﻿ 一种适用于电机械制动装置的电机设计 A BLDC Design Suitable for Electro-Mechanical Braking Device

Dynamical Systems and Control
Vol. 08  No. 02 ( 2019 ), Article ID: 29494 , 12 pages
10.12677/DSC.2019.82011

A BLDC Design Suitable for Electro-Mechanical Braking Device

Zhen Qian1, Mengling Wu1, Maolin Chen2

1Institute of Railway and Urban Mass Transit, Tongji University, Shanghai

2School of Mechanical Engineering, Tongji University, Shanghai

Received: Mar. 6th, 2019; accepted: Mar. 17th, 2019; published: Mar. 28th, 2019

ABSTRACT

For a new type of rail transit brake device, a drive motor suitable for such a device is designed. The motors designed in this paper are generally used in automatic control equipment. But this motor is different from a normal BLDC and operates normally in a stalled state. This paper introduces the composition and working principle of BLDC, deeply analyzes the selection of rotor magnetic circuit and winding form, permanent magnet material, and adopts the design analysis method of equivalent magnetic circuit, and uses RMxprt to calculate the BLDC. Finally, the optimal design is determined. The designed motor meets the requirements of the device and has good electromagnetic performance.

Keywords:Electro-Mechanical Braking Device, Brushless DC Torque Motor, Equivalent Magnetic Circuit Method, RMxprt

1同济大学，铁道与城市轨道交通研究院，上海

2同济大学，机械与能源工程学院，上海

1. 引言

2. 基本组成以及工作原理

2.1. 基本组成

Figure 1. Structure of BLDC

2.2. 工作原理

3. 列车电机械制动装置驱动电机关键性能指标

3.1. 电机械制动驱动电机设计目标参数

Table 1. Domestic common urban rail unit brake maximum brake shoe pressure

3.2. 连续输出堵转转矩

${T}_{e}=\frac{21\text{\hspace{0.17em}}\text{KN}}{1.6\text{\hspace{0.17em}}\text{KN}/\text{Nm}×85%}=15.4\text{\hspace{0.17em}}\text{Nm}$

3.3. 空载转速

$\frac{{n}_{\mathrm{max}}}{L}=300\text{\hspace{0.17em}}\text{r}/\text{min}$

4. 电磁设计

4.1. 转子磁路设计

4.2. 永磁体的选用

4.3. 极弧系数

${\alpha }_{p}=\frac{{b}_{p}}{{\tau }_{1}}$

Figure 2. Air gap magnetic distortion waveform distortion rate under different pole arc coefficients

4.4. 气隙长度的选择

Figure 3. Equivalent stress distribution cloud

Table 3. Modal mode

Table 4. Brake cylinder deformation

Figure 4. Vertical deformation

Figure 5. Longitudinal deformation

4.5. 极槽配合

Table 5. Scheme comparison

4.6. 绕组设计

AAZBXXCYAAZBXXCYAAZBXCCYAZZBXCCYAZZBXCCYAZBBXCYYAZBBXCYYAZBBXCY

Figure 6. Armature winding

Figure 7. Cogging torque in two teeth

Figure 9. Induced winding voltages at rated speed

Figure 10. Air-gap flux density

Table 6. Electromagnetic performance parameters of brushless DC torque motor for electromechanical

5. 电机械用无刷直流力矩电机电磁参数计算

6. 结语

A BLDC Design Suitable for Electro-Mechanical Braking Device[J]. 动力系统与控制, 2019, 08(02): 94-105. https://doi.org/10.12677/DSC.2019.82011

1. 1. Pan, S.H., Song, Z.D. and Wang, X.P. (2016) Electro-Mechanical Braking Force Distribution Strategy for Electric Vehicle. IEEE International Conference on Communication Problem-Solving, Guilin, 16-18 October 2015, 387-390.

2. 2. 朱剑波. 无刷直流电机控制系统的仿真与分析[J]. 国外电子测量技术, 2013, 32(12): 25-30.

3. 3. 夏长亮, 方红伟. 永磁无刷直流电机及其控制[J]. 电工技术学报, 2012(3): 25-34.

4. 4. 王艳萍. 航海用无刷直流力矩电动机的设计研究及Ansoft仿真[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2010.

5. 5. 唐任远. 现代永磁电机理论与设计[M]. 北京: 机械工业出版社, 2011.

6. 6. 李运洲. 基于Modelica的无刷直流电机设计与仿真[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017.