﻿ AIP潜艇的尾气处理系统结构设计及定性分析 Physical Design and Qualitative Analysis of Exhaust Treatment System for AIP Submarine

Dynamical Systems and Control
Vol.07 No.01(2018), Article ID:23584,5 pages
10.12677/DSC.2018.71007

Physical Design and Qualitative Analysis of Exhaust Treatment System for AIP Submarine

Runkai Zhu, Qianchao Liang, Haiyang Zhan

College of Power Engineering, Naval University of Engineering, Wuhan Hubei

Received: Dec. 22nd, 2017; accepted: Jan. 22nd, 2018; published: Jan. 29th, 2018

ABSTRACT

For AIP submarine, exhaust treatment system is particularly important. This article discussed an exhaust treatment system consisting of water management system, water cooling tower and rotating bed absorber, then analyzed qualitatively the influence of independent variables on the performance of the model. The study found that making rotating bed absorber near a certain working condition and increasing the initial pressure of exhaust could effectively reduce the amount of sea water and reduce system power consumption.

Keywords:AIP Submarine, Exhaust Treatment System, Water Management System, Water Cooling Tower, Rotating Bed Absorber

AIP潜艇的尾气处理系统结构设计及定性分析

1. 引言

2. 结构分析

2.1. 水管理系统

Figure 1. Structure schematic of the exhaust treatment system

Figure 2. Fundamental diagram of the water management system

1) 无论系统管路处于哪个状态，活塞两端的海水压力差很小，若实现水管理系统的运行，只需以较小的功耗克服活塞机构的磨擦和管路的阻力，即水泵A、B的做功足够使海水自由交换；

2) 整个水管理系统在海水中可以看作出于同一深度，无论下潜多深，水泵排水消耗的能量基本相差不大，即系统工作不受海水深度的影响；

3) 潜艇外部水压不会影响内部回路的低水压，因而海水由水管理系统进入后，可以转化为内部回路的低压海水，在艇内使用。

2.2. 喷淋冷却器

2.3. 旋转床吸收器

3. 系统定性分析

3.1. 旋转床吸收器转速变化的影响

1——气体入口，2——转子，3——液体入口， 4——气体出口，5——外壳，6——液体出口，7——喷嘴

Figure 3. Structure chart of rotating bed absorber

3.2. CO2流量变化的影响

3.3. 尾气初始温度变化的影响

3.4. 尾气初始压力变化的影响

4. 结论

Physical Design and Qualitative Analysis of Exhaust Treatment System for AIP Submarine[J]. 动力系统与控制, 2018, 07(01): 69-73. http://dx.doi.org/10.12677/DSC.2018.71007

1. 1. Wang, J.W., Lao, X.S. and Wang, D. (2014) Dynamic Performance Study of Submarine Diesel Exhaust and Screw Compressor Low Pressure Deballast System. Ship Science & Technology, February 2014.

2. 2. 朱润凯, 梁前超, 闫东, 等. 固体氧化物燃料电池与微型燃气轮机联合发电建模仿真研究[J]. 舰船科学技术, 2017(7): 95-99.

3. 3. 贺国, 陈国钧. CCDAIP循环气体处理技术研究[J]. 海军工程学院学报, 1998, 85(4): 82-86.

4. 4. Fowler, A. (1990) Closed Cycle Diesel Propulsion Systems. Institute of Marine Engineers Transactions, 102, 129.

5. 5. 郭朝有, 贺国, 陈国钧, 等. AIP水管理系统实现技术研究[J]. 小型内燃机与车辆技术, 2003, 32(4): 15-18.

6. 6. 贺国, 赵建华, 陈国钧, 等. 闭式循环柴油机排出气体喷淋冷却传热模型及实验关联研究[J]. 内燃机工程, 2003, 24(1): 75-80.

7. 7. 谢冠伦. 新型结构旋转床吸收混合气中二氧化碳的研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2010.