﻿ 一类液晶系统基态解和无穷多解的存在 Existence of Ground State Solutions and Infinitely Many Solutions for a Class of Liquid Crystal Systems

Vol. 11  No. 11 ( 2022 ), Article ID: 58464 , 15 pages
10.12677/AAM.2022.1111863

Existence of Ground State Solutions and Infinitely Many Solutions for a Class of Liquid Crystal Systems

Feixiang Li#*, Kaimin Teng

College of Mathematics, Taiyuan University of Technology, Jinzhong Shanxi

Received: Oct. 23rd, 2022; accepted: Nov. 18th, 2022; published: Nov. 28th, 2022

ABSTRACT

In this paper, we aim to prove the existence of ground state solutions for a class of liquid crystal system. Under the assumptions of V and the nonlinearity g, we find this solution using the Nehari manifold. After that, we prove the existence of nontrivial solutions of liquid crystal system by using the method of Mountain Pass Theorem. Finally, we have made some improvements, and prove a different type of multiplicity result by applying the Krasnoselskii genus theory, the existence of infinitely many solutions to the system.

Keywords:Ground State Solutions, Nontrivial Solutions, Infinitely Many Solutions

1. 引言

$\left\{\begin{array}{ll}-\Delta u+V\left(x\right)u+\gamma u\theta =g\left(u\right),\hfill & x\in {ℝ}^{2}.\hfill \\ -\Delta \theta +{c}^{2}={u}^{2},\hfill & x\in {ℝ}^{2},\hfill \end{array}$ (1)

$\left\{\begin{array}{l}2i\frac{\partial E}{\partial z}+{\Delta }_{x,y}E+\alpha \left[{\mathrm{sin}}^{2}\theta -{\mathrm{sin}}^{2}{\theta }_{0}\right]E=0,\\ 2{\Delta }_{x,y}\theta +\left[\beta +\alpha {|E|}^{2}\right]\mathrm{sin}\left(2\theta \right)=0,\end{array}$ (2)

$\theta =\stackrel{¯}{\theta }+{\theta }_{0}$，其中， $\stackrel{¯}{\theta }$ 对应于光诱导的分子重定向，并且 $\stackrel{¯}{\theta }\ll 1$$\stackrel{¯}{\alpha }=\alpha \mathrm{sin}\left(2{\theta }_{0}\right)$$\stackrel{¯}{\beta }=2\beta \mathrm{cos}\left(2{\theta }_{0}\right)$。利用一阶近似，可推得下列的低阶近似模型：

$\left\{\begin{array}{l}2i\frac{\partial E}{\partial z}+{\Delta }_{x,y}E+\stackrel{¯}{\alpha }\stackrel{¯}{\theta }E=0,\\ 2{\Delta }_{x,y}\stackrel{¯}{\theta }+\stackrel{¯}{\beta }\stackrel{¯}{\theta }+\stackrel{¯}{\alpha }{|E|}^{2}=0.\end{array}$ (3)

$\left\{\begin{array}{l}2i\frac{\partial E}{\partial z}+{\Delta }_{x,y}E+\gamma \psi E=0,\\ {\Delta }_{x,y}\psi -{c}^{2}\psi =4\pi {|E|}^{2}=0,\end{array}$ (4)

$E\left(x,y,z\right)={\text{e}}^{i\omega z}u\left(x,y\right)$ ,

$\left\{\begin{array}{ll}\Delta u-2\omega u+\gamma u\psi =0,\hfill & \left(x,y\right)\in {ℝ}^{2}.\hfill \\ -\Delta \psi +{c}^{2}\psi =4\pi {u}^{2},\hfill & \left(x,y\right)\in {ℝ}^{2}.\hfill \end{array}$ (5)

$c=0$ 时，(5)退化为下列Schrödinger-Possion系统

$\left\{\begin{array}{ll}-\Delta u+V\left(x\right)u+\varphi u=f\left(x,u\right),\hfill & x\in {ℝ}^{2},\hfill \\ \Delta \varphi ={u}^{2},\hfill & x\in {ℝ}^{2}.\hfill \end{array}$ (6)

(V1) $V\in C\left({ℝ}^{2},\left(0,\infty \right)\right)$，存在 ${\alpha }_{0}>0$，使得 $\underset{{ℝ}^{2}}{\mathrm{inf}}V\left(x\right)\ge {\alpha }_{0}>0$，并且有 $\underset{|x|\to \infty }{\mathrm{lim}}V\left(x\right)=+\infty$

(g1) $g\in {C}^{1}\left(ℝ,ℝ\right)$，存在 ${\alpha }_{0}>0$，使得

(i)当 $\alpha >{\alpha }_{0}$ 时， $\underset{t\to +\infty }{\mathrm{lim}}\frac{g\left(t\right)}{{\text{e}}^{\alpha {t}^{2}}}=0$

(ii) 当 $\alpha <{\alpha }_{0}$ 时， $\underset{t\to +\infty }{\mathrm{lim}}\frac{g\left(t\right)}{{\text{e}}^{\alpha {t}^{2}}}=+\infty$

(g2) $\underset{t\to 0}{\mathrm{lim}}\frac{g\left(t\right)}{t}=0$

(g3) 存在 $\vartheta >2$，使得对任意的 $t>0$，都有 $0<\vartheta G\left(t\right)\le g\left(t\right)t$

(g4) 函数 $t\to \frac{g\left(t\right)}{{t}^{3}}$ 在区间 $\left(0,+\infty \right)$ 上单调递增；

(g5) 存在 $p>4$$\tau >\mathrm{max}\left\{1,{\tau }^{*}\right\}$，使得 $g\left(t\right)>\tau {t}^{p-1},\forall t>0$，其中，

${\tau }^{*}:={\left(\frac{2p{\alpha }_{0}{c}_{p}}{\pi \left(p-4\right)}\right)}^{\frac{p-2}{2}}$ .

$\left\{\begin{array}{ll}-\Delta u+V\left(x\right)u-\gamma u\theta =\gamma g\left(u\right),\hfill & x\in {ℝ}^{2}.\hfill \\ -\Delta \theta +{c}^{2}\theta ={u}^{2},\hfill & x\in {ℝ}^{2}\hfill \end{array}$

2. 准备性工作

${H}^{1}\left({ℝ}^{2}\right)=\left\{u\in {L}^{2}\left({ℝ}^{2}\right)|\nabla u\in {L}^{2}\left({ℝ}^{2}\right)\right\}$，其上赋予范数

$‖u‖={\left(\underset{{ℝ}^{2}}{\int }\left({|u|}^{2}+{|\nabla u|}^{2}\right)\text{d}x\right)}^{\frac{1}{2}}$ .

$E:=\left\{u\in {H}^{1}\left({ℝ}^{2}\right)|\underset{{ℝ}^{2}}{\int }V\left(x\right){u}^{2}\text{d}x<\infty \right\}$ ,

${‖u‖}_{E}=\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x$

(i) $\theta$ 是系统(1)第二个方程的解；

(ii) $\theta$ 满足： $‖\theta \left(u\right)‖\le C{‖u‖}_{p}^{2}$，其中 $p>2$，C是一个常数；

(iii) $\theta :{H}^{1}\left({ℝ}^{2}\right)\to {H}^{1}\left({ℝ}^{2}\right)$ 连续；

(iv) 在 ${ℝ}^{2}$ 上， $\theta \left(u\right)\ge 0$，且对于任意的 $s\in ℝ$$\theta \left[su\right]={s}^{2}\theta \left[u\right]$

$\theta \left[u\right]\left(x,y\right)=\underset{{ℝ}^{2}}{\int }4\pi {E}_{2}\left(c\left(x-s\right),c\left(y-t\right)\right){u}^{2}\left(s,t\right)\text{d}t$ ,

(i) ${K}_{0}\in {C}^{\infty }\left(\left(0,\infty \right)\right)$${K}_{0}\left(r\right)>0$$r>0$，并且 ${\left\{{K}_{0}\left(r\right)\right\}}^{\prime }=-{K}_{1}\left(r\right)$$r>0$

(ii) 当 $r\to 0$ 时，有 $\frac{{K}_{0}\left(r\right)}{-\mathrm{ln}r}\to 1$$r{{K}^{\prime }}_{0}\left(r\right)\to -{L}_{0}$${L}_{0}>0$

(iii) 当 $r\to \infty$ 时， ${\text{e}}^{r}{K}_{0}\left(r\right)\to 0$${\text{e}}^{r}{{K}^{\prime }}_{0}\left(r\right)\to 0$

$-\Delta u+V\left(x\right)u+\gamma u\theta =g\left(u\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\in {ℝ}^{2}$ (7)

$I\left(u\right)=\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x+\frac{\gamma }{4}\underset{{ℝ}_{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\underset{{ℝ}_{2}}{\int }G\left(u\right)\text{d}x$ (8)

$〈{I}^{\prime }\left(u\right),v〉=\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left(\nabla u\nabla v+V\left(x\right)uv\right)\text{d}x+\frac{\gamma }{4}\underset{{ℝ}_{2}}{\int }u\theta \left[u\right]v\text{d}x-\underset{{ℝ}_{2}}{\int }g\left(u\right)v\text{d}x$

$\underset{n\to \infty }{\mathrm{lim}}\underset{{ℝ}^{2}}{\int }\theta \left({u}_{n}\right){u}_{n}^{2}\text{d}x=\underset{{ℝ}^{2}}{\int }\theta \left(u\right){u}^{2}\text{d}x$ (9)

$\underset{{ℝ}^{2}}{\int }\left({e}^{\alpha {|u|}^{2}}-1\right)\text{d}x\le C$ .

$|g\left(t\right)|\le \epsilon |t|,\text{\hspace{0.17em}}\text{\hspace{0.17em}}|G\left(t\right)|\le \frac{1}{2}\epsilon {|t|}^{2},\text{\hspace{0.17em}}\text{\hspace{0.17em}}0 (10)

$|g\left(t\right)|\le \epsilon \left({e}^{\alpha {t}^{2}}-1\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}t\ge {\delta }_{1}$ .

$|g\left(t\right)t|\le \frac{\epsilon }{{\delta }_{1}^{2}}{t}^{2}\left({e}^{\alpha {t}^{2}}-1\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}|G\left(t\right)|\le \frac{\epsilon }{{\delta }_{1}^{2}}\left({e}^{\alpha {t}^{2}}-1\right)$ (11)

$\underset{{ℝ}^{2}}{\int }g\left(u\right)u\text{d}x\le \epsilon \underset{{ℝ}^{2}}{\int }{|u|}^{2}\text{d}x+{C}_{\epsilon }\underset{{ℝ}^{2}}{\int }{|u|}^{q}\left({\text{e}}^{\alpha {u}^{2}}-1\right)\text{d}x$ (12)

$\underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x\le \frac{\epsilon }{2}\underset{{ℝ}^{2}}{\int }{|u|}^{2}\text{d}x+{\stackrel{¯}{C}}_{\epsilon }\underset{{ℝ}^{2}}{\int }{|u|}^{q}\left({\text{e}}^{\alpha {u}^{2}}-1\right)\text{d}x$ (13)

$\begin{array}{c}h\left(s\right)=g\left(s\right)s-4G\left(s\right)=\frac{g\left(s\right)}{{s}^{3}}{s}^{4}-4G\left(t\right)+4{\int }_{s}^{t}g\left(\tau \right)\text{d}\tau \\ \le \frac{g\left(t\right)}{{t}^{3}}{s}^{4}-4G\left(t\right)+\frac{g\left(t\right)}{{t}^{3}}\left({t}^{4}-{s}^{4}\right)

3. 定理1.1 的证明

$N=\left\{u\in E\\left\{0\right\},〈{I}^{\prime }\left(u\right),u〉=0\right\}$ .

$\begin{array}{c}{{\eta }^{\prime }}_{u}\left(t\right)=t\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x+\gamma {t}^{3}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\underset{{ℝ}^{2}}{\int }g\left(tu\right)u\text{d}x\\ \ge t{‖u‖}_{E}^{2}+\gamma {t}^{3}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\epsilon t\underset{{ℝ}^{2}}{\int }{|u|}^{2}\text{d}x-{t}^{q-1}{\stackrel{¯}{C}}_{\epsilon }\underset{{ℝ}^{2}}{\int }{|u|}^{q}\left({\text{e}}^{\alpha {|u|}^{2}}-1\right)\text{d}x\\ \ge t\left(\frac{1}{2}-\frac{C\epsilon }{2}\right){‖u‖}_{E}^{2}+\gamma {t}^{3}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-{t}^{q-1}{\stackrel{¯}{C}}_{\epsilon }{\left(\underset{{ℝ}^{2}}{\int }{|u|}^{q{s}^{\prime }}\text{d}x\right)}^{\frac{1}{{s}^{\prime }}}{\left[\underset{{ℝ}^{2}}{\int }\left({\text{e}}^{\alpha s{‖tu‖}_{{H}^{1}}^{2}{\left(\frac{u}{{‖u‖}_{{H}^{1}}}\right)}^{2}}-1\right)\text{d}x\right]}^{\frac{1}{s}}\end{array}$ ,

${\eta }_{u}\left(t\right)\ge {D}_{1}t+{D}_{2}{t}^{3}-{D}_{3}{t}^{q-1},\text{\hspace{0.17em}}\text{\hspace{0.17em}}0

${{\eta }^{\prime }}_{u}\left(t\right)\le t{‖u‖}_{E}^{2}+\gamma {t}^{3}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\tau {t}^{p-1}\underset{{ℝ}^{2}}{\int }{u}^{p}\text{d}x$ .

${u}_{n}\to 0$ (14)

${‖u‖}_{E}^{2}\le \gamma \underset{{ℝ}^{2}}{\int }{u}_{n}^{2}\theta \left[{u}_{n}\right]\text{d}x+\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right){u}_{n}\text{d}x\le \epsilon \underset{{ℝ}^{2}}{\int }{|{u}_{n}|}^{2}\text{d}x+{C}_{\epsilon }\underset{{ℝ}^{2}}{\int }{|{u}_{n}|}^{q}\left({e}^{\alpha {u}_{n}^{2}}-1\right)\text{d}x$

$\left(1-{C}_{\epsilon }\right){‖{u}_{n}‖}_{E}^{2}\le {\stackrel{¯}{C}}_{\epsilon }{\left(\underset{{ℝ}^{2}}{\int }{|{u}_{n}|}^{q{s}^{\prime }}\text{d}x\right)}^{\frac{1}{{s}^{\prime }}}{\left[\underset{{ℝ}^{2}}{\int }\left({e}^{\alpha s{‖{u}_{n}‖}_{{H}^{1}}^{2}{\left(\frac{u}{{‖{u}_{n}‖}_{{H}^{1}}}\right)}^{2}}-1\right)\text{d}x\right]}^{\frac{1}{s}}$

$\left(1-{C}_{\epsilon }\right){‖{u}_{n}‖}_{E}^{2}\le M{C}_{\epsilon }{\left(\underset{{ℝ}^{2}}{\int }{|{u}_{n}|}^{q{s}^{\prime }}\text{d}x\right)}^{\frac{1}{{s}^{\prime }}}\le M{C}_{\epsilon }C{‖{u}_{n}‖}_{E}^{q}$ .

$\underset{u\in N}{\mathrm{inf}}I\left(u\right)=c$

$\begin{array}{c}I\left(u\right)=I\left(u\right)-\frac{1}{4}〈{I}^{\prime }\left(u\right),u〉\\ =\frac{1}{4}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x+\frac{1}{4}\underset{{ℝ}_{2}}{\int }\left(\frac{1}{4}g\left(u\right)u-G\left(u\right)\right)\text{d}x\\ \ge \frac{1}{4}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x\ge C>0\end{array}$ .

$c+{o}_{n}\left(1\right)=I\left({u}_{n}\right)-\frac{1}{4}〈{I}^{\prime }\left({u}_{n}\right),{u}_{n}〉=\frac{1}{4}{‖{u}_{n}‖}_{E}^{2}+\underset{{ℝ}^{2}}{\int }\left(\frac{1}{4}g\left({u}_{n}\right){u}_{n}-G\left({u}_{n}\right)\right)\text{d}x\ge \frac{1}{4}{‖{u}_{n}‖}_{E}^{2}$

$-\Delta u+V\left(x\right)u+\gamma u\theta ={|u|}^{p-2}u,\text{}{ℝ}^{2},$

${I}_{p}\left(u\right)=\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x+\frac{\gamma }{4}\underset{{ℝ}_{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\frac{1}{p}\underset{{ℝ}_{2}}{\int }{|u|}^{p}\text{d}x$ .

${N}_{p}=\left\{u\in E\\left\{0\right\},〈{{I}^{\prime }}_{p}\left(u\right),u〉=0\right\}$

${c}_{p}={I}_{p}\left({w}_{p}\right)={I}_{p}\left({w}_{p}\right)-4〈{{I}^{\prime }}_{p}\left({w}_{p}\right),{w}_{p}〉=\frac{1}{4}{‖{w}_{p}‖}_{E}^{2}+\left(\frac{1}{4}-\frac{1}{p}\right)\underset{{ℝ}^{2}}{\int }{w}_{p}^{p}\text{d}x\ge \frac{p-4}{4p}\underset{{ℝ}^{2}}{\int }{w}_{p}^{p}\text{d}x$ (15)

${‖{w}_{p}‖}_{E}^{2}+\gamma \underset{{ℝ}^{2}}{\int }{w}_{p}^{2}\theta \left[{w}_{p}\right]\text{d}x=\underset{{ℝ}^{2}}{\int }{w}_{p}^{p}\text{d}x\le \tau \underset{{ℝ}^{2}}{\int }{w}_{p}^{p}\text{d}x\le \underset{{ℝ}^{2}}{\int }g\left({w}_{p}\right){w}_{p}\text{d}x$

$\begin{array}{c}c\le \frac{{\beta }^{2}}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla {w}_{p}|}^{2}+V\left(x\right){w}_{p}^{2}\right)\text{d}x+\frac{\gamma {\beta }^{4}}{4}\underset{{ℝ}_{2}}{\int }{w}_{p}^{2}\theta \left[{w}_{p}\right]\text{d}x-\underset{{ℝ}_{2}}{\int }G\left(\beta {w}_{p}\right)\text{d}x\\ \le \frac{{\beta }^{2}}{2}\left({‖{w}_{p}‖}_{E}^{2}+\frac{\gamma }{2}\underset{{ℝ}_{2}}{\int }{w}_{p}^{2}\theta \left[{w}_{p}\right]\text{d}x\right)-\frac{\tau }{p}{\beta }^{p}\underset{{ℝ}_{2}}{\int }{w}_{p}^{p}\text{d}x\\ \le \frac{{\beta }^{2}}{2}\left({‖{w}_{p}‖}_{E}^{2}+\gamma \underset{{ℝ}_{2}}{\int }{w}_{p}^{2}\theta \left[{w}_{p}\right]\text{d}x\right)-\frac{\tau }{p}{\beta }^{p}\underset{{ℝ}_{2}}{\int }{w}_{p}^{p}\text{d}x\\ \le \left(\frac{{\beta }^{2}}{2}-\frac{\tau }{p}{\beta }^{p}\right)\underset{{ℝ}_{2}}{\int }{w}_{p}^{p}\text{d}x\end{array}$ .

$c\le \frac{1}{2}{\left(\frac{1}{\tau }\right)}^{\frac{2}{p-2}}\frac{4p{c}_{p}}{p-4}=\frac{2p{c}_{p}}{\left(p-4\right){\tau }^{\frac{2}{p-2}}}$ .

$〈{I}^{\prime }\left({u}_{n}\right),{u}_{n}〉=0$，可推得 ${‖{u}_{n}‖}_{E}\to 0$，这与引理3.2矛盾，得证。

$\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right){u}_{n}\text{d}x\to \underset{{ℝ}^{2}}{\int }g\left(u\right)u\text{d}x$

$\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right)w\text{d}x\to \underset{{ℝ}^{2}}{\int }g\left(u\right)w\text{d}x,\text{}\forall w\in E$ .

${‖{u}_{n}‖}_{E}^{2}\le \underset{n\to \infty }{\mathrm{lim}\mathrm{inf}}\left({‖\nabla {u}_{n}‖}_{{L}^{2}}^{2}+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}_{n}^{2}\text{d}x\right)$

${‖{u}_{n}‖}_{E}^{2}\le \gamma \underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x+\underset{{ℝ}^{2}}{\int }g\left(u\right)u\text{d}x$ .

$c\le I\left(tu\right)=I\left(tu\right)-\frac{1}{4}〈{I}^{\prime }\left(tu\right),tu〉=\frac{1}{4}{‖tu‖}_{E}^{2}+\underset{{ℝ}^{2}}{\int }\left(\frac{1}{4}g\left(tu\right)tu-4G\left(tu\right)\right)\text{d}x$ .

$0，则利用引理2.4和Fatou's引理，得 $c\le I\left(tu\right)<\frac{1}{4}{‖u‖}_{E}^{2}+\underset{{ℝ}^{2}}{\int }\left(\frac{1}{4}g\left(u\right)u-4G\left(u\right)\right)\text{d}x\le \frac{1}{4}\underset{n\to \infty }{\mathrm{lim}\mathrm{inf}}\left({‖{u}_{n}‖}_{E}^{2}+\underset{{ℝ}^{2}}{\int }\left(g\left(u\right)u-4G\left(u\right)\right)\text{d}x\right)$$c\le I\left(tu\right)<\underset{n\to \infty }{\mathrm{lim}}I\left({u}_{n}\right)=c$，说明 $0 不可能发生。因此 $t=1$，即 $u\in N$$I\left(u\right)=c$，得证。

4. 定理1.2的证明注意到 $I\left(0\right)=0$，由引理2.1，以及(12)可得，存在常数 $C>0$，使得

$\begin{array}{c}I\left(u\right)=\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+V\left(x\right){u}^{2}\right)\text{d}x+\frac{\gamma }{4}\underset{{ℝ}_{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\underset{{ℝ}_{2}}{\int }G\left(u\right)\text{d}x\\ \ge \frac{1}{2}{‖u‖}_{E}^{2}+{C}_{1}\gamma {‖u‖}_{E}^{4}-\frac{\epsilon }{2}\underset{{ℝ}^{2}}{\int }{|u|}^{2}\text{d}x-{\stackrel{¯}{C}}_{\epsilon }\underset{{ℝ}^{2}}{\int }{|u|}^{q}\left({\text{e}}^{\alpha {u}^{2}}-1\right)\text{d}x\end{array}$

$\underset{{ℝ}^{2}}{\int }\left({|u|}^{q}\left({\text{e}}^{\alpha {u}^{2}}-1\right)\right)\text{d}x\le {C}_{\epsilon }{\left(\underset{{ℝ}^{2}}{\int }{|u|}^{q{s}^{\prime }}\text{d}x\right)}^{\frac{1}{{s}^{\prime }}}{\left[\underset{{ℝ}^{2}}{\int }\left({\text{e}}^{\alpha s{‖{u}_{n}‖}_{{H}^{1}}^{2}{\left(\frac{u}{{‖{u}_{n}‖}_{{H}^{1}}}\right)}^{2}}-1\right)\text{d}x\right]}^{\frac{1}{s}}\le C{‖u‖}_{q{s}^{\prime }}^{q}\le C{‖u‖}_{E}^{q}$ (16)

$I\left(u\right)\ge \left(\frac{1}{2}-\frac{\epsilon }{2}\right){‖u‖}_{E}^{2}+\gamma {D}_{1}{‖u‖}_{E}^{4}-{D}_{2}{‖u‖}_{E}^{q}$ .

$I\left(s{u}_{0}\right)=\frac{{s}^{2}}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla {u}_{0}|}^{2}+V\left(x\right){u}_{0}^{2}\right)\text{d}x+\frac{\gamma {s}^{4}}{4}\underset{{ℝ}_{2}}{\int }{u}_{0}^{2}\theta \left[{u}_{0}\right]\text{d}x-\underset{{ℝ}_{2}}{\int }G\left(s{u}_{0}\right)\text{d}x,\text{}s>0$ .

$I\left({u}_{n}\right)\to d,\text{}{I}^{\prime }\left({u}_{n}\right)\to 0$

$\underset{n\to \infty }{\mathrm{lim}}\left[\underset{{ℝ}^{2}}{\int }\left({|\nabla {u}_{n}|}^{2}+V\left(x\right){u}_{n}^{2}\right)\text{d}x-4\underset{{ℝ}_{2}}{\int }G\left({u}_{n}\right)\text{d}x+\underset{{ℝ}_{2}}{\int }g\left({u}_{n}\right){u}_{n}\text{d}x\right]=\underset{n\to \infty }{\mathrm{lim}}\left[4I\left({u}_{n}\right)-〈{I}^{\prime }\left({u}_{n}\right),{u}_{n}〉\right]=4d$

$\underset{{ℝ}_{2}}{\int }g\left({u}_{n}\right){u}_{n}\text{d}x-4\underset{{ℝ}_{2}}{\int }G\left({u}_{n}\right)\text{d}x\ge 0$ .

$\begin{array}{l}\underset{{ℝ}^{2}}{\int }\theta \left[{u}_{n}\right]{u}_{n}\phi \text{d}x-\underset{{ℝ}^{2}}{\int }\theta \left[u\right]u\phi \text{d}x\\ =\underset{{ℝ}^{2}}{\int }\left(\theta \left[{u}_{n}\right]-\theta \left[u\right]\right){u}_{n}\phi \text{d}x+\underset{{ℝ}^{2}}{\int }\theta \left[u\right]\left({u}_{n}-u\right)\phi \text{d}x\\ \le {\left(\underset{{ℝ}^{2}}{\int }{\left(\theta \left[{u}_{n}\right]-\theta \left[u\right]\right)}^{2}\text{d}x\right)}^{\frac{1}{2}}{\left(\underset{{ℝ}^{2}}{\int }{|{u}_{n}|}^{3}\text{d}x\right)}^{\frac{1}{3}}{\left(\underset{{ℝ}^{2}}{\int }{|\phi |}^{6}\text{d}x\right)}^{\frac{1}{6}}\\ \text{}+{\left(\underset{{ℝ}^{2}}{\int }{\left(\theta \left[{u}_{n}\right]-\theta \left[u\right]\right)}^{2}\text{d}x\right)}^{\frac{1}{2}}{\left(\underset{{ℝ}^{2}}{\int }{|{u}_{n}-u|}^{3}\text{d}x\right)}^{\frac{1}{3}}{\left(\underset{{ℝ}^{2}}{\int }{|\phi |}^{6}\text{d}x\right)}^{\frac{1}{6}}\to 0\end{array}$ (17)

$\underset{{ℝ}^{2}}{\int }\nabla {u}_{n}\nabla \phi \text{d}x+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}_{n}\phi \text{d}x\to \underset{{ℝ}^{2}}{\int }\nabla u\nabla \phi \text{d}x+\underset{{ℝ}^{2}}{\int }V\left(x\right)u\phi \text{d}x$ (18)

$\begin{array}{l}〈{I}^{\prime }\left({u}_{n}\right),\phi 〉=\underset{{ℝ}^{2}}{\int }\nabla {u}_{n}\nabla \phi \text{d}x+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}_{n}\phi \text{d}x+\gamma \underset{{ℝ}^{2}}{\int }\theta \left[{u}_{n}\right]{u}_{n}\phi \text{d}x-\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right)\phi \text{d}x\\ \to \underset{{ℝ}^{2}}{\int }\nabla u\nabla \phi \text{d}x+\underset{{ℝ}^{2}}{\int }V\left(x\right)u\phi \text{d}x+\gamma \underset{{ℝ}^{2}}{\int }\theta \left[u\right]u\phi \text{d}x-\underset{{ℝ}^{2}}{\int }g\left(u\right)\phi \text{d}x\end{array}$ (19)

$\begin{array}{l}〈{I}^{\prime }\left({u}_{n}\right),{u}_{n}-u〉=\underset{{ℝ}^{2}}{\int }\nabla {u}_{n}\nabla \left({u}_{n}-u\right)\text{d}x+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}_{n}\left({u}_{n}-u\right)\text{d}x\\ \text{}+\gamma \underset{{ℝ}^{2}}{\int }\theta \left[{u}_{n}\right]{u}_{n}\left({u}_{n}-u\right)\text{d}x-\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right)\left({u}_{n}-u\right)\text{d}x\to 0\end{array}$

$\underset{{ℝ}^{2}}{\int }{|\nabla \left({u}_{n}-u\right)|}^{2}\text{d}x+\underset{{ℝ}^{2}}{\int }V\left(x\right){\left({u}_{n}-u\right)}^{2}\text{d}x\to 0$

${‖{u}_{n}-u‖}_{E}^{2}\to 0$。因此，在E中， ${u}_{n}\to u$

5. 定理1.3的证明

$\left\{\begin{array}{ll}-\Delta u+V\left(x\right)u-\gamma u\theta =\gamma g\left(u\right),\hfill & x\in {ℝ}^{2}.\hfill \\ -\Delta \theta +{c}^{2}\theta ={u}^{2},\hfill & x\in {ℝ}^{2}.\hfill \end{array}$ (20)

$J\left(u,\theta \right)={J}_{1}\left(u\right)-\gamma {J}_{2}\left(u,\theta \right)$ ,

${J}_{1}\left(u\right)=\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}^{2}\right)\text{d}x\text{d}y$ (21)

${J}_{2}\left(u,\theta \right)=-\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla \theta |}^{2}+{c}^{2}{\theta }^{2}\right)\text{d}x+\frac{1}{2}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \text{d}x+\underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x$

$-\Delta u+V\left(x\right)u=\gamma u\theta \left[u\right]+\gamma g\left(u\right),\text{}x\in {ℝ}^{2}$ , (22)

$\begin{array}{c}ΙΙ\left(u\right)=J\left(u,\theta \left[u\right]\right)\\ =\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}^{2}\right)\text{d}x-\frac{\gamma }{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla \theta |}^{2}+{c}^{2}{\theta }^{2}\right)\text{d}x\\ \text{}+\frac{\gamma }{2}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \text{d}x-\gamma \underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x\\ =\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}^{2}\right)\text{d}x-\frac{\gamma }{4}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x-\gamma \underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x\end{array}$ (23)

$〈Ι{Ι}^{\prime }\left(u\right),v〉=\underset{{ℝ}^{2}}{\int }\left(\nabla u\nabla v+V\left(x\right)uv\right)\text{d}x-\gamma \underset{{ℝ}_{2}}{\int }u\theta \left[u\right]v\text{d}x-\gamma \underset{{ℝ}_{2}}{\int }g\left(u\right)v\text{d}x$ ,

$F\left(u\right)={J}_{2}\left(u,\theta \left[u\right]\right)=-\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla \theta \left[u\right]|}^{2}+{c}^{2}{|\theta \left[u\right]|}^{2}\right)\text{d}x+\frac{1}{2}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x+\underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x$

(B) 对于 $\sigma >0$，定义集合 ${M}_{\sigma }=\left\{u\in E|F\left(u\right)=\sigma \right\}$，那么 ${M}_{\sigma }$ 是维数为1的非空 ${C}^{1}$ 流形。

$\begin{array}{c}〈{F}^{\prime }\left(u\right),v〉=\frac{\partial {J}_{2}\left(u,\theta \left[u\right]\right)}{\partial u}v+\frac{\partial {J}_{2}\left(u,\theta \left[u\right]\right)}{\partial \theta }{\theta }^{\prime }\left[u\right]v=\frac{\partial {J}_{2}\left(u,\theta \left[u\right]\right)}{\partial u}v\\ =\underset{{ℝ}^{2}}{\int }u\theta \left[u\right]v\text{d}x+\underset{{ℝ}^{2}}{\int }g\left(u\right)v\text{d}x\end{array}$ (24)

$F\left(u\right)=\frac{1}{4}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x+\underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x$ . (25)

${M}_{\sigma }=\left\{u\in E|\frac{1}{4}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x+\underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x=\sigma \right\}$

$K\left(s\right)=F\left(su\right)=\frac{{s}^{4}}{4}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x+\underset{{ℝ}^{2}}{\int }G\left(su\right)\text{d}x$ ,

$K\left({s}_{0}\right)=F\left({s}_{0}u\right)=\sigma$ .

${\stackrel{¯}{\gamma }}_{0}\left(M\right)=\mathrm{sup}\left\{{\gamma }_{0}\left(K\right):K\subset M\right\}\le \infty$ ,

${J}_{1}\left(u\right)=\frac{1}{2}\underset{{ℝ}^{2}}{\int }\left({|\nabla u|}^{2}+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}^{2}\right)\text{d}x\text{d}y\ge 0$ .

$\underset{n\to \infty }{\mathrm{lim}}F\left({u}_{n}\right)=\underset{n\to \infty }{\mathrm{lim}}\frac{1}{4}\underset{{ℝ}^{2}}{\int }{u}_{n}^{2}\theta \left[{u}_{n}\right]\text{d}x+\underset{{ℝ}^{2}}{\int }G\left({u}_{n}\right)\text{d}x=\frac{1}{4}\underset{{ℝ}^{2}}{\int }{u}^{2}\theta \left[u\right]\text{d}x+\underset{{ℝ}^{2}}{\int }G\left(u\right)\text{d}x=F\left(u\right)$ ,

(i) $\left\{{J}_{1}\left({u}_{n}\right)\right\}$ 有界；

(ii) 当 $n\to \infty$ 时， ${{{J}^{\prime }}_{1}|}_{{M}_{\sigma }}\left({u}_{n}\right)\to 0$

$\underset{{ℝ}^{2}}{\int }\left(\nabla {u}_{n}\nabla v+V\left(x\right){u}_{n}v\right)\text{d}x-{\beta }_{n}\left(\underset{{ℝ}^{2}}{\int }{u}_{n}\theta \left[{u}_{n}\right]v\text{d}x+\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right)v\text{d}x\right)\to 0$ (26)

${J}_{1}\left({u}_{n}\right)=\underset{{ℝ}^{2}}{\int }\left({|\nabla {u}_{n}|}^{2}+\underset{{ℝ}^{2}}{\int }V\left(x\right){u}_{n}^{2}\right)\text{d}x\to d$ . (27)

$\underset{{ℝ}^{2}}{\int }\left({|\nabla {u}_{n}|}^{2}+V\left(x\right){u}_{n}^{2}\right)\text{d}x-{\beta }_{n}\left(\underset{{ℝ}^{2}}{\int }{u}_{n}^{2}\theta \left[{u}_{n}\right]v\text{d}x+\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right){u}_{n}\text{d}x\right)\to 0,\text{}n\to \infty$ (28)

$\underset{{ℝ}^{2}}{\int }{u}_{n}^{2}\theta \left[{u}_{n}\right]\text{d}x+\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right){u}_{n}\text{d}x\ge \underset{{ℝ}^{2}}{\int }{u}_{n}^{2}\theta \left[{u}_{n}\right]\text{d}x+4\underset{{ℝ}^{2}}{\int }G\left({u}_{n}\right)\text{d}x=4\sigma >0$ (29)

$0<\beta =\underset{n\to \infty }{\mathrm{lim}}{\beta }_{n}\le \frac{d}{4\sigma }$ .

$\underset{{ℝ}^{2}}{\int }\left(\nabla {u}_{n}\nabla \left({u}_{n}-u\right)+V\left(x\right){u}_{n}\left({u}_{n}-u\right)\right)\text{d}x-{\beta }_{n}\left(\underset{{ℝ}^{2}}{\int }{u}_{n}\theta \left[{u}_{n}\right]\left({u}_{n}-u\right)\text{d}x+\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right)\left({u}_{n}-u\right)\text{d}x\right)\to 0$ (30)

${S}^{m-1}$${H}_{m}$ 中的单位群。定义映射 $\eta :{S}^{m-1}\to {K}_{m}$$\eta \left(u\right)={\lambda }^{*}\left(u\right)u$，其中 ${\lambda }^{*}\left(u\right)u$ 是直线 $\left\{\lambda u|\lambda >0\right\}$${M}_{\sigma }$ 相交的唯一相交的点。因为 ${M}_{\sigma }$ 是维数为1的非空流形， $\eta$${S}^{m-1}$ 上有定义。因此， $\eta$ 是奇连续映射。由 [15] 的命题5.2，我们有 ${\stackrel{¯}{\gamma }}_{0}\left({S}^{m-1}\right)=m$。因此可得 ${\stackrel{¯}{\gamma }}_{0}\left({K}_{m}\right)\ge m$。由 ${K}_{m}={H}_{m}\cap {M}_{\sigma }\subset {M}_{\sigma }$，可得 ${\stackrel{¯}{\gamma }}_{0}\left({M}_{\sigma }\right)\ge {\stackrel{¯}{\gamma }}_{0}\left({K}_{m}\right)\ge m$。因为m是任意的，我们有 ${\stackrel{¯}{\gamma }}_{0}\left({M}_{\sigma }\right)=\infty$

$\underset{{ℝ}^{2}}{\int }\left(\nabla {u}_{n}\nabla v+V\left(x\right){u}_{n}v\right)\text{d}x-{\gamma }_{n}\left(\underset{{ℝ}^{2}}{\int }{u}_{n}\theta \left[{u}_{n}\right]v\text{d}x+\underset{{ℝ}^{2}}{\int }g\left({u}_{n}\right)v\text{d}x\right)=0$ ,

6. 结论

Existence of Ground State Solutions and Infinitely Many Solutions for a Class of Liquid Crystal Systems[J]. 应用数学进展, 2022, 11(11): 8148-8162. https://doi.org/10.12677/AAM.2022.1111863

1. 1. Conti, C., Peccianti, M. and Assanto, G. (2003) Route to Nonlocality and Observation of Accessible Solitons. Physical Review Letters, 91, Article ID: 073901. https://doi.org/10.1103/PhysRevLett.91.073901

2. 2. Strinic, A., Jovic, D. and Petrovic, M. (2008) Spatiotemporal Instabilities of Counterpropagating Beams in Nematic Liquid Crystals. Optical Materials, 30, 1213-1216. https://doi.org/10.1016/j.optmat.2007.05.053

3. 3. Aleksic, N., Petrovic, M., Strinic, A. and Belic, M. (2012) Solitons in Highly Nonlocal Nematic Liquid Crystal: Variational Approach. Physical Review A, 85, Article ID: 033826.

4. 4. Panayotaros, P. and Marchant, T.R. (2014) Solitary Waves in Nematic Liquid Crystals. Physical D: Nonlinear Phenomena, 268, 106-117. https://doi.org/10.1016/j.physd.2013.10.011

5. 5. Hu, W., Zhang, T. and Guo, Q. (2006) Nonlocality Controlled Interaction of Spatial Solitons in Nematic Liquid Crystals. Applied Physics Letters, 89, Article ID: 071111. https://doi.org/10.1063/1.2337268

6. 6. Zhang, G.Q. and Ding, Z.H. (2015) Existence of Solitary Waves in Nonlocal Nematic Liquid Crystals. Nonlinear Analysis, 22, 107-114. https://doi.org/10.1016/j.nonrwa.2014.08.006

7. 7. Claudianor, O. and Giovany, M. (2019) Existence of Positive Solution for a Planar Schrödinger-Poisson System with Exponential Growth. Journal of Mathematical Physics, 60, Ar-ticle ID: 011503. https://doi.org/10.1063/1.5039627

8. 8. Chen, S. and Tang, X. (2020) On the Planar Schröding-er-Poisson System with the Axially Symmetric Potential. Journal of Differential Equations, 268, 945-976. https://doi.org/10.1016/j.jde.2019.08.036

9. 9. Chen, S. and Tang, X. (2020) Axially Symmetric Solutions for the Planar Schrödinger-Poisson System with Critical Exponential Growth. Journal of Differential Equations, 269, 9144-9174. https://doi.org/10.1016/j.jde.2020.06.043

10. 10. Ambrosetti, A., Chang, K. and Ekeland, I. (1998) Non-linear Functional Analysis and Applications to Differential Equations. Proceedings of the Second School, Trieste, 21 April-9 May 1997, 296. https://doi.org/10.1142/9789814528535

11. 11. Do, Ó.J.M. (1997) N-Laplacian Equations in RN with Critical Growth. Abstract and Applied Analysis, 2, 301-315. https://doi.org/10.1155/S1085337597000419

12. 12. Cingolani, S. and Weth, T. (2016) On the Planar Schröding-er-Poisson System. Annales de l’Institut Henri Poincaré C, Analyse non Linéaire, 33, 169-197. https://doi.org/10.1016/j.anihpc.2014.09.008

13. 13. Willem, M. (1997) Minimax Theorems. Springer Science & Business Media, Berlin. https://doi.org/10.1007/978-1-4612-4146-1

14. 14. Ambrosetti, A. and Rabinowitz, P. (1973) Dual Variational Methods in Critical Point Theory and Applications. Journal of functional Analysis, 14, 349-381. https://doi.org/10.1016/0022-1236(73)90051-7

15. 15. Struwe, M. (2008) Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems. Fourth Edition, Springer-Verlag, Berlin.

16. 16. Aubin, J.P. (2011) Applied Functional Analysis. John Wiley & Sons, Hoboken.

17. 17. Royden, H.L. and Fitzpatrick, P. (1988) Real Analysis. Macmillan, New York.

18. NOTES

*第一作者。

#通讯作者。