Advances in Clinical Medicine
Vol. 13  No. 11 ( 2023 ), Article ID: 74987 , 7 pages
10.12677/ACM.2023.13112445

非酒精性脂肪肝患者心血管风险的研究现状

娜迪热·巴哈提*,李雅丽#

新疆医科大学第一附属医院综合内四科,新疆 乌鲁木齐

收稿日期:2023年10月8日;录用日期:2023年11月3日;发布日期:2023年11月9日

摘要

非酒精性脂肪肝(Non-Alcoholic Fatty Liver Disease, NAFLD)是慢性肝病的主要原因,被认为是代谢综合征的肝脏表现。NAFLD与胰岛素抵抗、肥胖、血脂异常、糖尿病等因素密切相关,这些因素也是心血管疾病的危险因素。研究数据表明心血管疾病是目前NAFLD患者死亡的主要原因,所以有大量的研究探讨NAFLD与心血管疾病之间的联系,其中有很多研究指出NAFLD可能是促进动脉粥样硬化和冠心病发生发展的独立危险因素。因此,进一步了解NAFLD与心血管疾病之间的关系,以及这种关系的发生机制是非常重要的,这将有利于在一定程度上减少心血管疾病的发病率和病死率。

关键词

非酒精性脂肪肝,心血管疾病,冠状动脉粥样硬化性心脏病,机制,危险因素

Current Status of Research on Cardiovascular Risk in Patients with Non-Alcoholic Fatty Liver Disease

Nadire Bahati*, Yali Li#

Comprehensive Internal Four Departments, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Oct. 8th, 2023; accepted: Nov. 3rd, 2023; published: Nov. 9th, 2023

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease and is considered to be the hepatic manifestation of the metabolic syndrome. NAFLD is strongly associated with insulin resistance, obesity, dyslipidemia and diabetes, which are also risk factors for cardiovascular disease. Research data suggest that cardiovascular disease is currently the leading cause of death in patients with NAFLD, so there are a large number of studies exploring the link between NAFLD and cardiovascular disease, with many of them pointing to the possibility that NAFLD may be an independent risk factor that promotes the development of atherosclerosis and coronary atherosclerotic heart disease. Therefore, it is important to further understand the relationship between NAFLD and cardiovascular disease, as well as the mechanisms by which this relationship occurs, which will help to reduce the incidence of cardiovascular disease and morbidity and mortality to a certain extent.

Keywords:Non-Alcoholic Fatty Liver Disease, Cardiovascular Disease, Coronary Atherosclerotic Heart Disease, Mechanisms, Risk Factors

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

非酒精性脂肪肝是指除饮酒及其他已知的肝损伤因素外,以肝细胞内脂肪过度积聚为主要特征的一种复杂性的肝脏病变。NAFLD的诊断需要满足以下标准:1) 通过影像学或组织学检查得到肝脏脂肪变性的证据(虽然肝活检是诊断NAFLD的金标准方法,但计算机断层摄影、超声、磁共振等非侵入性成像方法可以更安全、更便宜地使用,且具有良好的敏感性和特异性);2) 排除导致肝脏脂肪堆积的继发性因素,如大量饮酒、长期使用致脂药物、或某些遗传性疾病等 [1] 。目前NAFLD是全世界慢性肝病的主要病因,一项对1990年至2019年发表的相关研究的荟萃分析表明NAFLD的全球患病率约为30%,并呈上升趋势 [2] ,这使其成为了影响人类健康的重要公共卫生问题。NAFLD被认为是代谢综合征的肝脏表现,其与肥胖、糖尿病或血脂异常等代谢合并症有关 [3] ,在Guo等人的研究中,超重人群的NAFLD患病率为69.99%,肥胖人群的NAFLD患病率为75.27% [4] ;在Zobair等人的研究中,2型糖尿病(diabetes mellitus type 2, T2DM)患者中NAFLD的全球患病率为55.5% [5] ;而这些因素也与心血管疾病密切相关。现如今心血管疾病位于全球人群死亡原因的首位,其死亡患者总数占全球死亡患者总数的32%。在我国,心血管疾病的发病率和患病率仍呈明显上升趋势。据数据分析,目前我国心血管疾病现患人数为2.9亿,其中冠心病患者占1100万;据估计,至2030年冠心病的患病人数可达2263万 [6] 。所以对冠心病发生、发展的及早预防和早期干预是十分重要的。近年来关于NAFLD与冠心病之间相关性及可能机制的研究越来越多,其中有不少研究指出NAFLD可能是促进动脉粥样硬化和冠心病发生发展的独立危险因素 [7] ,通过对NAFLD进行预防和早期诊治可能可以降低冠心病的发病率,延缓冠心病的进展以及改善冠心病的预后。本综述主要讨论NAFLD与冠心病的共同危险因素,NAFLD与冠心病的相关性,相关性背后的可能机制。

2. 非酒精性脂肪肝与冠心病的共同危险因素

众所周知,冠心病传统的主要危险因素有糖尿病、血脂异常、肥胖和不良的生活习惯等 [8] 。NAFLD的发生发展也同这些危险因素有着密不可分的联系。2型糖尿病和糖耐量受损是NAFLD发生发展的重要危险因素 [9] 。2型糖尿病与胰岛素抵抗、高血糖、高甘油三酯血症、从脂肪组织到肝脏的游离脂肪酸增加、内脏脂肪堆积有关;而所有这些都与NAFLD的风险增加有关。高甘油三酯血症会导致动脉粥样硬化,增加冠心病的风险,在Zhang等人的研究中,93.2%的心血管疾病患者的低密度脂蛋白胆固醇水平存在异常 [10] 。同时高甘油三酯血症也与胰岛素抵抗、糖耐量受损、2型糖尿病、肝脏脂肪堆积、人体肥胖和代谢综合征相关,从而导致NAFLD的风险增加。肥胖是指体内脂肪组织过多,会导致肝脏、心脏等异位脂肪沉积,从而增加NAFLD和冠心病发生发展的风险。不良的生活习惯,如不健康的饮食、缺乏运动、吸烟等,都是NAFLD和冠心病的危险因素。这些习惯会导致体重增加、血脂异常、血压升高等,增加NAFLD和冠心病发生发展的风险。尽管NAFLD和冠心病有些共同的危险因素,但并非所有NAFLD患者都伴随冠心病,还存在其他可能导致冠心病的独立危险因素。因此,个体差异和其他因素的作用也需要考虑。

3. 非酒精性脂肪肝与冠心病的相关性研究

目前国内外都有大量的研究在探讨NAFLD与冠心病的相关性。在Chia的研究中,共纳入了817名NAFLD的患者,结果显示 NAFLD的严重程度与亚临床冠状动脉粥样硬化之间有着显著的线性趋势,且重度NAFLD是亚临床冠状动脉粥样硬化的独立风险因素 [11] 。在Pu的研究中,分析比较NAFLD患者的组织学严重程度与其10年动脉硬化性心血管疾病(Atherosclerotic Cardiovascular Disease, ASCVD)风险的关系,在纳入的398名韩国受试者(平均年龄57.9岁;男性,44.2%),与ASCVD风险 < 10%的受试者相比,ASCVD风险 ≥ 10%的受试者存在更严重的非酒精性脂肪肝炎(Non-Alcoholic Steatohepatitis, NASH)和晚期纤维化(P < 0.05),且NASH (OR = 4.07; 95%CI: 1.40~11.88)或晚期纤维化(OR = 8.11; 95%CI: 1.83~35.98)与ASCVD高风险独立相关 [11] 。在McNally等人的研究中,在纳入的5288例肝脂肪变性患者,Fib-4 ≥ 2.67是NAFLD组中冠心病的独立危险因素。在Fib-4值低于2.67时,作为连续变量的Fib-4与NAFLD患者的冠心病风险呈线性相关 [12] 。在一项纳入了5,802,226名患者的荟萃分析中,经过中位6.5年的随访,共有99,668名患者出现ASCVD。结果显示,NAFLD可明显增加ASCVD的风险(HR = 1.45; 95%CI 1.31~1.61),且随着NAFLD严重程度的增加,ASCVD的风险同步增加,尤其是在肝硬化阶段(HR = 2.50; 95%CI 1.68~3.72) [13] 。在一项国内的研究中,共纳入1683名无症状的患者(平均年龄,63.3 ± 9.4岁;1117名男性),在随访中,NAFLD组比非NAFLD组显示出更高的冠脉斑块进展率(33.0% vs 16.6%, P < 0.001) [14] 。因此目前大量研究均表明NAFLD与心血管事件尤其是冠心病的发生与发展密切相关。

4. 非酒精性脂肪肝与冠心病相关性的可能机制

4.1. 低级别全身性炎症

NAFLD通过肝脏和脂肪组织之间复杂的相互作用引起全身炎症反应 [15] [16] 。游离脂肪酸会诱导肝细胞分泌肿瘤坏死因子(TNF-α)、白细胞介素-6 (IL-6)和白细胞介素-8 (IL-8),从而诱导全身炎症反应 [17] [18] 。一项有2482名参与者的研究发现,在调整了体重指数和代谢综合征的其他成分后,脂肪肝的发生发展与血清全身炎症标志物的浓度升高独立相关,这些标志物包括c反应蛋白、尿异前列腺素、IL-6、细胞间粘附分子1等 [19] 。全身炎症反应与心血管疾病的发生发展也有关 [20] 。NAFLD继发的低级别全身炎症反应可导致促炎细胞因子释放,并可能通过诱导内皮功能障碍和促进斑块形成而促进动脉粥样硬化性心血管疾病的发展 [21] [22] [23] 。

4.2. 心外膜脂肪组织

NAFLD与心外膜脂肪组织增加有关,且心外膜脂肪厚度的高低与肝纤维化的严重程度有关 [24] [25] 。心外膜脂肪组织与冠状动脉和心肌紧密相连,与心肌共享一个微循环,并分泌促炎细胞因子,如IL-6和TNF-α,通过诱导内膜浸润和纤维化促进动脉粥样硬化和心力衰竭 [26] [27] 。一项对147例活检证实的NAFLD患者的研究发现,心外膜脂肪堆积和心脏功能改变在重度肝纤维化患者中更为明显 [25] 。这些数据表明NASH和心血管疾病可能共享某种与异位脂肪组织堆积及全身炎症反应相关的机制,但目前仍需要更多的研究来验证这一假设。

4.3. 胰岛素抵抗

糖代谢异常和胰岛素抵抗是NAFLD和心血管疾病的关键驱动因素。骨骼肌胰岛素抵抗将葡萄糖从骨骼肌糖原合成转移到肝脏 [28] 。转移到肝脏的葡萄糖增多,会伴随着高胰岛素血症,这将刺激固醇调节元件结合蛋白1c (SREBP1c),促进调节脂肪生成的关键肝酶的表达增加,导致极低密度脂蛋白的产生增加,从而导致高甘油三酯血症和NAFLD [15] [29] 。高甘油三酯血症、高胰岛素血症进一步触发肝脏糖异生,进一步增加胰岛素水平,从而促进糖代谢异常的恶性循环。胰岛素抵抗是动脉粥样硬化性心血管疾病一个强有力的预测因子 [30] [31] ,高水平胰岛素通过多种机制加速动脉粥样硬化的过程 [32] 。这些均可表明胰岛素抵抗在NAFLD和心血管疾病发病机制中的关键性。

4.4. 内皮功能障碍

内皮功能障碍是动脉粥样硬化发生的起点 [33] 。不对称二甲基精氨酸(ADMA)升高的常源自肝脏功能的损害,并且通常可以在NAFLD患者中检测到 [34] 。ADMA水平升高导致保护性血管舒张分子-NO可用性降低,这可能导致血管舒缩调节或血管通透性紊乱以及血小板功能障碍 [34] [35] 。在Tomas等人的研究中,在886名患者中发现,NAFLD组与非NAFLD组的患者相比,血管内皮功能障碍的发生率更高(64.8% vs 43.4%; P < 0.001)且冠脉血流储备更低(1.9 ± 1.1 vs 2.2 ± 0.7; P < 0.001) [36] 。此外,NAFLD患者的同型半胱氨酸水平较高,这可进一步诱导氧化应激和内皮功能障碍从而促进动脉粥样硬化的发生 [37] [38] [39] 。由此可见,内皮功能障碍可能在NAFLD患者心血管疾病的发生发展中起到重要作用。

4.5. 肠道微生物失调与全身炎症

NAFLD与肠上皮细胞间紧密连接的破坏有关,导致肠道通透性增加,肠道细菌和脂多糖的易位 [40] 。一项前瞻性研究采用全基因组测序技术,从活检证实的NAFLD患者的粪便中提取脱氧核苷酸,发现晚期肝纤维化与促炎革兰氏阴性变形杆菌(包括大肠杆菌)数量增加有关 [41] 。一项对动脉粥样硬化性心血管疾病患者与健康对照组进行的宏基因组相关性研究发现,革兰氏阴性细菌(包括大肠杆菌)数量在动脉粥样硬化性心血管疾病患者中增加 [42] 。这些研究表明,NAFLD患者的肠道微生物失调可导致全身炎症,并可能加剧心血管疾病 [21] [43] [44] [45] 。

5. 小结

综上所述,NAFLD与冠心病之间具有较强的相关性。NAFLD的胰岛素抵抗、心外膜脂肪组织堆积、炎症和内皮功能障碍、肠道微生物失调可能是冠心病发生发展的重要机制。通过对NAFLD的早期干预及治疗,可降低心血管疾病的发生率、延缓心血管疾病的进展及改善心血管疾病的预后。大量研究表明NAFLD患者发生冠心病的风险增加,但NAFLD是否是冠心病的独立危险因素目前尚未明确,对此后续仍需大量研究。

文章引用

娜迪热·巴哈提,李雅丽. 非酒精性脂肪肝患者心血管风险的研究现状
Current Status of Research on Cardiovascular Risk in Patients with Non-Alcoholic Fatty Liver Disease[J]. 临床医学进展, 2023, 13(11): 17451-17457. https://doi.org/10.12677/ACM.2023.13112445

参考文献

  1. 1. Chalasani, N., Younossi, Z., Lavine, J.E., et al. (2018) The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology, 67, 328-357. https://doi.org/10.1002/hep.29367

  2. 2. Younossi, Z.M., Golabi, P., Paik, J.M., et al. (2023) The Global Epidemi-ology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology, 77, 1335-1347. https://doi.org/10.1097/HEP.0000000000000004

  3. 3. Wang, X.J. and Malhi, H. (2018) Nonalcoholic Fatty Liver Disease. Annals of Internal Medicine, 169, Itc65-itc80. https://doi.org/10.7326/IsTranslatedFrom_AITC201811060_Japanese

  4. 4. Quek, J., Chan, K.E., Wong, Z.Y., et al. (2023) Global Prevalence of Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis in the Overweight and Obese Population: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology and Hepatology, 8, 20-30. https://doi.org/10.1016/S2468-1253(22)00317-X

  5. 5. Younossi, Z.M., Golabi, P., De Avila, L., et al. (2019) The Global Epidemiology of NAFLD and NASH in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Journal of Hepatology, 71, 793-801. https://doi.org/10.1016/j.jhep.2019.06.021

  6. 6. 北京高血压防治协会, 北京糖尿病防治协会, 北京慢性病防治与健康教育研究会, 等. 基层心血管病综合管理实践指南2020[J]. 中国医学前沿杂志(电子版), 2020, 12(8): 前插1, 1-73.

  7. 7. Sinn, D.H., Kang, D., Chang, Y., et al. (2020) Non-Alcoholic Fatty Liver Disease and the Incidence of Myocardial Infarction: A Cohort Study. Journal of Gastroenterology and Hepatology, 35, 833-839. https://doi.org/10.1111/jgh.14856

  8. 8. Mahmood, S.S., Levy, D., Vasan, R.S., et al. (2014) The Framingham Heart Study and the Epidemiology of Cardiovascular Disease: A Historical Perspective. The Lancet, 383, 999-1008. https://doi.org/10.1016/S0140-6736(13)61752-3

  9. 9. Tomah, S., Alkhouri, N. and Hamdy, O. (2020) Nonalco-holic Fatty Liver Disease and Type 2 Diabetes: Where Do Diabetologists Stand? Clinical Diabetes and Endocrinology, 6, Article No. 9. https://doi.org/10.1186/s40842-020-00097-1

  10. 10. Zhang, M., Deng, Q., Wang, L., et al. (2018) Prevalence of Dyslipidemia and Achievement of Low-Density Lipoprotein Cholesterol Targets in Chinese Adults: A Nationally Repre-sentative Survey of 163,641 Adults. International Journal of Cardiology, 260, 196-203. https://doi.org/10.1016/j.ijcard.2017.12.069

  11. 11. Hsiao, C.-C., Teng, P.-H., Wu, Y.-J., et al. (2021) Severe, but Not Mild to Moderate, Non-Alcoholic Fatty Liver Disease Associated with Increased Risk of Subclinical Coronary Ath-erosclerosis. BMC Cardiovascular Disorders, 21, Article No. 244. https://doi.org/10.1186/s12872-021-02060-z

  12. 12. Mcnally, B.B., Rangan, P., Wijarnpreecha, K., et al. (2023) Fi-brosis-4 Index Score Predicts Concomitant Coronary Artery Diseases across the Spectrum of Fatty Liver Disease. Diges-tive Diseases and Sciences, 68, 3765-3773. https://doi.org/10.1007/s10620-023-07987-1

  13. 13. Mantovani, A., Csermely, A., Petracca, G., et al. (2021) Non-Alcoholic Fatty Liver Disease and Risk of Fatal and Non-Fatal Cardiovascular Events: An Updated Systematic Re-view and Meta-Analysis. The Lancet Gastroenterology and Hepatology, 6, 903-913. https://doi.org/10.1016/S2468-1253(21)00308-3

  14. 14. Yu, M.M., Tang, X.L., Zhao, X., et al. (2022) Plaque Pro-gression at Coronary CT Angiography Links Non-Alcoholic Fatty Liver Disease and Cardiovascular Events: A Prospec-tive Single-Center Study. European Radiology, 32, 8111-8121. https://doi.org/10.1007/s00330-022-08904-2

  15. 15. Loomba, R., Friedman, S.L. and Shulman, G.I. (2021) Mecha-nisms and Disease Consequences of Nonalcoholic Fatty Liver Disease. Cell, 184, 2537-2564. https://doi.org/10.1016/j.cell.2021.04.015

  16. 16. Anstee, Q.M., Mantovani, A., Tilg, H., et al. (2018) Risk of Car-diomyopathy and Cardiac Arrhythmias in Patients with Nonalcoholic Fatty Liver Disease. Nature Reviews Gastroenter-ology & Hepatology, 15, 425-439. https://doi.org/10.1038/s41575-018-0010-0

  17. 17. Duan, Y., Pan, X., Luo, J., et al. (2022) Association of Inflam-matory Cytokines with Non-Alcoholic Fatty Liver Disease. Frontiers in Immunology, 13, Article ID: 880298. https://doi.org/10.3389/fimmu.2022.880298

  18. 18. Xiong, J., Chen, X., Zhao, Z., et al. (2022) A Potential Link be-tween Plasma Short-Chain Fatty Acids, TNF-α Level and Disease Progression in Non-Alcoholic Fatty Liver Disease: A Retrospective Study. Experimental and Therapeutic Medicine, 24, Article No. 598. https://doi.org/10.3892/etm.2022.11536

  19. 19. Fricker, Z.P., Pedley, A., Massaro, J.M., et al. (2019) Liver Fat Is Associated with Markers of Inflammation and Oxidative Stress in Analysis of Data from the Framingham Heart Study. Clinical Gastroenterology and Hepatology, 17, 1157-1164.e4. https://doi.org/10.1016/j.cgh.2018.11.037

  20. 20. Kaptoge, S., Di Angelantonio, E., Pennells, L., et al. (2012) C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction. The New England Journal of Medicine, 367, 1310-1320. https://doi.org/10.1056/NEJMoa1107477

  21. 21. Tang, W.H.W., Bäckhed, F., Landmesser, U., et al. (2019) Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. Journal of the Amer-ican College of Cardiology, 73, 2089-2105. https://doi.org/10.1016/j.jacc.2019.03.024

  22. 22. Duewell, P., Kono, H., Rayner, K.J., et al. (2010) NLRP3 Inflam-masomes Are Required for Atherogenesis and Activated by Cholesterol Crystals. Nature, 464, 1357-1361. https://doi.org/10.1038/nature08938

  23. 23. Bäck, M., Yurdagul, A., Tabas, I., et al. (2019) Inflammation and Its Resolution in Atherosclerosis: Mediators and Therapeutic Opportunities. Nature Reviews Cardiology, 16, 389-406. https://doi.org/10.1038/s41569-019-0169-2

  24. 24. Petta, S., Argano, C., Colomba, D., et al. (2015) Epicardial Fat, Cardiac Geometry and Cardiac Function in Patients with Non-Alcoholic Fatty Liver Disease: Association with the Sever-ity of Liver Disease. Journal of Hepatology, 62, 928-933. https://doi.org/10.1016/j.jhep.2014.11.030

  25. 25. Liu, B., Li, Y., Li, Y., et al. (2019) Association of Epicardial Adipose Tissue with Non-Alcoholic Fatty Liver Disease: A Me-ta-Analysis. Hepatology International, 13, 757-765. https://doi.org/10.1007/s12072-019-09972-1

  26. 26. Packer, M. (2018) Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. Journal of the American College of Cardiology, 71, 2360-2372. https://doi.org/10.1016/j.jacc.2018.03.509

  27. 27. Madonna, R., Massaro, M., Scoditti, E., et al. (2019) The Epicardial Adipose Tissue and the Coronary Arteries: Dangerous Liaisons. Cardiovascular Research, 115, 1013-1025. https://doi.org/10.1093/cvr/cvz062

  28. 28. Grunwald, S.A., Haafke, S., Grieben, U., et al. (2022) Statins Aggravate the Risk of Insulin Resistance in Human Muscle. International Journal of Molecular Sciences, 23, Article No. 2398. https://doi.org/10.3390/ijms23042398

  29. 29. Flannery, C., Dufour, S., Rabøl, R., et al. (2012) Skeletal Muscle Insu-lin Resistance Promotes Increased Hepatic de Novo Lipogenesis, Hyperlipidemia, and Hepatic Steatosis in the Elderly. Diabetes, 61, 2711-2717. https://doi.org/10.2337/db12-0206

  30. 30. Ke, Z., Huang, R., Xu, X., et al. (2023) Long-Term High Level of Insulin Resistance Is Associated with an Increased Prevalence of Coronary Artery Calcification: The CARDIA Study. Journal of the American Heart Association, 12, e028985. https://doi.org/10.1161/JAHA.122.028985

  31. 31. Martín-Saladich, Q., Simó, R., Aguadé-Bruix, S., et al. (2023) Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis. International Journal of Molecular Sciences, 24, Article No. 3250. https://doi.org/10.3390/ijms24043250

  32. 32. Di Pino, A. and Defronzo, R.A. (2019) Insulin Resistance and Athero-sclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews, 40, 1447-1467. https://doi.org/10.1210/er.2018-00141

  33. 33. Cimmino, G., Muscoli, S., De Rosa, S., et al. (2023) Evolving Con-cepts in the Pathophysiology of Atherosclerosis: From Endothelial Dysfunction to Thrombus Formation through Multiple Shades of Inflammation. Journal of Cardiovascular Medicine (Hagerstown), 24, e156-e167. https://doi.org/10.2459/JCM.0000000000001450

  34. 34. Francque, S.M., Van Der Graaff, D. and Kwanten, W.J. (2016) Non-Alcoholic Fatty Liver Disease and Cardiovascular Risk: Pathophysiological Mechanisms and Implications. Journal of Hepatology, 65, 425-443. https://doi.org/10.1016/j.jhep.2016.04.005

  35. 35. Stahl, E.P., Dhindsa, D.S., Lee, S.K., et al. (2019) Nonalcoholic Fatty Liver Disease and the Heart: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 73, 948-963. https://doi.org/10.1016/j.jacc.2018.11.050

  36. 36. Vita, T., Murphy, D.J., Osborne, M.T., et al. (2019) As-sociation between Nonalcoholic Fatty Liver Disease at CT and Coronary Microvascular Dysfunction at Myocardial Per-fusion PET/CT. Radiology, 291, 330-337. https://doi.org/10.1148/radiol.2019181793

  37. 37. Xiang, W., Yang, Y., Weng, L., et al. (2023) Hyperhomocyste-inemia Activates NLRP3 Inflammasome to Cause Hepatic Steatosis and Insulin Resistance via MDM2-Mediated Ubiqui-tination of HSF1. International Immunopharmacology, 118, Article ID: 110085. https://doi.org/10.1016/j.intimp.2023.110085

  38. 38. Fu, L., Wang, Y. and Hu, Y.Q. (2023) Association between Homocysteine and Nonalcoholic Fatty Liver Disease: Mendelian Randomisation Study. European Journal of Clinical Investigation, 53, e13895. https://doi.org/10.1111/eci.13895

  39. 39. Gao, Y., Guo, Y., Hao, W., et al. (2023) Correlation Analysis and Diagnos-tic Value of Serum Homocysteine, Cystatin C and Uric Acid Levels with the Severity of Coronary Artery Stenosis in Pa-tients with Coronary Heart Disease. International Journal of General Medicine, 16, 2719-2731. https://doi.org/10.2147/IJGM.S411417

  40. 40. Sharpton, S.R., Ajmera, V. and Loomba, R. (2019) Emerging Role of the Gut Microbiome in Nonalcoholic Fatty Liver Disease: From Composition to Function. Clinical Gastroenterology and Hepatology 17, 296-306. https://doi.org/10.1016/j.cgh.2018.08.065

  41. 41. Loomba, R., Seguritan, V., Li, W., et al. (2017) Gut Microbi-ome-Based Metagenomic Signature for Non-Invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metabolism, 25, 1054-1062.e5. https://doi.org/10.1016/j.cmet.2017.04.001

  42. 42. Jie, Z., Xia, H., Zhong, S.L., et al. (2017) The Gut Microbiome in Atherosclerotic Cardiovascular Disease. Nature Communications, 8, Article No. 845. https://doi.org/10.1038/s41467-017-00900-1

  43. 43. Shen, F., Zheng, R.D., Sun, X.Q., et al. (2017) Gut Microbiota Dysbiosis in Patients with Non-Alcoholic Fatty Liver Disease. Hepatobiliary & Pancreatic Diseases International, 16, 375-381. https://doi.org/10.1016/S1499-3872(17)60019-5

  44. 44. Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., et al. (2020) Gut Microbiota and Human NAFLD: Disentangling Microbial Signatures from Metabolic Disorders. Nature Reviews Gastroenterology & Hepatology, 17, 279-297. https://doi.org/10.1038/s41575-020-0269-9

  45. 45. Nian, F., Zhu, C., Jin, N., et al. (2023) Gut Microbiota Metabolite TMAO Promoted Lipid Deposition and Fibrosis Process via KRT17 in Fatty Liver Cells in Vitro. Biochemical and Bio-physical Research Communications, 669, 134-142. https://doi.org/10.1016/j.bbrc.2023.05.041

  46. NOTES

    *第一作者。

    #通讯作者。

期刊菜单