , T ] 时,

| F u ( t ) F v ( t ) | 1 Γ ( α ) 0 t ( t s ) α 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , v ( τ ) ) d τ ) | d s + 1 2 Γ ( α ) 0 T ( T s ) α 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , v ( τ ) ) d τ ) | d s

+ T γ Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , v ( τ ) ) d τ ) | d s ( q 1 ) ξ q 2 Γ ( α ) Γ ( β ) 0 t ( t s ) α 1 | ( 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) ( 0 s ( s τ ) β 1 τ σ τ σ f ( τ , v ( τ ) ) d τ ) | d s + ( q 1 ) ξ q 2 2 Γ ( α ) Γ ( β ) 0 T ( T s ) α 1 | ( 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ )

( 0 s ( s τ ) β 1 τ σ τ σ f ( τ , v ( τ ) ) d τ ) | d s + ( q 1 ) ξ q 2 T γ Γ ( 2 γ ) 2 Γ ( α γ ) Γ ( β ) 0 T ( T s ) α γ 1 | ( 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) ( 0 s ( s τ ) β 1 τ σ τ σ f ( τ , v ( τ ) ) d τ ) d s M 2 Γ ( 1 σ ) ( q 1 ) ξ q 2 T α + β σ 2 Γ ( β σ + 1 ) [ 3 Γ ( α + 1 ) + Γ ( 2 γ ) T γ Γ ( α γ + 1 ) ] sup t J | u v | η | u v |

由假设条件(H3)可知 η 1 故有 F u F v η u v ,因此由引理1.3可知算子有唯一不动点。

定理2.3 若条件(H1)~(H4)满足,则根据定理2.1、2.2及引理1.4可知边值问题(4)至少有一个不动点。

证明:定义集合 Ω R = { u E | u < R } ,这里 R L T α [ Γ ( α γ + 1 ) + Γ ( α + 1 ) Γ ( 2 γ ) ] 2 Γ ( α + 1 ) Γ ( α γ + 1 ) ,则 Ω R 为E的有界闭子集。定义 Ω R 上的算子 P , Q ,其中

P u ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) d s 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) d s

Q u ( t ) = ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 f ( τ , u ( τ ) ) d τ ) d s

u , v Ω R , t [ 0 , T ] 时,有

| P u ( t ) + Q v ( t ) | 1 Γ ( α ) 0 t ( t s ) α 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) | d s + 1 2 Γ ( α ) 0 T ( T s ) α 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) | d s + ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) | d s T α L Γ ( α + 1 ) + T α L 2 Γ ( α + 1 ) + T α L Γ ( 2 γ ) 2 Γ ( α γ + 1 ) L T α [ 3 Γ ( α γ + 1 ) + Γ ( α + 1 ) Γ ( 2 γ ) ] 2 Γ ( α + 1 ) Γ ( α γ + 1 ) R

因此 P u ( t ) + Q v ( t ) R ,即 P u ( t ) + Q v ( t ) Ω R

其次当 t [ 0 , T ] 时,有

| Q u ( t ) Q v ( t ) | ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) | d s ( T 2 t ) T γ 1 Γ ( 2 γ ) 2 Γ ( α γ ) 0 T ( T s ) α γ 1 | φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , v ( τ ) ) d τ ) | d s T γ ( q 1 ) ξ q 2 Γ ( 2 γ ) 2 Γ ( α γ ) Γ ( β ) 0 T ( T s ) α γ 1 ( 0 s ( s τ ) β 1 τ σ | τ σ f ( τ , u ( τ ) ) τ σ f ( τ , v ( τ ) ) | d τ ) d s M 2 ( q 1 ) ξ q 2 Γ ( 2 γ ) Γ ( 1 σ ) T α + β σ 2 Γ ( α γ + 1 ) Γ ( β σ + 1 ) sup t J | u v | = N | u v |

由条件(H4)及引理1.4可知算子Q Ω R 中为压缩映射。

最后证明算子P在 Ω R 上是全连续的,对任意 u Ω R ,有

| P u ( t ) | = | 1 Γ ( α ) 0 t ( t s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) d s 1 2 Γ ( α ) 0 T ( T s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) d s | 3 L T α 2 Γ ( α + 1 )

可知算子P在 Ω R 上一致有界。

其次对 t 1 , t 2 [ 0 , T ] t 1 < t 2 时,有

| P u ( t 2 ) P u ( t 1 ) | | 1 Γ ( α ) 0 t 2 ( t 2 s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) d s 1 Γ ( α ) 0 t 1 ( t 1 s ) α 1 φ q ( 1 Γ ( β ) 0 s ( s τ ) β 1 τ σ τ σ f ( τ , u ( τ ) ) d τ ) d s | L Γ ( α + 1 ) ( t 2 α t 1 α ) 0 , t 2 t 1

即算子P在 Ω R 上等度连续,由Arzela-Ascoli定理可知算子P为全连续算子,故由引理1.4可知边值问题(4)至少有一个解。

致谢

谨向审稿人提出的宝贵意见和建议表示诚挚的感谢!同时也要向我的指导老师胡卫敏教授表示我诚挚的谢意!

基金项目

新疆维吾尔自治区自然科学基金资助项目(2019D01C331)。

文章引用

张婷婷,胡卫敏. 一类具P-Laplacian算子的分数阶奇异微分方程反周期边值问题解的存在性与唯一性
Existence and Uniqueness on Solutions for Anti-Periodic Boundary Value Problems of Singular Fractional Differential Equations with P-Laplacian Operator[J]. 应用数学进展, 2021, 10(11): 3650-3658. https://doi.org/10.12677/AAM.2021.1011386

参考文献

  1. 1. Fazli, H. and Nieto, J.J. (2018) Fractional Langevin Equation with Anti-Periodic Boundary Conditions. Chaos, Solitons & Fractals, 114, 332-337. https://doi.org/10.1016/j.chaos.2018.07.009

  2. 2. 王奇, 魏天佑. 一类脉冲分数阶微分方程广义反周期边值问题解的存在性[J]. 应用数学, 2017, 30(1): 78-89.

  3. 3. 左佳斌, 贠永震. 一类分数阶微分方程的反周期边值问题[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 56-64.

  4. 4. Lu, H.L., Hanz, L., Sun, S.R. and Liu, J. (2013) Existence on Positive Solutions for Boundary Value Problems of Nonlinear Fractional Differential Equations with p-Laplacian. Advances in Difference Equations, 10, 30-46. https://doi.org/10.1186/1687-1847-2013-30

  5. 5. 贠永震, 苏有慧, 胡卫敏. 一类具有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在唯一性[J]. 数学物理学报, 2018, 38(6): 1162-1172.

  6. 6. Li, R.G. (2014) Existence of Solutions for Nonlinear Singular Fractional Differential Equations with Fractional Derivative Condition. Advances in Difference Equations, 11, 292-304. https://doi.org/10.1186/1687-1847-2014-292

  7. 7. Zhou, W.X., Chu, Y.D. and Baleanu, D. (2013) Uniqueness and Existence of Positive Solutions for a Multi-Point Boundary Value Problem of Singular Fractional Differential Equations. Advances in Difference Equations, 10, 114-125. https://doi.org/10.1186/1687-1847-2013-114

  8. 8. Zhou, W.X. and Liu, X. (2014) Uniqueness on Positive Solutions for Boundary Value Problem of Singular Fractional Differential Equations. Chinese Journal of Engineering Mathematics, 31, 300-309.

  9. 9. 孙倩, 刘文斌. 一类奇异分数阶微分方程积分边值问题正解的存在性[J]. 数学的实践与认识, 2017, 47(17): 295-306.

  10. 10. Sun, S.R., Zhao, Y.G., Han, Z.L. and Xu, M.R. (2012) Uniqueness of Positive Solutions for Boundary Value Problems of Singular Fractional Differential Equations. Inverse Problems in Science and Engineering, 20, 299-309. https://doi.org/10.1080/17415977.2011.603726

期刊菜单