Advances in Clinical Medicine
Vol. 11  No. 03 ( 2021 ), Article ID: 41327 , 9 pages
10.12677/ACM.2021.113193

多发性骨髓瘤肾损害早期诊断标志物的研究 进展

刘莹莹1,刘雪梅2*

1青岛大学,山东 青岛

2青岛大学附属医院肾病科,山东 青岛

收稿日期:2021年2月23日;录用日期:2021年3月11日;发布日期:2021年3月30日

摘要

多发性骨髓瘤(Multiple myeloma, MM)是血液系统常见的恶性肿瘤,骨髓中浆细胞产生大量的异常单克隆免疫球蛋白,可对全身多个脏器造成损害。肾脏损害(Renal impairment, RI)是其较为严重的并发症,因此寻找MM早期肾损害相关分子标志物,进行早期诊断是提高MM患者生活质量及其生存率的最重要的措施之一。本文对MM肾损害相关早期诊断标志物的研究进展进行综述。

关键词

多发性骨髓瘤,肾损害,生化标志物,早期诊断,研究进展

Research Progress on Biomarkers in Early Diagnosis of Renal Impairment in Multiple Myeloma

Yingying Liu1, Xuemei Liu2*

1Qingdao University, Qingdao Shandong

2Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao Shandong

Received: Feb. 23rd, 2021; accepted: Mar. 11th, 2021; published: Mar. 30th, 2021

ABSTRACT

Multiple myeloma (MM) is a common malignant tumor in the blood system. Plasma cells in the bone marrow produce a large number of abnormal monoclonal immunoglobulins, which can cause damage to multiple organs in the body. As a serious complication of Renal Impairment (RI), it is one of the most important measures to improve the quality of life and survival rate of MM patients to search for biomarkers in early diagnosis of Renal Impairment in Multiple Myeloma. This review summarizes the research progress of biomarkers in early diagnosis related to renal impairment in patients with Multiple Myeloma.

Keywords:Multiple Myeloma, Renal Impairment, Biomarkers, Early Diagnosis, Research Progress

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

多发性骨髓瘤(Multiple myeloma, MM)是骨髓中浆细胞系异常增生的恶性疾病,其能产生异常的单克隆免疫球蛋白,引起骨骼破坏、贫血、肾功能损害和免疫功能异常。MM占所有肿瘤的1%,在血液系统肿瘤中占第二位,诊断时中位年龄约70岁,发病率与人种相关,黑人的发病率最高,亚洲人群较低。意义未明的单克隆丙种球蛋白(Monoclonal gammopathy of undetermined significance, MGUS)是一种良性的单克隆免疫球蛋白病,在50岁以上的人群中占3.2%,而70岁以上的人群中占5.3% [1],其可进展为MM。MM的特征在于异常增殖的浆细胞释放无功能的单克隆蛋白,在大多数情况下,这些蛋白可以可在血清和/或尿液中被发现。据文献报道,肾小球损害如单克隆免疫球蛋白沉积病和轻链肾淀粉样变分别占MM肾脏病理类型的22%和21%。多发性骨髓瘤肾脏损害的常见病理类型主要为管型肾病(MCN)、淀粉样变性(AMY)、单克隆免疫球蛋白沉积病(MIDD) [2],以管型肾病最常见。其致病主要与M蛋白相关 [3],不同的病理类型的患者其临床表现有所差别,MCN病理的肾小管间质急性病变最重;淀粉样变性患者发病时年龄更大,临床多表现肾病综合征,血中升高的轻链以λ为主;MIDD患者临床肾功能不全及血尿发生率高,血中升高的轻链以κ为主,肾脏病理中肾小管萎缩、间质纤维化等慢性病变最重。对于前者,AMY组肾脏存活时间优于MCN和MIDD组,但中位生存时间无统计学差异 [2]。MM相关肾脏病变患者预后显著差于MM不相关肾脏病变患者。肾功能损害是导致MM患者死亡的主要原因之一。根据IMWG和NCCN指南 [4] [5] 对MM肾功能损害的定义,其诊断标准为血肌酐 ≥ 176.8 μmol/L (2 mg/dl),或内生肌酐清除率(Ccr) < 40 ml/min。并依据2013年KDIGO制定的CKD指南 [4] 对肾损害进行分期。初诊MM患者中有20%~40%存在肾功能损害 [6]。严重的RI是新诊断的MM患者生存的不良预后因素,已有研究表明,大多数MM患者的肾损害可逆转 [7],MM患者肾功能损害发生时间低于3个月时,肾功能损害逆转率可达50%~70%,超过3个月时仅能逆转10%左右 [8]。而且肾功能的恢复可能会改善MM患者的生存率 [9]。随着更有效的治疗方案的应用,MM的5年生存率已由1975年的25%提高至2003年34%。将MM患者预期寿命从2000年的35%的相对存活率提高至2012年的50%以上 [10]。因此,探索MM患者发生肾损害的机制,寻找早期肾损害的实验室诊断指标,及时进行干预,对于延长患者生存期具有重要的临床意义。

2. MM肾损害的早期诊断标志物

2.1. 免疫球蛋白轻链(FLC)

免疫球蛋白轻链(FLC)为骨髓中恶性增殖的单克隆性浆细胞所分泌,其产生贯穿B细胞发育成熟至浆细胞的全过程,以浆细胞分泌的轻链量最多。正常浆细胞合成一条重链和一条轻链分别约l0 min、18 min,因此形成一条完整免疫球蛋白分子的过程中即有过量的轻链产生。B细胞、浆细胞合成正常免疫球蛋白的过程中每日产生过剩FLC约500 mg。FLC经肾小球滤过,由近曲小管上皮细胞重吸收来进行分解代谢。研究显示肾脏每日可清除大量的FLC (10~30 g/d),FLC通过近曲小管由尿排泄的量极少。骨髓瘤细胞的特点是合成同一基因型的单克隆完整免疫球蛋白分子或单克隆游离轻链分子,由于骨髓瘤细胞增殖活性较正常浆细胞明显增强,其合成的免疫球蛋白异常激活,在增殖期合成一条重链和一条轻链分别约需2.5 min、1 min,因此MM患者的血清中存在大量的单克隆游离轻链 [11]。血清中FLC的浓度反映了浆细胞产生速率和肾脏清除率之间的平衡 [12]。肾脏可以代谢的FLC数量远远超过其生产量,因此在健康个体中,不可能通过电泳方法在尿液中检测到FLC。随着肿瘤负荷和细胞增殖活性的逐渐增加,血清中FLC的浓度随肿瘤细胞负荷倍增速率的增加而增加。当尿液中FLC的排泄量在近端肾小管的重吸收能力达到饱和之前,只有很小幅度的增长,仅在超过近曲小管的重吸收能力后尿中的FLC才会大量增加 [13]。当大量的FLC超过了重吸收能力时,就会发生肾损害。单克隆免疫球轻链对肾小管上皮具有直接毒性作用 [7] [14],因此,FLC导致MM发生不同类型的肾脏损伤,具体取决于受影响的组织。当FLC大量进入到远端肾小管中,与 Tamm-Horsfall蛋白相互作用形成骨髓瘤管型阻塞肾小管则可引起急性肾衰竭 [15];被重吸收入近端肾小管的FLC可导致小管上皮细胞发生坏死或上皮–间叶组织的形态学转化,使近端肾小管功能丧失 [16];FLC也可以通过激活NF-κB和MAPK通路刺激局部炎性细胞因子如IL-6、TNF-α的生成加速肾小管间质的炎症和纤维化的产生 [17] [18]。近年来国内外已有大量文献 [19] [20] 报道血清FLC在MM的诊断、疗效评估及患者预后分析中均具有重要的应用价值,血清FLC定量检测已作为MM诊断的重要依据写入新版的临床诊疗指南 [4]。FLC测定在当前MM患者疾病监测也起着重要的价值。不论副蛋白类型如何,较高的血清FLC水平与RI的严重程度之间都存在密切的关系。有研究表明,当患者血清FLC水平高于800 mg/L时出现严重RI的风险增加 [21],因此FLC水平是预测MM患者是否会发生严重RI的良好指标。

2.2. 胱抑素-C (Cys-C)

胱抑素-C (Cys-C)为122个氨基酸的低分子量碱性蛋白质,其基因位于第20号染色体,是一种内源性半胱氨酸蛋白酶抑制剂,属于2型半胱氨酸蛋白酶抑制剂家族。同时它能抑制细胞内外的半胱氨酸蛋白酶,在肿瘤的生长及血管生成、浸润和转移中起重要作用。广泛存在于身体各种组织的有核细胞和体液中,如血液、精液、脑脊液等,其不受炎症、感染、肝肾疾病、饮食、性别等影响,无组织特异性 [22]。Cys-C完全经肾小球滤过,在近端肾小管重吸收且不被分泌,血清中Cys-C水平与肾小球功能密切相关,由于肾脏是清除循环中Cys-C的唯一器官,Cys-C的水平主要由eGFR决定,Cys-C是一种理想的反映肾小球功能变化的内源性标志物 [23]。在几种肾脏疾病中,就对GFR降低的诊断敏感性而言,发现Cys-C优于血清肌酐 [24]。而且Cys-C可作为诊断急性肾损伤等疾病早期肾损伤的敏感指标 [25],Cys-C与慢性肾功能损害引起的终末期肾功能损害的相关性也高于基于肌酐的肾小球滤过率,原因主要为血清中的Cys-C水平完全与肾小球滤过率有关,受其他因素影响小,一旦肾脏出现微小病变,可直接导致血清Cys-C水平发生改变,而血肌酐受个体因素引起的肾小管分泌肌酐速率不同及药物、膳食、体型、性别对其的影响也较大,基于肌酐的肾小球滤过率不能准确反映肾小球滤过率。全球基因表达芯片分析发现,MM患者中Cys-C基因表达明显上调(上调近50倍),其血清水平在一定程度上可反映患者的肿瘤负荷量 [26]。2004年美国FDA批准Cys-C作为检测肾功能的指标之一。血清胱抑素C是一种新的、准确的肾小球滤过率标记物,血清胱抑素C水平不仅是肾功能损害的敏感指标,也可能反映肿瘤负荷和提供预后信息 [27] [28]。而且最近的荟萃分析表明,在不同人群中,单独使用胱抑素C或与肌酐联合使用增强了eGFR水平与各原因死亡风险和终末期肾病发生风险之间的相关性 [29]。因此,血清Cys-C检验为骨髓瘤患者的肿瘤负荷和肾功能状态提供了重要的诊断价值。是MM肾损害的一种新的预后指标。

2.3. 中性粒细胞明胶酶相关载脂蛋白(NGAL)

中性粒细胞明胶酶相关载脂蛋白(NGAL)称为脂蛋白2,最初被描述为多种人类细胞(包括上皮细胞和中性粒细胞)表达的致癌基因。最近,关于癌症中NGAL失调可能源于肿瘤微环境中缺氧和炎性的刺激,包括通过激活的B细胞的活化核因子κ-轻链增强剂(NF-κB)和有丝分裂原激活引起的NGAL过表达的概念蛋白激酶(MAPK)途径。这些途径的活化在骨髓瘤发病和相关肾脏病变中起着重要作用 [3] [30]。NGAL的主要生物学作用是与铁螯合特性有关的抑菌特性。NGAL是一种25 kDa的蛋白质,可通过肾脏迅速从循环系统中将其消除。NGAL的半衰期估计为10至20分钟。据推测,血清和尿液中NGAL水平升高是急性肾损伤时的敏感指标,其主要是由于肾小管细胞受损所致,即使在机体GFR没有明显下降时,也会出现升高 [31] [32] [33]。

2.4. 视黄醇结合蛋白(RBP)

视黄醇结合蛋白(RBP)广泛存在于血液、尿液、脑脊液及其他体液中 [34],由肝细胞合成,受到视黄醇刺激后分泌并特异性地结合全反式视黄醇(ROH),并将血液中的ROH转运至靶组织,最后与甲状腺素运载蛋白(TTR)以1:1:1比例形成三元复合物占86%,这种蛋白质–蛋白质复合物的质量约为80 kDa,从而防止肾脏对低相对分子质量RBP的滤过及分解 [35]。而像其他微球蛋白一样,如游离的RBP (不结合甲状腺素运载蛋白)则很容易通过肾小球过滤,并被近端肾小管上皮重新吸收。RBP的肾小管重吸收率为99.97% [36] [37]。有研究表明,尿视黄醇的测定具有与尿RBP测定相似的诊断价值。且与尿RBP相比,尿视黄醇检测可能是临床上更方便的判断肾功能不全的标志物 [38]。

2.5. β2-微球蛋白

β2-微球蛋白主要是由淋巴细胞、血小板等产生,是一种小分子球蛋白。由于人类组织抗原的分解,以及代谢作用,β2-微球蛋白分离后,在细胞外液以游离的方式存在。血清中的β2-微球蛋白能够从肾小球毛细血管壁自由滤过。近端肾小球会对大部分β2-微球蛋白吸收并分解。β2-微球蛋白与肿瘤负荷有密切的关系,能够对患者体内的肿瘤负荷直接反映,与患者的生存期相关 [39]。在Kyle等人在对1027例新诊断的MM患者临床及实验室检测进行分析后,发现其中仅有19%的患者血清肌酐超过2 mg/dL,而却在75%的患者中检测到异常的β2-微球蛋白,并且在78%的患者尿液中发现轻链 [40]。血清β2-微球蛋白升高,与多发性骨髓瘤有明确的关系,也可能与β2-微球蛋白排出减少、肾功能下降有关 [41]。而在无肾损害的单克隆轻链的患者,α1-微球蛋白可能用来早期对于肾小管受累的识别 [42]。一项对373例MM患者回顾性的研究发现,确定血清白蛋白水平低于3.5 g/dL为MM重要的预后因素。提示较低的血清白蛋白水平与多发性骨髓瘤疾病严重程度之间存在相关性 [43]。

2.6. 肾脏损伤分子-1 (KIM-1)

肾脏损伤分子-1 (Kidney injury molecule-1, KIM-1)是近端小管的顶端跨膜蛋白。在组织学研究中,KIM-1水平升高与炎症和纤维化相关 [44]。在受损的肾细胞中,KIM-1可能起清除剂、磷脂酰丝氨酸1型受体及监督凋亡细胞吞噬的作用 [45]。在AKI患者中,胞外域脱落导致尿KIM-1水平增加100倍 [46],在实验中,KIM-1基因表达反映了肾小管间质各个节段和肾皮质的持续损伤 [47]。KIM-1目前主要用于与药物相关的近端小管损伤的检测。但就其可早期识别AKI发生的潜力而言,证明了其具有巨大的临床应用价值。

2.7. 基质金属蛋白酶组织抑制剂-2 (TIMP-2)和胰岛素样生长因子结合蛋白-7 (IGFBP-7)

骨髓瘤的骨髓间充质干细胞中金属蛋白酶(Matrix metalloproteinases, MMP)和金属蛋白酶组织抑制剂(Tissue inhibitor of metalloproteinase, TIM)过度产生,可反应骨髓瘤的肿瘤负荷及侵袭性 [48]。最近的数据表明,基质金属蛋白酶组织抑制剂-2 (Tissue inhibitor of matrix metalloproteinase-2, TIMP-2)和胰岛素样生长因子结合蛋白-7 (Insulin-like growth factor-binding protein-7, IGFBP-7)可能有助于预测急性肾损伤,它们都可诱导G1细胞周期停滞,可反应肾损伤前状态 [49]。TIMP-2和IGFBP-7可以参与这些机制并反映肾脏的早期损害 [50]。可以调节p53,p21和p27,活化p蛋白级联反应,从而阻断细胞周期蛋白依赖性蛋白激酶复合物的作用,并改变细胞对毒素或炎性因子的反应 [51] [52] [53]。此外,这些两种生物标志物可能会保护肾细胞避免分裂、死亡或衰老 [54] [55],因TIMP-2和IGFBP-7能够标记受到感染的肾小管上皮并在感染和缺血性损伤时发出信号,提示肾脏发生应激反应 [56]。然后,肾小管细胞将进入一个短周期G1细胞周期停滞,以防止损伤加重 [57] [58]。此外,TIMP-2似乎是专门用于远端肾小管细胞的生物标志物,而在近端肾小管细胞中发现了IGFBP-7分泌 [59]。表明TIMP-2和IGFBP-7是可早期识别AKI的生物标志物,但对于MM并发的肾损害,仍需要更多的研究来支持。

2.8. 激活素A

激活素A是转化生长因子β (TGF-β)超家族的成员,调节各种器官中细胞的生长和分化的一组蛋白质 [60],参与细胞炎症、免疫和细胞因子级联反应的调节。在血管炎患者中,尿激活素A能够识别患有肾脏并发症的患者,这可能与肾脏疾病的严重程度有关 [61]。在健康肾脏中不存在激活素A,但可在MGRS患者的肾小管细胞中发现激活素A。而且发现其与FLC浓度相关,这可能反映了副蛋白沉积和随后的肾小管激活素A表达的机制存在联系。另一方面,有人提出激活素A,在生理条件下,通过滤过和重吸收后,其浓度在体内未检出,随后可因肾小管损伤而出现升高。最近,已有来自MM、MGRS和MGUS患者的数据报道,表明了激活素A可以作为MM并发RI的生物标志物的潜力 [62]。

2.9. 血钙

血钙水平的升高可对肾脏血管的血流动力学稳定性造成影响,钙离子引起肾脏血管的收缩,导致流入肾脏的血流量有所减少,从而使得肾小球的滤过率下降,甚至导致肾前性氮质血症的发生;另外高血钙可导致肾小管以及集合管功能出现障碍 [63],即高血钙可导致集合管对抗利尿激素的敏感性降低以及髓袢升支对氯化物的转运异常,造成肾脏浓缩功能下降,从而导致肾小管、集合管功能障碍 [40],使得肾脏浓缩功能失常,从而出现多尿以及脱水。在中国MM患者中,其血清钙水平与肾功能不全(RI)及全因死亡之间的相关性。一项研究表明,MM患者血清钙水平与RI的发生呈非线性关系。基线钙水平升高可预测全因死亡风险会增加 [64]。因此随着患者血钙水平的升高,患者罹患肾损害的风险显著增加 [65]。

2.10. 血红蛋白

MM造成机体出现贫血的机制有很多,一方面骨髓瘤细胞浸润骨髓,导致机体正常的红细胞生成受到抑制,红细胞寿命缩短 [40],另外MM患者其Fas配体以及肿瘤坏死因子相关的凋亡诱导机制,导致配体的高表达从而引起幼红细胞出现成熟障碍 [66];而且患者高血清M蛋白使得血液稀释 [67],细胞因子IL-1和TNF削弱了网状内皮组织中铁的利用 [68]。重度贫血是仅次于高血钙的主要危险因素,OR值高达18.469 [69],显示血红蛋白水平是多发性骨髓瘤患者发生肾损害的独立危险因素,患者的贫血程度将增加其肾损害的危险性。

2.11. 尿酸

MM是血液系统的恶性肿瘤,当肿瘤细胞的核酸分解增加时可出现高尿酸血症,而且在应用化疗过程中,可能产生肿瘤溶解综合征,出现高尿酸血症 [70]。研究发现,应用尿酸酶抑制剂诱导的高尿酸小鼠与正常小鼠相比,更容易发生肾脏血管的损伤,肾小球硬化和肾间质的纤维化 [71]。另外,高尿酸还可以造成肾脏内皮细胞功能紊乱、氧化应激和肾间质的炎症反应,最终导致肾脏慢性损害 [72] [73]。

3. 小结与展望

肾脏损害是MM最常见的严重并发症之一,是导致MM患者早期死亡的主要原因,许多MM患者在确诊时已出现不可逆转的肾损害,失去最佳治疗时机,早期发现对于迅速实施恰当的治疗至关重要,因此早期发现肾损害是MM临床治疗的关键。肾脏活检是确定组织学病变的最准确方法,但由于其潜在的并发症风险,不能用作筛查工具。这导致我们需要积极寻找一些非侵入性、敏感和快速获得的,且与肾损害密切相关的生物标记物。近些年来,关于肾损害诊断指标开展的研究非常丰富,多数为目前比较熟知的一些标志物,仍有很多相关诊断指标待发掘,目前更倾向于多诊断指标联合进行早期识别MM肾损害及疾病预后的评估,从而进行迅速积极的干预,治疗可逆转的MM肾脏损害,有利于避免或者减慢疾病的进展。

文章引用

刘莹莹,刘雪梅. 多发性骨髓瘤肾损害早期诊断标志物的研究进展
Research Progress on Biomarkers in Early Diagnosis of Renal Impairment in Multiple Myeloma[J]. 临床医学进展, 2021, 11(03): 1353-1361. https://doi.org/10.12677/ACM.2021.113193

参考文献

  1. 1. Kyle, R.A., Therneau, T.M., Rajkumar, S.V., et al. (2006) Prevalence of Monoclonal Gammopathy of Undetermined Significance. The New England Journal of Medicine, 354, 1362-1369. https://doi.org/10.1056/NEJMoa054494

  2. 2. 梁丹, 黄湘华, 任贵生, 等. 多发性骨髓瘤伴肾脏病变患者的临床病理特征和预后[J]. 肾脏病与透析肾移植杂志, 2016, 25(5): 401-408.

  3. 3. Heher, E.C., Rennke, H.G., Laubach, J.P., et al. (2013) Kidney Disease and Multiple Myeloma. Clinical Journal of the American Society of Nephrology: CJASN, 8, 2007-2017. https://doi.org/10.2215/CJN.12231212

  4. 4. Kumar, S.K., Callander, N.S., Hillengass, J., et al. (2019) NCCN Guidelines Insights: Multiple Myeloma, Version 1.2020. Journal of the National Comprehensive Cancer Network: JNCCN, 17, 1154-1165. https://doi.org/10.6004/jnccn.2019.0049

  5. 5. Rajkumar, S.V., Dimopoulos, M.A., Palumbo, A., et al. (2014) International Myeloma Working Group Updated Criteria for the Diagnosis of Multiple Myeloma. The Lancet Oncology, 15, e538-e548. https://doi.org/10.1016/S1470-2045(14)70442-5

  6. 6. Nanagopal, L., Ye, J.C., Ventimiglia, M., et al. (2014) Influence of Race on Outcomes in Multiple Myeloma Patients with Renal Dysfunction Undergoing High Dose Therapy Followed by Autologous Stem Cell Transplant. Blood, 124, 5904-5904. https://doi.org/10.1182/blood.V124.21.5904.5904

  7. 7. Kndsen, L.M., Hjorth, M. and Hippe, E. (2000) Renal Failure in Multiple Myeloma: Reversibility and Impact on the Prognosis. Nordic Myeloma Study Group. European Journal of Haematology, 65, 175-181. https://doi.org/10.1034/j.1600-0609.2000.90221.x

  8. 8. Rehtina, I.G., Mendeleeva, L.P. and Biryukova, L.S. (2016) Dialysis-Dependent Renal Failure in Patients with Multiple Myeloma: Reversibility Factors. Terapevticheskii arkhiv, 87, 72-76. https://doi.org/10.17116/terarkh201587772-76

  9. 9. Chen, X., Luo, X., Zu, Y., et al. (2020) Severe Renal Impairment as an Adverse Prognostic Factor for Survival in Newly Diagnosed Multiple Myeloma Patients. Journal of Clinical Laboratory Analysis, 34, e23416. https://doi.org/10.1002/jcla.23416

  10. 10. Howlader, N., Noone, A.M., Krapcho, M., et al. (2013) Seer Cancer Statistics Review, 1975-2012. National Cancer Institute.

  11. 11. Ozsan, G.H. and Dispenzieri, A. (2011) Serum Free Light Chain Analysis in Multiple Myeloma and Plasma Cell Dyscrasias. Expert Review of Clinical Immunology, 7, 65-73. https://doi.org/10.1586/eci.10.80

  12. 12. International Myeloma Working Group (2003) Criteria for the Classification of Monoclonal Gammopathies, Multiple Myeloma and Related Disorders: A Report of the International Myeloma Working Group. British Journal of Haematology, 121, 749-757. https://doi.org/10.1046/j.1365-2141.2003.04355.x

  13. 13. Nakano, T., Miyazaki, S., Takahashi, H., et al. (2006) Immunochemical Quantification of Free Immunoglobulin Light Chains from an Analytical Perspective. Clinical Chemistry and Laboratory Medicine, 44, 522-532. https://doi.org/10.1515/CCLM.2006.118

  14. 14. 周晓, 翟勇平, 梅建刚, 等. 本周氏蛋白催化作用与多发性骨髓瘤患者肾损伤的关系[J]. 中国实验血液学杂志, 2012, 20(2): 339-343.

  15. 15. Favà, A., Fulladosa, X., Montero, N., et al. (2018) Treatment of Multiple Myeloma with Renal Involvement: The Nephrologist’s View. Clinical Kidney Journal, 11, 777-785. https://doi.org/10.1093/ckj/sfy065

  16. 16. Li, M., Hering-Smith, K.S., Simon, E.E., et al. (2008) Myeloma Light Chains Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells. Nephrology, Dialysis, Transplantation, 23, 860-870. https://doi.org/10.1093/ndt/gfm670

  17. 17. Arimura, A., Li, M. and Batuman, V. (2006) Potential Protective Action of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP38) on In Vitro and In Vivo Models of Myeloma Kidney Injury. Blood, 107, 661-668. https://doi.org/10.1182/blood-2005-03-1186

  18. 18. Ying, W.Z., Wang, P.X., Aaron, K.J., et al. (2011) Immunoglobulin Light Chains Activate Nuclear Factor-κB in Renal Epithelial Cells through a Src-Dependent Mechanism. Blood, 117, 1301-1307. https://doi.org/10.1182/blood-2010-08-302505

  19. 19. Chen, X.D., Luo, X.F., Zu, Y.P., et al. (2019) Effect of Serum Free Light Chain on Renal Function and Prognosis in Patients with Newly Diagnosed Multiple Myeloma. Journal of Experimental Hematology, 27, 1862-1868. https://doi.org/10.19746/j.cnki.issn.1009-2137.2019.06.025

  20. 20. Yadav, P., Cook, M. and Cockwell, P. (2016) Current Trends of Renal Impairment in Multiple Myeloma. Kidney Diseases (Basel, Switzerland), 1, 241-257. https://doi.org/10.1159/000442511

  21. 21. Yadav, P., Cockwell, P., Cook, M., et al. (2018) Serum Free Light Chain Levels and Renal Function at Diagnosis in Patients with Multiple Myeloma. BMC Nephrology, 19, 178. https://doi.org/10.1186/s12882-018-0962-x

  22. 22. Laterza, O.F., Price, C.P. and Scott, M.G. (2002) Cystatin C: An Improved Estimator of Glomerular Filtration Rate? Clinical Chemistry, 48, 699-707. https://doi.org/10.1093/clinchem/48.5.699

  23. 23. 杨敏. 多发性骨髓瘤患者血清Cys-C、Urea、Scr及β2-MG水平检测及其临床意义[J]. 标记免疫分析与临床, 2019, 26(3): 506-510.

  24. 24. Grubb, A., Horio, M., Hansson, L.O., et al. (2014) Generation of a New Cystatin C-Based Estimating Equation for Glomerular Filtration Rate by Use of 7 Assays Standardized to the International Calibrator. Clinical Chemistry, 60, 974-986. https://doi.org/10.1373/clinchem.2013.220707

  25. 25. 许光银, 乔彩霞, 王志玉. 多项生物学标志物联合检测在重症患者合并急性肾损伤早期诊断中的价值[J]. 中华肾脏病杂志, 2014, 30(3): 166-171.

  26. 26. De Vos, J., Thykjaer, T., Tarte, K., et al. (2002) Comparison of Gene Expression Profiling between Malignant and Normal Plasma Cells with Oligonucleotide Arrays. Oncogene, 21, 6848-6857. https://doi.org/10.1038/sj.onc.1205868

  27. 27. Terpos, E., Katodritou, E., Tsiftsakis, E., et al. (2009) Cystatin-C Is an Independent Prognostic Factor for Survival in Multiple Myeloma and Is Reduced by Bortezomib Administration. Haematologica, 94, 372-379. https://doi.org/10.3324/haematol.2008.000638

  28. 28. Dimopoulos, M.A., Kastritis, E., Michalis, E., et al. (2012) The International Scoring System (ISS) for Multiple Myeloma Remains a Robust Prognostic Tool Independently of Patients’ Renal Function. Annals of Oncology, 23, 722-729. https://doi.org/10.1093/annonc/mdr276

  29. 29. Shlipak, M.G., Matsushita, K., Ärnlöv, J., Inker, et al. (2013) Cystatin C versus Creatinine in Determining Risk Based on Kidney Function. The New England Journal of Medicine, 369, 932-943. https://doi.org/10.1056/NEJMoa1214234

  30. 30. Roy, P., Sarkar, U.A. and Basak, S. (2018) The NF-κB Activating Pathways in Multiple Myeloma. Biomedicines, 6, 59. https://doi.org/10.3390/biomedicines6020059

  31. 31. Mori, K. and Nakao, K. (2007) Neutrophil Gelatinase-Associated Lipocalin as the Real-Time Indicator of Active Kidney Damage. Kidney International, 71, 967-970. https://doi.org/10.1038/sj.ki.5002165

  32. 32. Nejat, M., Pickering, J.W., Devarajan, P., et al. (2012) Some Biomarkers of Acute Kidney Injury Are Increased in Pre-Renal Acute Injury. Kidney International, 81, 1254-1262. https://doi.org/10.1038/ki.2012.23

  33. 33. Nguen, M.T. and Devarajan, P. (2008) Biomarkers for the Early Detection of Acute Kidney Injury. Pediatric Nephrology (Berlin, Germany), 23, 2151-2157. https://doi.org/10.1007/s00467-007-0470-x

  34. 34. Sundaram, M., Sivaprasadarao, A., DeSousa, M.M., et al. (1998) The Transfer of Retinol from Serum Retinol-Binding Protein to Cellular Retinol-Binding Protein Is Mediated by a Membrane Receptor. The Journal of Biological Chemistry, 273, 3336-3342. https://doi.org/10.1074/jbc.273.6.3336

  35. 35. Naylor, H.M. and Newcomer, M.E. (1999) The Structure of Human Retinol-Binding Protein (RBP) with Its Carrier Protein Transthyretin Reveals an Interaction with the Carboxy Terminus of RBP. Biochemistry, 38, 2647-2653. https://doi.org/10.1021/bi982291i

  36. 36. Bernard, A., Viau, C., Ouled, A., et al. (1987) Competition between Low- and High-Molecular-Weight Proteins for Renal Tubular Uptake. Nephron, 45, 115-118. https://doi.org/10.1159/000184090

  37. 37. Corso, A., Serricchio, G., Zappasodi, P., et al. (1999) Assessment of Renal Function in Patients with Multiple Myeloma: The Role of Urinary Proteins. Annals of Hematology, 78, 371-375. https://doi.org/10.1007/s002770050531

  38. 38. Gavrilov, V., Yermiahu, T. and Gorodischer, R. (2006) Renal Pathology and Retinol Status in Multiple Myeloma Patients. Kidney International, 69, 173-177. https://doi.org/10.1038/sj.ki.5000024

  39. 39. 刘荣荣, 彭洪菊. 多发性骨髓瘤患者血清β2-微球蛋白、TNF-α、CRP及IL-6水平检测的临床价值[J]. 航空航天医学杂志, 2018, 29(1): 48-49.

  40. 40. Kyle, R.A., Gertz, M.A., Witzig, T.E., et al. (2003) Review of 1027 Patients with Newly Diagnosed Multiple Myeloma. Mayo Clinic Proceedings, 78, 21-33. https://doi.org/10.4065/78.1.21

  41. 41. 赵霞, 许庆, 丁慧芳, 等. DC-CIK联合化疗对多发性骨髓瘤患者细胞免疫功能的影响[J]. 中国免疫学杂志, 2015, 31(4): 490-496.

  42. 42. Madalena, L., Facio, M.L., Angerosa, M., et al. (2007) Urinary Excretion of Low Molecular Weight Proteins in Patients with Pure Monoclonal Light Chain Proteinuria. Journal of Nephrology, 20, 683-688.

  43. 43. Kim, J.E., Yoo, C., Lee, D.H., et al. (2010) Serum Albumin Level Is a Significant Prognostic Factor Reflecting Disease Severity in Symptomatic Multiple Myeloma. Annals of Hematology, 89, 391-397. https://doi.org/10.1007/s00277-009-0841-4

  44. 44. van Timmeren, M.M., van den Heuvel, M.C., Bailly, V., et al. (2007) Tubular Kidney Injury Molecule-1 (KIM-1) in Human Renal Disease. The Journal of Pathology, 212, 209-217. https://doi.org/10.1002/path.2175

  45. 45. Gobe, G.C., Coombes, J.S., Fassett, R.G., et al. (2015) Biomarkers of Drug-Induced Acute Kidney Injury in the Adult. Expert Opinion on Drug Metabolism & Toxicology, 11, 1683-1694. https://doi.org/10.1517/17425255.2015.1083011

  46. 46. Vaidya, V.S., Ozer, J.S., Dieterle, F., et al. (2010) Kidney Injury Molecule-1 Outperforms Traditional Biomarkers of Kidney Injury in Preclinical Biomarker Qualification Studies. Nature Biotechnology, 28, 478-485. https://doi.org/10.1038/nbt.1623

  47. 47. Chiusolo, A., Defazio, R., Zanetti, E., et al. (2010) Kidney Injury Molecule-1 Expression in Rat Proximal Tubule after Treatment with Segment-Specific Nephrotoxicants: A Tool for Early Screening of Potential Kidney Toxicity. Toxicologic Pathology, 38, 338-345. https://doi.org/10.1177/0192623310362244

  48. 48. Zdzisińska, B., Walter-Croneck, A. and Kandefer-Szerszeń, M. (2008) Matrix Metalloproteinases-1 and -2, and Tissue Inhibitor of Metalloproteinase-2 Production Is Abnormal in Bone Marrow Stromal Cells of Multiple Myeloma Patients. Leukemia Research, 32, 1763-1769. https://doi.org/10.1016/j.leukres.2008.04.001

  49. 49. Ronco, C. (2016) Acute Kidney Injury: From Clinical to Molecular Diagnosis. Critical Care (London, England), 20, 201. https://doi.org/10.1186/s13054-016-1373-7

  50. 50. Yang, Q.H., Liu, D.W., Long, Y., et al. (2009) Acute Renal Failure during Sepsis: Potential Role of Cell Cycle Regulation. The Journal of Infection, 58, 459-464. https://doi.org/10.1016/j.jinf.2009.04.003

  51. 51. Seo, D.W., Li, H., Qu, C.K., et al. (2006) Shp-1 Mediates the Antiproliferative Activity of Tissue Inhibitor of Metalloproteinase-2 in Human Microvascular Endothelial Cells. The Journal of Biological Chemistry, 281, 3711-3721. https://doi.org/10.1074/jbc.M509932200

  52. 52. Zuo, S., Liu, C., Wang, J., et al. (2012) IGFBP-rP1 Induces p21 Expression through a p53-Independent Pathway, Leading to Cellular Senescence of MCF-7 Breast Cancer Cells. Journal of Cancer Research and Clinical Oncology, 138, 1045-1055. https://doi.org/10.1007/s00432-012-1153-y

  53. 53. Wang, Z., Famulski, K., Lee, J., et al. (2014) TIMP2 and TIMP3 Have Divergent Roles in Early Renal Tubulointerstitial Injury. Kidney International, 85, 82-93. https://doi.org/10.1038/ki.2013.225

  54. 54. Boonstra, J. and Post, J.A. (2004) Molecular Events Associated with Reactive Oxygen Species and Cell Cycle Progression in Mammalian Cells. Gene, 337, 1-13. https://doi.org/10.1016/j.gene.2004.04.032

  55. 55. Rodier, F., Campisi, J. and Bhaumik, D. (2007) Two Faces of p53: Aging and Tumor Suppression. Nucleic Acids Research, 35, 7475-7484. https://doi.org/10.1093/nar/gkm744

  56. 56. Stetler-Stevenson, W.G. (2008) Tissue Inhibitors of Metalloproteinases in Cell Signaling: Metalloproteinase-Independent Biological Activities. Science Signaling, 1, re6. https://doi.org/10.1126/scisignal.127re6

  57. 57. Witzgall, R., Brown, D. and Schwarz, C. (1994) Localization of Proliferating Cell Nuclear Antigen, Vimentin, c-Fos, and Clusterin in the Postischemic Kidney. Evidence for a Heterogenous Genetic Response among Nephron Segments, and a Large Pool of Mitotically Active and Dedifferentiated Cells. The Journal of Clinical Investigation, 93, 2175-2188. https://doi.org/10.1172/JCI117214

  58. 58. Katz, N. and Ronco, C. (2016) Acute Kidney Stress—A Useful Term Based on Evolution in the Understanding of Acute Kidney Injury. Critical Care (London, England), 20, 23. https://doi.org/10.1186/s13054-016-1184-x

  59. 59. Emlet, D.R., Pastor-Soler, N., Marciszyn, A., et al. (2017) Insulin-Like Growth Factor Binding Protein 7 and Tissue Inhibitor of Metalloproteinases-2: Differential Expression and Secretion in Human Kidney Tubule Cells. American Journal of Physiology. Renal Physiology, 312, F284-F296. https://doi.org/10.1152/ajprenal.00271.2016

  60. 60. Xia, Y. and Schneyer, A.L. (2009) The Biology of Activin: Recent Advances in Structure, Regulation and Function. The Journal of Endocrinology, 202, 1-12. https://doi.org/10.1677/JOE-08-0549

  61. 61. Takei, Y., Takahashi, S., Nakasatomi, M., et al. (2019) Urinary Activin A Is a Novel Biomarker Reflecting Renal Inflammation and Tubular Damage in ANCA-Associated Vasculitis. PLoS ONE, 14, e0223703. https://doi.org/10.1371/journal.pone.0223703

  62. 62. Iriuchishima, H., Maeshima, A., Takahashi, S., et al. (2019) Activin A: A Novel Urinary Biomarker of Renal Impairment in Multiple Myeloma. Bioscience Reports, 39, BSR20190206. https://doi.org/10.1042/BSR20190206

  63. 63. Clark, A.D., Shetty, A. and Soutar, R. (1999) Renal Failure and Multiple Myeloma: Pathogenesis and Treatment of Renal Failure and Management of Underlying Myeloma. Blood Reviews, 13, 79-90. https://doi.org/10.1016/S0268-960X(99)90014-0

  64. 64. Cheng, J., Zhang, W., Zhao, Y., et al. (2021) Association of Serum Calcium Levels with Renal Impairment and All-Cause Death in Chinese Patients with Newly Diagnosed Multiple Myeloma: A Cross-Sectional, Longitudinal Study. Nutrition & Metabolism, 18, 19. https://doi.org/10.1186/s12986-020-00525-0

  65. 65. Hutchison, C.A., Batuman, V., Behrens, J., et al. (2011) The Pathogenesis and Diagnosis of Acute Kidney Injury in Multiple Myeloma. Nature Reviews. Nephrology, 8, 43-51. https://doi.org/10.1038/nrneph.2011.168

  66. 66. Silvestris, F., Cafforio, P., Tucci, M., et al. (2002) Negative Regulation of Erythroblast Maturation by Fas-L(+)/TRAIL(+) Highly Malignant Plasma Cells: A Major Pathogenetic Mechanism of Anemia in Multiple Myeloma. Blood, 99, 1305-1313. https://doi.org/10.1182/blood.V99.4.1305

  67. 67. Agarwal, J.R., Wang, Q., Tanno, T., et al. (2014) Activation of Liver X Receptors Inhibits Hedgehog Signaling, Clonogenic Growth, and Self-Renewal in Multiple Myeloma. Molecular Cancer Therapeutics, 13, 1873-1881. https://doi.org/10.1158/1535-7163.MCT-13-0997

  68. 68. Faquin, W.C., Schneider, T.J. and Goldberg, M.A. (1992) Effect of Inflammatory Cytokines on Hypoxia-Induced Erythropoietin Production. Blood, 79, 1987-1994. https://doi.org/10.1182/blood.V79.8.1987.1987

  69. 69. 刘萌萌, 许洪志, 冯秀梅, 等. 多发性骨髓瘤肾损害危险因素及其可逆性预测指标的临床相关研究[J]. 中国实验血液学杂志, 2015, 23(3): 722-727.

  70. 70. Cohen, L.F., Balow, J.E., Magrath, I.T., et al. (1980) Acute Tumor Lysis Syndrome. A Review of 37 Patients with Burkitt’s Lymphoma. The American Journal of Medicine, 68, 486-491. https://doi.org/10.1016/0002-9343(80)90286-7

  71. 71. Kang, D.H., Nakagawa, T., Feng, L., et al. (2002) A Role for Uric Acid in the Progression of Renal Disease. Journal of the American Society of Nephrology: JASN, 13, 2888-2897. https://doi.org/10.1097/01.ASN.0000034910.58454.FD

  72. 72. Sánhez-Lozada, L.G., Lanaspa, M.A., Cristóbal-García, M., et al. (2012) Uric Acid-Induced Endothelial Dysfunction Is Associated with Mitochondrial Alterations and Decreased Intracellular ATP Concentrations. Nephron. Experimental Nephrology, 121, e71-e78. https://doi.org/10.1159/000345509

  73. 73. Ryu, E.S., Kim, M.J., Shin, H.S., et al. (2013) Uric Acid-Induced Phenotypic Transition of Renal Tubular Cells as a Novel Mechanism of Chronic Kidney Disease. American Journal of Physiology. Renal Physiology, 304, F471-F480. https://doi.org/10.1152/ajprenal.00560.2012

  74. NOTES

    *通讯作者。

期刊菜单