﻿ 核电站凝水系统的状态预测方法研究 A Study of Condition Forecasting Method of Condensate Water System in Nuclear Power Plant

Nuclear Science and Technology
Vol.05 No.03(2017), Article ID:21511,11 pages
10.12677/NST.2017.53020

A Study of Condition Forecasting Method of Condensate Water System in Nuclear Power Plant

Xin Zhang

Heilongjiang Electric Power Research Institute, Harbin Heilongjiang

Received: Jul. 3rd, 2017; accepted: Jul. 23rd, 2017; published: Jul. 26th, 2017

ABSTRACT

Operation support system can improve the safety, reliability and economy of nuclear power plant, condition forecasting technology is one of the hot research problems in operation support system. The major work of this thesis is researching the technology of condition forecasting of condensate water system. By a detailed analysis of the composition and the failure characteristics of the condensate water system, the paper uses the simulation model to predict the condition of the equipment. When the equipment is in normal, the system can simulate the current state in real-time; when the failure occurs, the condition forecasting module based on simulation model run in ultra-real time to predict the future states and anomalies of the equipment. The method has been proven by simulation validation. Results show that the condition forecasting system meets the requirements of predicting the state of nuclear power plants, and provides sufficient information for the operators.

Keywords:Condensate Water System, Condition Forecasting, Simulation Mode

1. 简介

2. 基于仿真模型的状态预测原理

3. 凝水系统状态预测的仿真建模

(1) 管侧及壳侧流体均按定向流动处理；

(2) 凝汽器内部汽水混合物处于热力平衡状态；

(3) 忽略由汽水混合物相间滑移引起的能量损失；

(4) 沿流体流动方向，各控制容积体积均匀分布；

(5) 壳侧水蒸汽与不凝结气(汽)体都看做理想气体。

3.1. 控制容积划分

Figure 1. Schematic diagram of the state of the condensate system

Figure 2. Schematic diagram of condensing the simplified physical model and node

3.2. 基本控制方程

1) 汽轮机排汽发生凝结的质量流量的求解

(1)

¾各节点对数传热温差，℃；

¾各节点传热面积，m2

¾各节点内部汽水混合物的平均焓值，kJ/kg；

¾各节点内部凝水的焓，kJ/kg。

2) 壳侧的汽水混合物压力的计算

(2)

(3)

¾各节点内部汽水混合物的汽体常数，J/(kg×K)。

3) 蒸汽能量守恒方程

(4)

¾各控制容积中辅机排汽焓，kJ/kg。

4) 空气质量守恒方程

(5)

5) 冷凝器内部冷却水(管)基本控制方程

i) 各节点循环冷却水出口温度的求解

(6)

¾各节点循环水的总热交换能量，W；

¾各节点循环水的流量，kg/s；

¾各节点金属管内的循环水质量，kg；

¾各节点循环水的初始入口温度，℃。

ii) 金属管外表面温度值的求解

(7)

(8)

¾各节点循环水得到的热量，kW；

¾各节点金属管壁的总质量，kg；

¾各节点金属管壁的金属比容，kJ/(kg×℃)；

¾各节点水¾管壁换热系数，kW/(m2×℃)。

6) 仿真算法

7) 联调与测试

4. 实例验证

Figure 3. The actual device cooling water pipe rupture conditions under the condensate outlet temperature

Figure 4. Simulation model to join the air leakage conditions under the condensate outlet temperature

Figure 5. Simulation model adding condensate outlet temperature under condensate header leak conditions

Figure 6. Simulation model to join the cooling water pipe leakage conditions under the condensate outlet temperature comparison

5. 结论

Figure 7. Condenser tube side pressure

Figure 8. Circulating cooling water outlet temperature

Figure 9. Condenser shell side pressure

A Study of Condition Forecasting Method of Condensate Water System in Nuclear Power Plant[J]. 核科学与技术, 2017, 05(03): 153-163. http://dx.doi.org/10.12677/NST.2017.53020

1. 1. 谢春丽. GM (1, 1)灰色模型在核电设备趋势预测中的应用[J]. 核科学与工程，2007, 27(2): 138-142.

2. 2. 刘文学, 彭敏俊. 核电站反应堆冷却剂系统在线仿真研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2008.

3. 3. Wang, Y.Q., Li, F., et al. (2003) On-Line Monitoring the Incore Power Distribution by Using Excore Ion-Chambers. Nuclear Engineering and Design, 22, 15-326. https://doi.org/10.1016/s0029-5493(03)00183-3

4. 4. 罗征培, 李富, 王亚奇, 等. 在核反应堆安全运行中使用在线监视技术的设想[J]. 核科学与工程, 2000, 20(1): 32- 38.

5. 5. Westinghouse Electric Company (1998) BEACON Core Monitoring System General Technical Description.

6. 6. Wakabayashi, J. 日本核电站支持系统的开发[J]. 国外核动力, 1999, 5(4): 1-12.

7. 7. Chou, F.-H. and Ho, C.-S. (2000)Online Transient Behavior Prediction in Nuclear Power Plant. Applied Artificial Intelli-gence, 10, 975-1001. https://doi.org/10.1080/08839510050179464

8. 8. Jia, X., Tso, C.P., Jolly, P., et al. (1999) Distributed Steady and Dynamic Modeling of Dry-Expansion Evaporators. International Journal of Refrigeration, 22, 126-136. https://doi.org/10.1016/S0140-7007(98)00043-7

9. 9. Mithraratne, P., Wijeysundera, N.E. and Bong, T.Y. (2000) Dynamic Simulation of a Thermostatically Controlled Counter-Flow Evaporator. International Journal of Refrigeration, 23, 174-189. https://doi.org/10.1016/S0140-7007(99)00048-1

10. 10. Wang, G.S. (2009) The Numerical Simulation of Power Plant Condenser Thermodynamic Performance. China Electric Power Press, Beijing.

11. 11. Zhang, Z.D. (1993) Condensers of Large Power Station. China Machine Press, Beijing.