Advances in Clinical Medicine
Vol. 13  No. 09 ( 2023 ), Article ID: 72193 , 7 pages
10.12677/ACM.2023.1391998

血钙与创伤性脑损伤出血性进展 及神经预后相关性的研究进展

薛进1,贺瑛福2

1青海大学临床医学院,青海 西宁

2青海大学附属医院神经外科,青海 西宁

收稿日期:2023年8月12日;录用日期:2023年9月6日;发布日期:2023年9月12日

摘要

创伤性脑损伤(traumatic brain injury, TBI)是世界范围内致残和死亡的主要原因之一,其后续发生的出血性进展(Hemorrhagic progression of contusion, HPC)往往与高死亡率,较差的预后相关,血钙在人体凝血功能及TBI病理生理机制中扮演着重要的角色,最近的研究表明血钙与TBI后HPC的发生及其神经预后相关,为评估HPC的发生及TBI患者的预后提供了新的思路,本文将从TBI的病理生理学及HPC的发生机制开始阐述,并进一步探讨血清钙可能参与的HPC病理生理潜在机制及其与TBI患者神经功能预后的联系。

关键词

凝血障碍,出血性进展,创伤性颅脑损伤,脑实质出血,血钙

Research Progress on the Correlation between Blood Calcium and Hemorrhagic Progression and Neurological Prognosis in Traumatic Brain Injury

Jin Xue1, Yingfu He2

1Clinical Medical College, Qinghai University, Xining Qinghai

2Department of Neurosurgery, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Aug. 12th, 2023; accepted: Sep. 6th, 2023; published: Sep. 12th, 2023

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of disability and death worldwide, and their subsequent hemorrhagic progression of contusion (HPC) is often associated with high mortality and poor prognosis. Blood calcium plays an important role in human coagulation function and the pathophysiological mechanism of TBI. Recent studies have shown that blood calcium is correlated with the occurrence of HPC and its neurological prognosis after TBI, providing new ideas for evaluating the occurrence of HPC and the prognosis of TBI patients. This paper will begin with the pathophysiology of TBI and the pathogenesis of HPC, and further explore the potential pathophysiological mechanism of HPC that serum calcium may be involved in and its relationship with the neurological prognosis of TBI patients.

Keywords:Coagulopathy, Hemorrhagic Progression, Traumatic Brain Injury, Intraparenchymal Hemorrhage, Blood Calcium

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在世界范围内,创伤性颅脑损伤(traumatic brain injury, TBI)是致残和死亡的主要原因之一,占外伤死亡总人数的30% [1] 。其中,最常见的类型为创伤性脑实质出血(traumatic intraparenchymal hemorrhages, tIPH) [2] ,而挫伤的出血性进展(Hemorrhagic progression of contusion, HPC)是tIPH的潜在并发症,其定义是随着时间的推移,出血量的增加 [3] [4] [5] 。在tIPH患者中,约有15%~75%在随后的计算机断层扫描成像(computed tomography, CT)中发生HPC [6] 。HPC是TBI后最严重的继发性损伤之一,往往与高死亡率、较差的临床预后相关 [2] 。

有研究表明,在自发性脑实质出血(intraparenchymal hemorrhages, IPH)的情况下,低血钙与止血功能受损有关,并增加了HPC的风险,同时与较高的初始血肿量,和较差的预后相关 [7] [8] 。近年来同样有研究指出,TBI患者入院时凝血功能障碍的发生率从7%到63%不等 [9] ,体现出凝血功能障碍与TBI在入院时较大的差异性,但是这仅仅是入院时的发病率,在伤后的24 h内,TBI相关的凝血功能障碍发生率从24%增长到了56% [10] 。有大量证据表明,凝血功能障碍是发生HPC的关键决定因素 [2] [6] [11] 。钙离子则是凝血级联和血小板聚集的重要辅助因子 [8] [12] [13] ,凝血因子之间以及与磷脂之间的相互作用在级联的每一步都需要钙离子,并且纤维蛋白原生成纤维蛋白的过程中亦需要钙离子的参与,初次之外,维生素K依赖性凝血因子FII、FVII、FIX和FX以及蛋白C、S和膜质磷脂带负电荷,钙离子在这些表面和受损内皮细胞的凝血因子之间起桥梁作用。所以,最近亦有研究指出,低钙血症是凝血功能障碍和HPC的独立危险因素 [14] 。

另一方面,在过去的几十年中,人体内钙离子稳态的紊乱在TBI中的病理作用中被广泛关注并研究,并认为钙离子在脑外伤后延迟的细胞损伤和死亡中起着重要作用,尤其是中、重度TBI后钙离子过量流入脑细胞,从而导致细胞死亡,这可能是TBI后继发性损伤的主要原因之一 [15] 。在不同的动物模型中,给予特异性钙通道拮抗剂与减少细胞死亡和改善认知功能有关 [16] [17] [18] 。因此,最近有研究表明,在孤立性重度TBI患者中,轻度的入院低钙与出院时较好的神经系统预后相关 [19] ,这说明,钙离子对于评估TBI患者的预后可能有较大的价值。

本文将从TBI的病理生理学及HPC的发生机制开始阐述,并进一步探讨血清钙可能参与的HPC病理生理潜在机制及其与TBI患者神经功能预后的联系。

2. TBI的病理生理学

TBI的病理生理分为两个阶段:第一个阶段是直接损伤引起的组织物理破坏,撞击产生的动能造成组织的剪切,使神经元、少突胶质细胞损伤,导致它们立即坏死死亡,坏死的细胞死亡释放细胞内物质(兴奋性氨基酸如谷氨酸、天门冬氨酸和热休克蛋白等)刺激产生继发性损伤。同时还会使微血管破裂,导致血液外溢和血管功能丧失,从而导致缺血,外溢血液的分解产物对中枢神经系统细胞具有极大毒性,并引起继发性损伤反应。第二个阶段主要包括一些继发性损伤,许多继发性损伤仅仅是原发性组织损伤的自然结果,比如上述提到的兴奋性氨基酸的释放、血液分解产物的自由基损伤和微血管损伤引起的缺血反应,还有一些继发性损伤往往是由于本身对人体有益的功能却错误的走的太远的过程的意外结果,如组织清除机制,典型的有炎症反应,炎症反应涉及内源性(小胶质细胞)和外源性(中性粒细胞和巨噬细胞)细胞。中性粒细胞吞噬细胞碎片,起到清除的作用,但在此过程中,它们释放自由基,损害附近正常细胞,无意造成组织损伤,因此也被称为“旁观者”损伤 [11] [20] [21] [22] [23] [24] 。

在以上的两个阶段中,直接损伤造成的组织剪切形成质孔膜会导致细胞内钙离子的升高 [25] ,同时会引起细胞膜表面钠通道开放,使大量钠流入细胞内,细胞内高水平的钠离子可导致钠钙交换通道反向工作,进一步促进细胞内Ca2+的积累 [26] ,损伤后兴奋性氨基酸的毒性作用亦是钙离子依赖性的 [27] 。综上所述,不难看出,钙离子在TBI的两个病理生理阶段中都扮演着重要的角色,而此二阶段发生的种种生理及病理过程都直接影响着TBI患者后续的病情发展和预后情况。

3. HPC的发生机制

了解HPC的发生机制是提前发现风险因素和及时采取预防措施的关键之一,但遗憾的是,目前对于HPC发生的确切病理生理机制尚未完全阐明。既往的研究认为,入院血压、激活的炎症反应及凝血障碍可能是发生HPC的重要驱动因素 [6] [28] [29] [30] ,近些年的研究则主要集中在凝血障碍与TBI患者发生HPC的关系方面。Lindley E Folkerson [31] 等进行的一项纳入279例孤立性TBI患者的回顾性研究中显示,56% (157/279)发生了HPC,44% (122/279)无明显变化,并发现凝血功能障碍和年龄是发生HPC的独立预测因素。Carole L. White等 [32] 进行的一项纳入46名患者的回顾性研究中,在中位数(1.2)处对国际标准化比值(International normalized ratio, INR)进行二分,发现INR高于1.2的患者出现出血进展的可能性几乎是1.2或更低的患者的三倍。在Qiang Yuan [33] 等2016年纳入19项研究的系统性综述和荟萃分析中,进一步对15项研究中发生HPC组与非HPC组的凝血指标进行比较后显示,发生HPC组有着较低的血小板计数值(pooled MD −19.21; 95% CI: −26.99~−11.44, p < 0.001)和较高的国际标准化比率(INR)值(pooled MD 0.07; 95% CI: 0.02~0.13, p = 0.006),但HPC患者与非HPC患者的平均活化部分凝血活素时间(APTT)和凝血酶原时间(PT)无差异。在Edward F Chang等 [34] 进行的一项纳入229例患者的回顾性研究中,有4% (10/229)的患者TBI后颅内血肿较前减小,58% (133/229)的患者颅内血肿保持不变,有38% (86/229)的患者在后续的头颅CT中提示HPC,其中,TBI后的初始血肿量和发生HPC显著相关。Peng Zhang等的一项纳入437患者的回顾性研究中表明,入院时血清钙水平与tIPH患者的HPC相关,这种关系部分由凝血功能障碍介导 [14] 。

在上述研究中,我们可以看到凝血障碍和HPC的发生显著相关,钙离子作为凝血级联和血小板聚积的重要辅因子,在HPC的发生中或许扮演着重要的作用。同时,初始血肿量的大小对于HPC同样是独立预测因素,在自发性IPH的研究中,钙离子与初始血肿量相关 [35] 。但目前,TBI患者的初始血肿量与钙离子的关系还有待进一步研究。

4. 钙离子与HPC及神经预后

钙离子在许多生理功能中起着关键作用,包括骨骼矿化、肌肉收缩、神经元冲动传递、激素分泌和凝血级联反应 [36] 。在血液和细胞外液中,钙以三种形式存在,最常见的钙是电离或自由状态(约占51%),其次是蛋白质结合钙(约40%)和阴离子结合的复合物(约9%),其中,离子化的钙是唯一参与生理过程的活性形式 [37] 。体内钙离子的平衡受甲状旁腺激素(PTH)、维生素D的代谢物和降钙素调节PTH通过刺激骨和肾钙离子的再吸收直接增加血清钙离子。此外,PTH还通过骨化三醇(1,25-二羟基维生素D3)间接增加胃肠道对钙的吸收,降钙素则通过靶向骨、肾和胃肠道降低钙离子水平。细胞外钙离子通过与位于甲状旁腺细胞表面的钙敏感受体相互作用调节甲状旁腺激素的分泌。细胞外钙离子的增加迅速降低PTH的分泌,反之亦然。

在凝血反应中,凝血因子之间的作用以及与磷脂的相互作用都需要钙离子的参与,钙离子本身亦是凝血级联反应中重要的辅因子,同时在纤维蛋白的形成中起着不可或缺的作用,而纤维蛋白对于二次止血和稳定血小板止血栓至关重要 [38] 。在血凝块形成后,其局部的钙离子浓度亦会影响其稳定性 [39] 。止血过程是一系列复杂反应的结果,包括血管收缩、损伤部位血小板止血栓的形成,纤维蛋白原转化为纤维蛋白以及血凝块收缩 [40] ,血小板在其中扮演着不可或缺的角色。钙离子是血小板中大多数信号通路的常见第二信使,在血小板的激活和聚集以及血栓形成中起着重要作用 [41] ,血小板细胞膜受体在激活后会导致钙离子流入血小板,这会导致血小板结构和功能的改变,其形状由盘状变为针状球体,血小板内部的颗粒亦会集中起来,并在血小板释放反应中分泌出其内容物。此外,细胞内钙离子的增加激活磷脂酶A2,从而从膜磷脂中释放花生四烯酸。然后,环加氧酶1将花生四烯酸转化为TxA2,由此来激活血小板功能 [42] [43] [44] 。在最后,止血栓的形成过程中,血小板并入正在形成的止血栓亦需要细胞内钙离子的动员。

从以上可以看出,钙离子在凝血功能中的重要作用,而凝血障碍又是HPC发生的重要驱动因素之一,低钙血症可能正是通过影响凝血级联反应及血小板功能,造成凝血障碍,导致HPC的发生。

在神经预后方面,入院时的低血钙可能反而有助于改善神经系统的预后。以往研究表明,TBI后的继发性损伤可能是由过多的钙离子流入神经元细胞内导致细胞损伤和最终细胞死亡介导的 [15] 。在不同的TBI动物模型中,给予特异性钙通道拮抗剂与减少细胞死亡和改善认知功能有关 [15] [16] [17] [18] 。既往有大量的研究评估了细胞内低钙血症对脑损伤患者脑组织和神经预后的影响。Choi等 [45] 通过对小鼠皮质细胞培养,低钙诱导可以减少谷氨酸的毒性作用,减少脑外伤后神经元的损失。最近的研究中发现,在TBI动物模型中,使用特异性钙通道拮抗剂治疗可以显著抑制脑损伤区域神经元的变性和凋亡,降低TBI相关认知障碍的发生率 [15] [46] [47] 。除此之外,一些研究评估了脑外伤患者是否可以从钙通道阻滞剂治疗中获益。尽管只有在创伤性蛛网膜下腔出血的亚组患者中才有统计学意义,但研究发现这种治疗与TBI患者预后较好的趋势相关 [48] [49] [50] 。Karawan Badarni等 [19] 的研究中表明,在孤立性严重TBI患者中,轻度入院低钙与出院时较好的神经系统状态相关。

5. 结论

综上所述,目前的研究支持这样的假设,即:血钙水平是评估TBI后凝血障碍、HPC及神经功能预后的一个重要指标。鉴于已经发表的研究中的描述,入院时的低血钙与凝血功能障碍及HPC的发生相关,那么它可能是未来治疗的目标,即在发现入院时低血钙水平的TBI患者时给予简单的干预措施迅速纠正血钙水平,从而降低HPC的风险。与之相反的是,入院时的低血钙水平与出院的神经功能预后相关,这就表明校正钙离子水平不能超过正常范围。同时,目前研究所表明的相关性仅仅与一次性低血钙水平值相关,低血钙水平可能只是TBI后急性免疫反应后的继发性现象,和PTH-维生素D轴功能紊乱的生物标志物。此外,患者入院血钙水平的异质性较大(11%~73%),虽然目前血钙与IPH发生HE及其神经预后的研究较多,但在TBI背景下的相关研究数量偏少,并且研究多为小型、单中心、回顾性研究,这些研究固有其缺陷,因此,需要更多的大型、多中心回顾性试验来进一步验证其可靠性。而TBI患者发生HPC的机制,尤其是血钙在其中扮演的角色,可能远比目前研究所展示出来的复杂,需要更多研究进一步阐明。并且,迄今为止,评估血钙与TBI后HPC以及神经预后相关性的研究大多数的血钙指标为血清钙,但如前文所说,钙离子才是生理过程中的活性形式,很多研究并不是基于离子钙的数值来进行分析,这往往会造成一些误差。还有一些遗憾的是,这些研究都只评估了在入院时的血钙水平,而没有评估入院前的血钙数值,这样就对进一步进行前瞻性得研究造成了一些困难。更进一步来说,纠正入院时低钙血症的临床收益、时间窗以及有利于预防HPC发生的钙离子阈值水平仍然未知,有必要对这些问题进一步探索。

文章引用

薛 进,贺瑛福. 血钙与创伤性脑损伤出血性进展及神经预后相关性的研究进展
Research Progress on the Correlation between Blood Calcium and Hemorrhagic Progression and Neurological Prognosis in Traumatic Brain Injury[J]. 临床医学进展, 2023, 13(09): 14290-14296. https://doi.org/10.12677/ACM.2023.1391998

参考文献

  1. 1. Gunning, A.C., Lansink, K.W.W., van Wessem, K.J.P., Balogh, Z.J., Rivara, F.P., Maier, R.V. and Leenen, L.P.H. (2015) Demographic Patterns and Outcomes of Patients in Level I Trauma Centers in Three International Trauma Sys-tems. World Journal of Surgery, 39, 2677-2684. https://doi.org/10.1007/s00268-015-3162-x

  2. 2. Carnevale, J.A., Segar, D.J., Powers, A.Y., Shah, M., Doberstein, C., Drapcho, B., Morrison, J.F., Williams, J.R., Collins, S., Monteiro, K. and Asaad, W.F. (2018) Blossoming Contusions: Identifying Factors Contributing to the Expansion of Traumatic In-tracerebral Hemorrhage. Journal of Neurosurgery, 129, 1305-1316. https://doi.org/10.3171/2017.7.JNS17988

  3. 3. Chang, E.F., Meeker, M. and Holland, M.C. (2007) Acute Trau-matic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neurosurgery, 61, 231. https://doi.org/10.1227/01.neu.0000279217.45881.69

  4. 4. Lobato, R.D., Gomez, P.A., Alday, R., Rivas, J.J., Dominguez, J., Cabrera, A., Turanzas, F.S., Benitez, A. and Rivero, B. (1997) Sequential Computerized Tomography Changes and Related Final Outcome in Severe Head Injury Patients. Acta Neurochirurgica, 139, 385-391. https://doi.org/10.1007/BF01808871

  5. 5. Servadei, F., Nanni, A., Nasi, M.T., Zappi, D., Vergoni, G., Giuliani, G. and Arista, A. (1995) Evolving Brain Lesions in the First 12 Hours after Head Injury: Analysis of 37 Comatose Patients. Neurosurgery, 37, 899-907. https://doi.org/10.1097/00006123-199511000-00008

  6. 6. Adatia, K., Newcombe, V.F.J. and Menon, D.K. (2021) Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influ-ence on Outcome. Neurocritical Care, 34, 312-324. https://doi.org/10.1007/s12028-020-00994-4

  7. 7. Inoue, Y., Miyashita, F., Toyoda, K. and Minematsu, K. (2013) Low Serum Calcium Levels Contribute to Larger Hematoma Volume in Acute Intracerebral Hemorrhage. Stroke, 44, 2004-2006. https://pubmed.ncbi.nlm.nih.gov/23674530/

  8. 8. Zhu, R.D., He, X.L., Du, Y.Q., et al. (2020) The Relationship between Low Serum Magnesium Level and Intracerebral Hemorrhage Hematoma Expansion: Protocol for a Systematic Review and Meta-Analysis. Medicine, 99, e18719. https://pubmed.ncbi.nlm.nih.gov/31914086/

  9. 9. Hoyt, D.B. (2004) A Clinical Review of Bleeding Dilemmas in Trauma. Seminars in Hematology, 41, 40-43. https://doi.org/10.1053/j.seminhematol.2003.11.009

  10. 10. Greuters, S., van den Berg, A., Franschman, G., Viersen, V.A., Beishuizen, A., Peerdeman, S.M., Boer, C. and ALARM- BLEEDING Investigators (2011) Acute and Delayed Mild Coagulopathy Are Related to Outcome in Patients with Isolated Traumatic Brain Injury. Critical Care, 15, Article No. R2. https://doi.org/10.1186/cc9399

  11. 11. Kurland, D., Hong, C., Aarabi, B., Gerzanich, V. and Marc Simard, J. (2012) Hemorrhagic Progression of a Contusion after Traumatic Brain Injury: A Review. Journal of Neurotrauma, 29, 19-31. https://doi.org/10.1089/neu.2011.2122

  12. 12. Loggini, A., El Ammar, F., Mansour, A., Kramer, C.L., Gold-enberg, F.D. and Lazaridis, C. (2021) Association between Electrolyte Levels at Presentation and Hematoma Expansion and Outcome in Spontaneous Intracerebral Hemorrhage: A Systematic Review. Journal of Critical Care, 61, 177-185. https://doi.org/10.1016/j.jcrc.2020.10.029

  13. 13. Jafari, M., Di Napoli, M., Datta, Y.H., Bershad, E.M. and Divani, A.A. (2019) The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any? Neu-rocritical Care, 31, 188-195. https://doi.org/10.1007/s12028-018-0564-2

  14. 14. Zhang, P., Tu, Q., Ni, Z.H., Zheng, Z.Z., Chen, Y., Yan, L., Bao, H., Zhuge, Q.C. and Ni, H.Q. (2022) Association between Serum Calcium Level and Hemorrhagic Progression in Pa-tients with Traumatic Intraparenchymal Hemorrhage: Investigating the Mediation and Interaction Effects of Coagulopathy. Journal of Neurotrauma, 39, 508-519. https://doi.org/10.1089/neu.2021.0388

  15. 15. Weber, J.T. (2012) Altered Calcium Signaling following Traumatic Brain Injury. Frontiers in Pharmacology, 3, Article 60. https://doi.org/10.3389/fphar.2012.00060

  16. 16. Deshpande, L.S., Sun, D.A., Sombati, S., Baranova, A., Wilson, M.S., Attkisson, E., Hamm, R.J. and DeLorenzo, R.J. (2008) Alter-ations in Neuronal Calcium Levels Are Associated with Cognitive Deficits after Traumatic Brain Injury. Neuroscience Letters, 441, 115-119. https://doi.org/10.1016/j.neulet.2008.05.113

  17. 17. Weber, J.T. (2004) Calcium Homeostasis following Traumatic Neuronal Injury. Current Neurovascular Research, 1, 151-171. https://doi.org/10.2174/1567202043480134

  18. 18. Gurkoff, G., Shahlaie, K., Lyeth, B. and Berman, R. (2013) Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury. Pharmaceuticals, 6, 788-812. https://doi.org/10.3390/ph6070788

  19. 19. Badarni, K., Harush, N., Andrawus, E., Bahouth, H., Bar-Lavie, Y., Raz, A., Roimi, M. and Epstein, D. (2023) Association between Admission Ionized Calcium Level and Neurological Outcome of Patients with Isolated Severe Traumatic Brain Injury: A Retrospective Cohort Study. Neurocritical Care. https://doi.org/10.1007/s12028-023-01687-4

  20. 20. Blight, A.R. (1992) Macrophages and Inflammatory Damage in Spinal Cord Injury. Journal of Neurotrauma, 9, S83-S91.

  21. 21. Hampton, M.B., Kettle, A.J. and Winterbourn, C.C. (1998) Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 92, 3007-3017.

  22. 22. Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y.L. and Zheng, J.C. (2009) Inflammation Mediates Varying Effects in Neurogenesis: Relevance to the Pathogenesis of Brain Injury and Neurodegenerative Disorders. Journal of Neurochemistry, 108, 1343-1359. https://doi.org/10.1111/j.1471-4159.2009.05886.x

  23. 23. Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X. and Choi, A.M.K. (2007) Mechanisms of Cell Death in Ox-idative Stress. Antioxidants & Redox Signaling, 9, 49-89. https://doi.org/10.1089/ars.2007.9.49

  24. 24. Smith, J.A. (1994) Neutrophils, Host Defense, and Inflammation: A Double-Edged Sword. Journal of Leukocyte Biology, 56, 672-686. https://doi.org/10.1002/jlb.56.6.672

  25. 25. Maxwell, W.L., Watt, C., Graham, D.I. and Gennarelli, T.A. (1993) Ultrastructural Evidence of Axonal Shearing as a Result of Lateral Acceleration of the Head in Non-Human Pri-mates. Acta Neuropathologica, 86, 136-144. https://doi.org/10.1007/BF00334880

  26. 26. Brittain, M.K., et al. (2012) Delayed Calcium Dysregulation in Neurons Requires Both the NMDA Receptor and the Reverse Na+/Ca2+ Exchanger. Neurobiology of Disease, 46, 109-117. https://pubmed.ncbi.nlm.nih.gov/22249110/

  27. 27. Garthwaite, G., Hajós, F. and Garthwaite, J. (1986) Ionic Re-quirements for Neurotoxic Effects of Excitatory Amino Acid Analogues in Rat Cerebellar Slices. Neuroscience, 18, 437-447. https://doi.org/10.1016/0306-4522(86)90164-8

  28. 28. Van Beek, J.G.M., Mushkudiani, N.A., Steyerberg, E.W., Butcher, I., McHugh, G.S., Lu, J., Marmarou, A., Murray, G.D. and Maas, A.I.R. (2007) Prognostic Value of Admission Laboratory Parameters in Traumatic Brain Injury: Results from the IMPACT Study. Journal of Neurotrauma, 24, 315-328. https://doi.org/10.1089/neu.2006.0034

  29. 29. Juratli, T.A., Zang, B., Litz, R.J., Sitoci, K.H., Aschen-brenner, U., Gottschlich, B., Daubner, D., Schackert, G. and Sobottka, S.B. (2014) Early Hemorrhagic Progression of Traumatic Brain Contusions: Frequency, Correlation with Coagulation Disorders, and Patient Outcome: A Prospective Study. Journal of Neurotrauma, 31, 1521-1527. https://doi.org/10.1089/neu.2013.3241

  30. 30. Maegele, M., Schöchl, H., Menovsky, T., Maréchal, H., Marklund, N., Buki, A. and Stanworth, S. (2017) Coagulopathy and Haemorrhagic Progression in Traumatic Brain Injury: Advances in Mechanisms, Diagnosis, and Management. The Lancet Neurology, 16, 630-647. https://doi.org/10.1016/S1474-4422(17)30197-7

  31. 31. Folkerson, L.E., Sloan, D., Cotton, B.A., Holcomb, J.B., Tomasek, J.S. and Wade, C.E. (2015) Predicting Progressive Hemorrhagic Injury from Isolated Traumatic Brain Injury and Coagulation. Surgery, 158, 655-661. https://doi.org/10.1016/j.surg.2015.02.029

  32. 32. White, C.L., Griffith, S. and Caron, J.L. (2009) Early Progression of Traumatic Cerebral Contusions: Characterization and Risk Factors. The Journal of Trauma: Injury, Infection, and Critical Care, 67, 508-515. https://doi.org/10.1097/TA.0b013e3181b2519f

  33. 33. Yuan, Q., Sun, Y.R., Wu, X., Yu, J., Li, Z.Q., Du, Z.Y., Wu, X.H., Zhou, L.F. and Hu, J. (2016) Coagulopathy in Traumatic Brain Injury and Its Correlation with Progressive Hem-orrhagic Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 33, 1279-1291. https://doi.org/10.1089/neu.2015.4205

  34. 34. Chang, E.F., Meeker, M. and Holland, M.C. (2006) Acute Traumatic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neurosurgery, 58, 647-656. https://doi.org/10.1227/01.NEU.0000197101.68538.E6

  35. 35. Inoue, Y., Miyashita, F., Toyoda, K. and Minematsu, K. (2013) Low Serum Calcium Levels Contribute to Larger Hematoma Volume in Acute Intracerebral Hemorrhage. Stroke, 44, 2004-2006. https://doi.org/10.1161/STROKEAHA.113.001187

  36. 36. Peacock, M. (2010) Calcium Metabolism in Health and Disease. Clinical Journal of the American Society of Nephrology, 5, S23-S30. https://pubmed.ncbi.nlm.nih.gov/20089499/

  37. 37. Veldurthy, V., et al. (2016) Vitamin D, Calcium Homeostasis and Aging. Bone Research, 4, Article ID: 16041. https://pubmed.ncbi.nlm.nih.gov/27790378/

  38. 38. De Robertis, E., Kozek-Langenecker, S.A., Tufano, R., Romano, G.M., Piazza, O. and Zito Marinosci, G. (2015) Coagulopathy Induced by Acidosis, Hypothermia and Hypocalcaemia in Severe Bleeding. Minerva Anestesiologica, 81, 65-75.

  39. 39. Wolberg, A.S. (2007) Thrombin Generation and Fibrin Clot Structure. Blood Reviews, 21, 131-142. https://doi.org/10.1016/j.blre.2006.11.001

  40. 40. Nesbitt, W.S., Giuliano, S., Kulkarni, S., Dopheide, S.M., Harper, I.S. and Jackson, S.P. (2003) Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth. Journal of Cell Biology, 160, 1151-1161. https://doi.org/10.1083/jcb.200207119

  41. 41. Jackson, S.P., Nesbitt, W.S. and Kulkarni, S. (2003) Signaling Events Underlying Thrombus Formation. Journal of Thrombosis and Haemostasis, 1, 1602-1612. https://pubmed.ncbi.nlm.nih.gov/12871297/

  42. 42. Qi, H.Y., et al. (2016) Anti-Platelet Activity of Panaxatriol Sapo-nins Is Mediated by Suppression of Intracellular Calcium Mobilization and ERK2/p38 Activation. BMC Complementary and Alternative Medicine, 16, Article 174. https://pubmed.ncbi.nlm.nih.gov/27277000/

  43. 43. Rumbaut, R.E. and Thiagarajan, P. (2010) Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. Morgan & Claypool Life Sciences, San Rafael. http://www.ncbi.nlm.nih.gov/books/NBK53450/ https://doi.org/10.4199/C00007ED1V01Y201002ISP004

  44. 44. Gryglewski, R.J. (2008) Prostacyclin among Pros-tanoids. Pharmacological Reports, 60, 3-11. https://pubmed.ncbi.nlm.nih.gov/18276980/

  45. 45. Choi, D.W. (1985) Glutamate Neurotoxicity in Cortical Cell Cul-ture Is Calcium Dependent. Neuroscience Letters, 58, 293-297. https://pubmed.ncbi.nlm.nih.gov/2413399/

  46. 46. Han, R.Z., Hu, J.J., Weng, Y.C., Li, D.F. and Huang, Y. (2009) NMDA Receptor Antagonist MK-801 Reduces Neuronal Damage and Preserves Learning and Memory in a Rat Model of Traumatic Brain Injury. Neuroscience Bulletin, 25, 367-375. https://pubmed.ncbi.nlm.nih.gov/19927173/

  47. 47. Sönmez, A., et al. (2015) Europrotective Effects of MK-801 against Traumatic Brain Injury in Immature Rats. https://pubmed.ncbi.nlm.nih.gov/?term=europrotective+effects+of++MK%E2%80%91801 +against+traumatic+brain+injury+in+immature+rats

  48. 48. Bailey, I., et al. (1991) A Trial of the Effect of Nimodipine on Outcome after Head Injury. Acta Neurochirurgica, 110, 97-105. https://pubmed.ncbi.nlm.nih.gov/1927616/

  49. 49. Murray, G.D., Teas-dale, G.M. and Schmitz, H. (1996) Nimodipine in Traumatic Subarachnoid Haemorrhage: A Re- Analysis of the HIT I and HIT II Trials. Acta Neurochirurgica, 138, 1163-1167. https://pubmed.ncbi.nlm.nih.gov/8955434/

  50. 50. Langham, J., Goldfrad, C., Teasdale, G., Shaw, D. and Rowan, K. (2003) Calcium Channel Blockers for Acute Traumatic Brain Injury. Cochrane Database of Systematic Reviews, 4, CD000565. https://doi.org/10.1002/14651858.CD000565

期刊菜单