Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62351 , 8 pages
10.12677/ACM.2023.133478

丁苯酞通过Nrf2/ARE信号通路保护高糖诱导的视网膜色素上皮细胞免受氧化损伤

李璐,刘桂波,尹晓妮,颜萌,张铎,郑召霞,张丽娜*

青岛大学附属医院眼科,山东 青岛

收稿日期:2023年2月11日;录用日期:2023年3月6日;发布日期:2023年3月13日

摘要

目的:研究丁苯酞对高糖诱导的视网膜色素上皮(RPE)细胞氧化应激损伤的保护作用,并探究其具体作用机制,为糖尿病视网膜病变的治疗提供新的思路。方法:应用CCK-8实验筛选丁苯酞安全浓度,将细胞分为以下3组:正常组(低糖DMEM,糖浓度5.5 mM),高糖组(高糖DMEM,糖浓度25 mM),丁苯酞组(丁苯酞 + 高糖DMEM),并检测细胞活力。采用细胞划痕实验检测细胞迁移能力,活性氧试剂盒测定细胞内活性氧(ROS)表达量,Western Blot检测Nrf2/ARE信号通路相关蛋白表达。结果:丁苯酞浓度 ≤ 100 μM时,对细胞存活率无明显影响(P > 0.05),后续丁苯酞实验浓度为100 μM。高糖组细胞存活率明显低于正常组(P < 0.001),丁苯酞组细胞存活率明显高于高糖组(P < 0.001),但较正常组降低(P < 0.001)。高糖组细胞迁移率明显高于正常组(P < 0.001),丁苯酞组较高糖组细胞迁移率明显降低(P < 0.001),但高于正常组(P < 0.001)。高糖组细胞内ROS水平较正常组明显升高(P < 0.001),丁苯酞组较高糖组ROS水平降低(P < 0.001),但较正常组ROS水平升高(P < 0.001)。高糖组细胞内Nrf2、HO-1、NQO1蛋白表达均较正常组升高(P均 < 0.001),丁苯酞处理后Nrf2、HO-1、NQO1蛋白均进一步显著升高(P < 0.001, P < 0.001, P < 0.01)。结论:丁苯酞对高糖诱导的RPE细胞具有保护作用,其机制可能与激活Nrf2/ARE通路、抑制氧化应激密切相关。

关键词

丁苯酞,糖尿病视网膜病变,氧化应激,Nrf2,视网膜色素上皮细胞

Butylphthalide Protects High Glucose-Induced Retinal Pigment Epithelium Cells from Oxidative Damage through the Nrf2/ARE Signaling Pathway

Lu Li, Guibo Liu, Xiaoni Yin, Meng Yan, Duo Zhang, Zhaoxia Zheng, Lina Zhang*

Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Feb. 11th, 2023; accepted: Mar. 6th, 2023; published: Mar. 13th, 2023

ABSTRACT

Purpose: The aim of this study was to assess the protective effect of butylphthalide on oxidative stress damage of retinal pigment epithelium (RPE) cells induced by high glucose, and explore its specific mechanism, providing a new idea for the treatment of diabetic retinopathy. Methods: The safe concentration of butylphthalide was screened by Cell Counting Kit-8 (CCK-8) assay, and the cells were divided into three groups. The groups included a normal group, in which cells were cultured in low glucose DMEM medium with a concentration of 5.5 mM; a high glucose group, in which cells were cultured in high glucose DMEM medium with a concentration of 25 mM; a butylphthalide group, in which cells were cultured in butylphthalide and high glucose DMEM medium. Cell viability was also measured. The cell migration ability was detected by cell scratching assay. The expression of intracellular reactive oxygen species (ROS) was determined by reactive oxygen species kit. The expression of Nrf2/ARE signaling pathway related proteins was detected by Western Blot. Results: When the concentration of butylphthalide was less than 100 μM, the cell survival rate was not significantly affected (P > 0.05), and the concentration of butylphthalide was 100 μM in our study. The cell survival rate in the high glucose group was significantly lower than the normal group (P < 0.001). The cell survival rate in the butylphthalide group was significantly higher than the high glucose group (P < 0.001), but was lower than the normal group (P < 0.001). Cell mobility in the high glucose group was significantly higher than the normal group (P < 0.001). Cell mobility in the butylphthalide group was significantly lower than the high glucose group (P < 0.001), but higher than the normal group (P < 0.001). The intracellular ROS level in the high glucose group was significantly higher than the normal group (P < 0.001), while the ROS level of butylphthalide group was significantly lower than the high glucose group (P < 0.001), but higher than the normal group (P < 0.001). The protein expressions of Nrf2, HO-1 and NQO1 in high glucose group were higher than the normal group (P < 0.001). After butylphthalide treatment, Nrf2, HO-1, NQO1 proteins were further significantly increased (P < 0.001, P < 0.001, P < 0.01). Conclusion: Butylphthalide has a protective effect on high glucose induced RPE cells, and its mechanism may be closely related to the activation of Nrf2/ARE pathway and the inhibition of oxidative stress.

Keywords:Butylphthalide, Diabetic Retinopathy, Oxidative Stress, Nrf2, Retinal Pigment Epithelium Cell

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病视网膜病变(diabetic retinopathy, DR)是糖尿病常见的微血管并发症,也是工龄人群视力损害及失明的主要原因 [1] 。高糖状态下,多种机制导致视网膜功能障碍,氧化应激是其中的重要环节 [2] 。视网膜色素上皮(RPE)细胞是血–视网膜屏障的重要组成部分。高血糖状态下,视网膜耗氧量增加,产生大量活性氧(ROS),造成RPE细胞氧化损伤,并激活其发生增殖迁移 [3] ,引起血–视网膜屏障结构和功能的破坏,加速DR进展。Nrf2/ARE信号传导通路在抗氧化应激损伤中发挥重要的防御机制 [4] ,激活Nrf2可抑制ROS诱导的细胞损伤。丁苯酞又名芹菜甲素,主要用于缺血性脑卒中的治疗,具有抗氧化应激、抗炎、抗凋亡、抗胶质增生 [5] 等作用,但能否增强RPE抗氧化能力并发挥保护作用仍不清楚。本实验旨在探讨丁苯酞对高糖诱导的RPE氧化应激损伤的保护作用,并探讨其具体机制。

2. 材料与方法

2.1. 细胞与试剂

ARPE-19细胞株(赛百慷生物,iCell-h020);丁苯酞(石药集团);0.25%含EDTA胰蛋白酶(北京Solarbio公司);DMEM低糖(糖浓度5.5 mM)培养基、DMEM高糖(糖浓度25 mM)培养基、胎牛血清(大连美仑生物);Cell Counting Kit-8试剂盒(大连美仑生物);活性氧检测试剂盒(大连美仑生物);Nrf2、HO-1、NQO1、β-actin一抗(亲科生物);细胞培养板(美国康宁公司)。

2.2. 方法

2.2.1. 细胞培养

ARPE-19细胞复苏后,在含90%低糖DMEM + 10%胎牛血清的培养瓶中培养,培养条件为37℃,0.5% CO2。培养瓶中细胞密度达70%~80%时,进行消化、传代并进行后续实验。

2.2.2. 细胞分组

ARPE-19细胞分为正常组、高糖组、丁苯酞组。正常组:细胞继续在低糖DMEM培养基中培养24 h;高糖组:培养基更换为高糖DMEM培养基培养24 h;丁苯酞组:培养基中先加入一定浓度的丁苯酞(通过后续实验筛选)预处理2 h,之后与高糖DMEM培养基共孵育24 h。

2.2.3. CCK-8试剂(Cell Counting Kit-8)检测细胞活力

ARPE-19细胞以每孔细胞数10000个接种于96孔板中,培养24 h。培养基中加入不同浓度丁苯酞(0, 0.1, 1, 10, 20, 50, 100 μM)继续培养24 h,每孔加入10 ul CCK-8试剂,避光孵育1 h,酶标仪测定450 nm吸光度(OD)。根据OD值计算细胞存活率。

2.2.4. 细胞划痕实验

6孔板背面用Marker笔划线,将ARPE-19细胞接种在6孔板中培养,使细胞密度增加至80%,用移液枪头在每个孔划垂直线,按前所述对细胞进行分组处理,分别于0、24 h显微镜下拍照记录,并计算细胞迁移率。

2.2.5. 细胞内氧化应激水平ROS测定

ARPE-19细胞接种于避光96孔板中培养24 h (细胞密度约80%),分组处理后使用活性氧试剂盒将各孔装载DCFH-DA探针,37℃温箱内避光孵育30 min,PBS清洗3遍后各孔加入100 ul无血清低糖DMEM培养基,使用荧光酶标仪(激发波长488 nm,发射波长525 nm)测定各孔荧光值,并计算细胞内相对ROS水平。

2.2.6. Western Blot检测细胞内蛋白表达

将分组处理的细胞加入蛋白裂解液及PMSF,冰上裂解2 h,离心处理后收集蛋白提取物,采用BCA法测定蛋白浓度,煮沸蛋白使其变性,进行12% SDS-PAGE凝胶电泳并将蛋白转至PVDF膜,常温下用无血清快速封闭液封闭半小时,4℃条件下加入一抗孵育过夜,常温下加入辣根过氧化物酶结合的二抗孵育1 h,使用增强化学发光检测系统进行处理并进行分析。使用以下稀释度的一抗:Nrf2 (1:1000),HO-1 (1:10,000),NQO1 (1:1000),β-actin (1:2000)。

2.3. 统计学处理

采用SPSS 26.0进行统计学分析,所有数据均以均数±标准差表示,各组比较采用单因素方差分析,组间比较采用Dunnett-t检验或Bonferroni检验。P < 0.05认为差异有统计学意义。

3. 结果

3.1. 丁苯酞对ARPE-19细胞活力的影响

使用CCK-8试剂盒检测不同浓度丁苯酞对ARPE-19细胞活力的影响,结果显示,各组细胞存活率与正常组相比均无统计学差异(F = 0.8871, P = 0.5255),见图1,说明丁苯酞浓度 < 100 μM时均对细胞活力无影响,后续丁苯酞实验浓度选择100 μM。

Figure 1. Effects of butylphthalide on the viability of ARPE-19 cells

图1.丁苯酞对ARPE-19细胞活力的影响

3.2. 丁苯酞对高糖诱导的ARPE-19细胞活力的影响

各组细胞存活率差异有统计学差异(F = 146.7, P < 0.001),见图2。高糖组细胞存活率明显低于正常组(P < 0.001),丁苯酞组细胞存活率明显高于高糖组(P < 0.001),但较正常组降低(P < 0.001)。

Figure 2. Effects of butylphthalide on the viability of high glucose-induced ARPE-19 cells

图2. 丁苯酞对高糖诱导的ARPE-19细胞活力的影响

3.3. 丁苯酞对高糖诱导的ARPE-19细胞迁移的影响

细胞迁移图像及细胞迁移率见图3,各组细胞迁移率有统计学差异(F = 1064, P < 0.001)。高糖组24 h细胞迁移率明显高于正常组(P < 0.001),丁苯酞组较高糖组细胞迁移率明显降低(P < 0.001),但高于正常组(P < 0.001)。

Figure 3. Effect of butylphthalide on the migration of high glucose-induced ARPE-19 cells

图3. 丁苯酞对高糖诱导的ARPE-19细胞迁移的影响

3.4. 丁苯酞对高糖诱导的ARPE-19细胞内氧化应激水平的影响

各组细胞内ROS水平差异有统计学差异(F = 390.6, P < 0.001),见图4。高糖组细胞内ROS水平较正常组明显升高(P < 0.001),丁苯酞组较高糖组ROS水平降低(P < 0.001),但较正常组ROS水平升高(P < 0.001)。

Figure 4. Effects of butylphthalide on oxidative stress levels of high glucose-induced ARPE-19 cells

图4. 丁苯酞对高糖诱导的ARPE-19氧化应激水平的影响

3.5. 丁苯酞对高糖诱导的ARPE-19细胞Nrf2/ARE信号传导通路的影响

Western Blot结果显示,各组细胞内Nrf2、HO-1、NQO1蛋白表达均有统计学差异(F = 280.1,137.7,77.34,P均 < 0.05),见图5。高糖组细胞内Nrf2、HO-1、NQO1蛋白表达均较正常组升高(P均 < 0.001),丁苯酞处理后Nrf2、HO-1、NQO1蛋白均进一步显著升高(P < 0.001, P < 0.001, P < 0.01)。

Figure 5. Effect of butylphthalide on Nrf2/ARE signaling pathway of high glucose-induced ARPE-19 cells

图5. 丁苯酞对高糖诱导的ARPE-19细胞Nrf2/ARE信号传导通路的影响

4. 讨论

随着全球人口快速老龄化,DR已经成为50岁以上成人中重度视力损伤甚至失明的第五大原因 [6] 。目前,DR的具体发病机制仍不清楚,但目前已经有几种生化途径将高血糖与微血管并发症联系起来,包括多元醇的积累、晚期糖基化终产物(advanced glycation end products, AGEs)的形成、氧化应激和蛋白激酶C (PKC)的活化 [7] 。氧化应激是介导视网膜功能障碍的重要环节,减轻高糖状态下氧化应激水平有助于减缓DR的进展。目前,抗氧化剂成在DR中越来越受到关注。一项随机对照研究显示,口服高剂量维生素E (1600 IU/d)治疗4个月后,糖尿病患者视网膜血流量显著增加,血流动力学恢复正常,提示抗氧化剂在防治DR中发挥重要作用 [8] 。本研究使用CCK-8法检测ARPE-19细胞活力,结果显示高糖状态下细胞活力显著下降,给予丁苯酞处理后,细胞活力显著增加,表明丁苯酞有助于高糖诱导的ARPE-19细胞恢复活力,保护细胞免受损伤。细胞内ROS水平测定显示,高糖诱导下细胞内ROS水平增加121.1%,经丁苯酞处理后细胞内ROS水平降低70%,有力证明了丁苯酞能够减少高糖诱导的ARPE-19细胞内ROS堆积,减轻氧化损伤。一项体外实验表明,丁苯酞通过减少细胞内ROS生成,保护过氧化氢诱导的大鼠视网膜穆勒细胞免受氧化应激损伤 [9] 。同时,动物实验表明,丁苯酞通过降低血糖、血清丙二醛(MDA)和8-羟基脱氧鸟苷(8-OHdG)水平延缓糖尿病大鼠并发性白内障的发生和发展 [10] 。

RPE细胞功能障碍可导致血–视网膜屏障的破坏,同时,血–视网膜屏障的破坏又使RPE细胞暴露于视网膜下腔和玻璃体中的各种因子及神经递质中,触发RPE细胞的活化 [11] ,诱导RPE细胞发生增殖、迁移、纤维化,影响视网膜正常功能。本研究迁移实验观察发现,高糖状态下细胞迁移率明显增加,而丁苯酞处理使细胞迁移率明显下降,说明丁苯酞能够抑制高糖诱导的ARPE-19细胞发生迁移,保护血–视网膜屏障的正常结构和功能。

Nrf2/ARE信号转导通路在抗氧化应激中发挥重要的防御作用,与许多氧化应激相关疾病相关。生理环境下,Nrf2位于细胞质中,与控制Nrf2活性的Keap1紧密结合,处于静息状态。氧化应激状态下,可诱导Keap1与Nrf2发生结构与功能改变,两者解离后Nrf2转移至细胞核内与抗氧化反应组件(ARE)有效结合,上调包括HO-1、NQO1等下游抗氧化基因的表达,发挥抗炎、抗凋亡等功能减轻细胞功能障碍 [12] 。本研究结果发现,高糖诱导下ARPE-19细胞内Nrf2、HO-1、NQO1蛋白表达均增加,丁苯酞处理后,细胞内Nrf2、HO-1、NQO1蛋白表达进一步明显增加,分别是高糖状态下的1.68、1.45、1.31倍。说明丁苯酞能够有效促进ARPE-19细胞内Nrf2-ARE信号转导通路的进一步激活,增强细胞抗凋亡及清除细胞内ROS的能力,提高细胞抗氧化应激能力,维持细胞的正常功能并保护血–视网膜屏障的完整性。已有研究证实,丁苯酞激活了睡眠障碍小鼠模型的Nrf2通路,改善其认知功能,并抑制神经元凋亡及炎症反应 [13] 。Sun等人发现,在大脑中动脉闭塞模型动物模型中,丁苯酞增加了Nrf2、HO-1 mRNA及蛋白的表达,提高了抗氧化酶的活性,减少脑梗死体积,改善小鼠神经功能 [14] 。一项回顾性研究分析显示,丁苯酞通过调控Keap1-Nrf2/ARE信号通路的表达,改善急性缺血性脑卒中患者脑血管储备功能并促进侧支代偿血管的建立,改善患者的预后 [15] 。这些研究均提示丁苯酞可通过Nrf2-ARE信号传导通路发挥抗氧化应激作用。

综上所述,丁苯酞对高糖诱导的RPE细胞具有保护作用,其机制可能与激活Nrf2/ARE通路、抑制氧化应激密切相关。

文章引用

李 璐,刘桂波,尹晓妮,颜 萌,张 铎,郑召霞,张丽娜. 丁苯酞通过Nrf2/ARE信号通路保护高糖诱导的视网膜色素上皮细胞免受氧化损伤
Butylphthalide Protects High Glucose-Induced Retinal Pigment Epithelium Cells from Oxidative Damage through the Nrf2/ARE Signaling Pathway[J]. 临床医学进展, 2023, 13(03): 3362-3369. https://doi.org/10.12677/ACM.2023.133478

参考文献

  1. 1. Frank, R.N. (2004) Diabetic Retinopathy. The New England Journal of Medicine, 1, 48-58. https://doi.org/10.1056/NEJMra021678

  2. 2. Ponnalagu, M., Subramani, M., Jayadev, C., Shetty, R. and Das, D. (2017) Retinal Pigment Epithelium-Secretome: A Diabetic Retinopathy Perspective. Cytokine, 95, 126-135. https://doi.org/10.1016/j.cyto.2017.02.013

  3. 3. Esser, P., Heimann, K., Bartz-schmidt, K.U., et al. (1997) Apopto-sis in Proliferative Vitreoretinal Disorders: Possible Involvement of TGF-Beta-Induced RPE Cell Apoptosis. Experi-mental Eye Research, 3, 365-378. https://doi.org/10.1006/exer.1997.0341

  4. 4. Tu, W., Wang, H., Li, S., Liu, Q. and Sha, H. (2019) The An-ti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging and Disease, 3, 637-651. https://doi.org/10.14336/AD.2018.0513

  5. 5. Tan, S.W., Xie, T., Malik, T.H. and Gao, Y. (2022) Advances of Neurovascular Protective Potential of 3-N-Butylph- thalide and Its Derivatives in Diabetic Related Diseases. Journal of Diabetes and Its Complications, 11, Article ID: 108335. https://doi.org/10.1016/j.jdiacomp.2022.108335

  6. 6. (2021) Causes of Blindness and Vision Impairment in 2020 and Trends over 30 Years, and Prevalence of Avoidable Blindness in Relation to VISION 2020: The Right to Sight: An Analysis for the Global Burden of Disease Study. The Lancet Global Health, 2, e144-e160.

  7. 7. Fong, D.S., Aiello, L.P., Ferris, F.L. and Klein, R. (2004) Diabetic Retinopathy. Diabetes Care, 10, 2540-2553. https://doi.org/10.2337/diacare.27.10.2540

  8. 8. Bursell, S.E., Clermont, A.C., Aiello, L.P., et al. (1999) High-Dose Vitamin E Supplementation Normalizes Retinal Blood Flow and Creatinine Clearance in Patients with Type 1 Diabetes. Diabetes Care, 8, 1245-1251. https://doi.org/10.2337/diacare.22.8.1245

  9. 9. Xing, X., Huang, L., Lv, Y., et al. (2019) DL-3-n-Butylphthalide Protected Retinal Müller Cells Dysfunction from Oxidative Stress. Current Eye Research, 10, 1112-1120. https://doi.org/10.1080/02713683.2019.1624777

  10. 10. Wang, F., Ma, J., Han, F., et al. (2016) DL-3-n-butylphthalide Delays the Onset and Progression of Diabetic Cataract by Inhibiting Oxidative Stress in Rat Dia-betic Model. Scientific Reports, 6, Article No. 19396. https://doi.org/10.1038/srep19396

  11. 11. Kenarova, B., Voinov, L., Apostolov, C., Vladimirova, R. and Misheva, A. (1997) Levels of Some Cytokines in Subretinal Fluid in Proliferative Vitreoretinopathy and Rhegmatogenous Retinal De-tachment. European Journal of Ophthalmology, 1, 64-67. https://doi.org/10.1177/112067219700700112

  12. 12. Dhakshinamoorthy, S., Long, D.J. and Jaiswal, A.K. (2000) Antioxidant Regulation of Genes Encoding Enzymes That Detoxify Xenobiotics and Carcinogens. Current Topics in Cellular Regulation, 36, 201-216. https://doi.org/10.1016/S0070-2137(01)80009-1

  13. 13. Chen, J., Xiao, L., Chen, Y., et al. (2022) Butylphthalide Al-leviates Sleep Deprivation-Induced Cognitive Deficit by Regulating Nrf2/HO-1 Pathway. Sleep Medicine, 100, 427-433. https://doi.org/10.1016/j.sleep.2022.09.016

  14. 14. Sun, M., Jiang, C., Hao, X., et al. (2022) Long-Term L-3-n-butylphthalide Pretreatment Attenuates Ischemic Brain Injury in Mice with Permanent Distal Middle Cerebral Ar-tery Occlusion through the Nrf2 Pathway. Heliyon, 7, e09909. https://doi.org/10.1016/j.heliyon.2022.e09909

  15. 15. Zhang, X., Wu, Q., Wang, Z., Li, H. and Dai, J. (2022) Keap1-Nrf2/ARE Signal Pathway Activated by Butylphthalide in the Treatment of Ischemic Stroke. American Journal of Translational Research, 4, 2637-2646.

  16. NOTES

    *通讯作者Email: zhanglina1105@163.com

期刊菜单