Advances in Clinical Medicine
Vol. 13  No. 07 ( 2023 ), Article ID: 68755 , 7 pages
10.12677/ACM.2023.1371561

维持性血液透析患者血管钙化危险因素研究 进展

张家玉,李六生*

三峡大学人民医院肾内科,湖北 宜昌

收稿日期:2023年6月14日;录用日期:2023年7月9日;发布日期:2023年7月14日

摘要

心血管并发症是维持性血液透析患者最主要的死亡原因,血管钙化是心血管并发症的独立危险因子,同时会增加患者的死亡风险。维持性血液透析患者的血管钙化是多因素共同作用的结果,控制危险因素可以有效延缓血管钙化的发生发展,对降低维持性血液透析患者心血管事件的发生率及死亡率,改善预后有重要意义。目前,传统危险因素已不能解释患者血管钙化的高发生率,非传统因素对血管钙化的影响越来越为人们所关注,本文就维持性血液透析患者血管钙化的非传统因素进行综述。

关键词

血管钙化,维持性血液透析,危险因素

Research Progress on Risk Factors for Vascular Calcification in Maintenance Hemodialysis Patients

Jiayu Zhang, Liusheng Li*

Department of Nephrology, People’s Hospital of China Three Gorges University, Yichang Hubei

Received: Jun. 14th, 2023; accepted: Jul. 9th, 2023; published: Jul. 14th, 2023

ABSTRACT

Cardiovascular complications are the most important cause of death in maintenance hemodialysis (MHD) patients. Vascular calcification (VC) is an independent risk factor for cardiovascular complications, which also increases the risk of death for patients. Vascular calcification in maintenance hemodialysis patients is the result of multiple factors. Controlling risk factors can effectively delay the occurrence and development of vascular calcification, which is of great significance in reducing the incidence and mortality rate of cardiovascular events and improving prognosis in maintenance hemodialysis patients. Currently, traditional risk factors cannot explain the high incidence of vascular calcification in patients. The impact of non-traditional factors on vascular calcification has attracted more and more attention. This article summarizes the non-traditional factors of vascular calcification in patients with maintenance hemodialysis.

Keywords:Vascular Calcification, Maintenance Hemodialysis, Risk Factors

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

慢性肾脏病(Chronic kidney diseases, CKD)患病率不断升高,据估计,CKD全球患病率高达13.4% [1] 。维持性血液透析(Maintenance hemodialysis, MHD)是终末期肾脏病患者的肾脏替代治疗方式之一,目前全球约300万患者接受肾脏替代治疗 [2] 。尽管透析技术极大地延长了CKD患者生命,但随着透析年龄的积累,心血管并发症仍是患者最主要的死亡原因。血管钙化(Vascular calcification, VC)是磷酸盐晶体在血管壁异常沉积的病理过程,可使血管顺应性降低、脉压增大,从而增加心血管死亡风险。研究表明,VC与CKD患者心血管并发症发生率及死亡率密切相关 [3] 。VC在CKD早期就已经发生,非透析患者VC发生率约为51%,而在腹膜透析和MHD患者中则分别达60%和80%,与非透析患者相比,透析患者VC的受累部位更多,透析患者冠状动脉钙化、腹主动脉钙化、心脏瓣膜钙化的发生率分别达68.3%、46.8%、29.0% [4] 。既往研究已表明VC是一个主动的、可调控的、涉及钙化促进因子与抑制因子相互作用的类似于骨形成的过程,血管平滑肌细胞(Vascular smooth muscle cells, VSMCs)从收缩表型向成骨/软骨样细胞分化是其中心环节。诸多危险因素参与血管钙化的发生发展,既包括传统危险因素如高龄、吸烟、高血压、糖尿病等 [3] [5] ,还有非传统因素如矿物质骨代谢紊乱、营养不良–微炎症综合征、氧化应激、肠源性尿毒症毒素蓄积、高尿酸血症等 [6] [7] [8] [9] [10] 。VC尚无有效治疗方法,临床主要以控制血管钙化的危险因素为重点。目前研究表明传统危险因素不足以解释MHD患者VC的高发生率,非传统危险因素可能更早地促进VC的发生发展,因此,本文就MHD患者血管钙化非传统因素的研究进展进行综述。

2. 矿物质骨代谢紊乱

2.1. 高磷血症

矿物质骨代谢紊乱是MHD患者常见并发症之一,临床表现为钙磷代谢紊乱、继发性甲状旁腺功能亢进(Secondary hyperparathyroidism, SHPT)、骨代谢异常及血管、软组织钙化综合征。CKD患者随着肾小球滤过率的下降,尿磷排泄减少,血磷水平进行性升高,高磷与血中钙离子结合以磷酸盐形式沉积于血管壁及软组织。研究表明,磷酸盐通过诱导VSMCs向成骨样表型分化、VSMCs细胞外基质矿化、VSMCs调亡、抑制单核巨噬细胞系统向破骨样细胞分化、刺激成纤维细胞生长因子-23 (Fibroblast growth factor-23, FGF23)升高及Klotho表达降低等机制导致血管钙化。在一项基础实验中,TNAI [11] 等人用高磷饮食喂养单侧肾切除大鼠,36天后大鼠的胸、腹主脉出现明显钙化。Jono [12] 将人的主动脉VSMCs在与CKD高磷血症患者相似的磷酸盐水平的培养基中孵育,发现VSMCs发生钙化并显示出剂量依赖性,而且骨钙素与成骨细胞分化物(核心结合因子亚基α-1)的表达增加,表明高磷通过诱导VSMCs的成骨样转分化促进VC。Park K S [13] 等人表明,在肾功能正常的人群中,高磷与冠状动脉钙化相关。柳青 [14] 等研究发现行低钙透析液联合高通量血液透析治疗患者的血钙、血磷水平及VC程度明显低于单独行高通量血液透析的患者,提示改善体内钙磷代谢紊乱可能延缓VC的进展。

2.2. SHPT

CKD患者常合并SHPT,甲状旁腺在长期低钙、高磷、活性维生素D合成下降等因素刺激下分泌甲状旁腺激素(Parathyroid hormone, PTH)增多,最终过量的PTH直接或间接地刺激甲状旁腺细胞增生导致SHPT。一项透析预后与实践模式研究(DOPPS)表明,PTH > 600 pg/mL与CKD患者全因住院的风险及心血管死亡率增加有关 [15] 。高PTH水平可能促进VC的发生,Neves K R [16] 等将5/6肾切除术的CKD大鼠模型暴露于高PTH水平中,观察发现大鼠发生SHPT,且冠状动脉内侧发生钙化。张蕊 [17] 等发现MHD合并难治性SHPT患者腹主动脉钙化的发生率更高。阮欣然 [18] 等使用小剂量骨化三醇联合西那卡塞治疗MHD患者SHPT,结果提示患者甲状旁腺功能改善且明显抑制冠脉动脉钙化发展。

2.3. FGF23-Klotho失衡

FGF-23是由破骨细胞和骨细胞分泌的一种蛋白质,通过与FGF受体结合调节磷酸盐的排泄及抑制1,25-(OH)2-D 3的合成。FGF23水平在CKD早期开始升高,MHD患者的血FGF23水平可达生理值数百倍。研究表明,在一般人群中,较高的FGF23浓度与冠状动脉钙化斑块存在关联 [19] 。Donate-Correa J [20] 等人研究也发现,与没有VC的患者相比,VC患者的血清FGF23浓度显著升高,血管壁中FGF23蛋白免疫反应性和基因表达水平也升高。Klotho是一种跨膜蛋白,它在多种组织中表达,但在肾脏中的含量最高。Klotho是FGF23调节矿物质稳态的关键辅助因子,在Klotho存在时,FGF23与FGF受体的亲和力显著提升 [21] [22] 。Klotho水平随着肾功能下降而持续性减低,MHD患者普遍缺乏Klotho。Kuro-o M [23] 等人通过对klotho基因敲除小鼠研究发现,生长至4周时小鼠即可出现全身大小血管及各系统器官异位钙化,并且随着小鼠年龄的增长,钙化情况逐渐加重,表明Klotho缺乏促进VC的发生发展。

2.4. 高钙血症

部分MHD患者由于不合理补钙、使用活性维生素D及含钙磷结合剂,高钙血症发生率逐渐增加,研究表明血钙水平 > 10.2 mg/dL与MHD患者死亡风险相关 [24] [25] 。吴胜英 [26] 等使用维生素D3加尼古丁诱导大鼠发生血管钙化,通过给予外源性补充葡萄糖酸钙增高血钙浓度,将大鼠分为单纯钙化组、钙化 + 高钙血症组、单纯高钙血症组及对照组,喂养4周后研究发现钙化组的主动脉钙含量、45Ca2+沉积及碱性磷酸酶活性分别是对照组的3.7倍、1.3倍和1.4倍。与单纯钙化组大鼠相比,钙化 + 高钙血症组大鼠的主动脉钙含量、45Ca2+沉积及碱性磷酸酶活性分别升高了12%、38%、15%,而且钙化 + 高组钙血症组大鼠的血管的成骨标识物-骨桥蛋白(Osteopontin, OPN) mRNA的表达上调46%,表明高钙摄入可以加重钙化大鼠的血管钙化程度。

3. 营养不良–微炎症综合征

MHD患者由于食欲下降、胃肠道黏膜发生水肿、透析治疗导致营养物质丢失等,往往存在不同程度的营养不良。微炎症状态是MHD患者长期隐匿存在的一种病理状态,也是导致患者营养不良的重要原因,营养不良与微炎症状态可互为因果,形成恶性循环,从而加重MHD患者心血管等脏器损害,因此将营养不良合并持续性微炎症状态称之为营养不良–微炎症综合征(Malnutrition-inflammation complex syndrome, MICS)。研究表明MICS与CKD血管钙化密切相关,Yamada,S [27] 等用极低蛋白饮食喂养大鼠,观察6周后发现CKD大鼠发生严重营养不良、全身炎症及动脉内侧钙化。营养不良–炎症评分系统(Malnutrition inflammation score, MIS)是评估MICS程度的重要方法,MIS评分与MICS呈正相关。魏萌 [7] 等研究表明MICS是MHD患者血管钙化的独立危险因素,钙化患者的MIS评分显著高于非钙化患者,且随着MICS程度加重,血管钙化阳性率也显著增加。

4. 氧化应激

氧化应激是指机体在各种有害因素刺激下,促氧化因子(活性氧和活性氮)的产生过多,氧化系统与抗氧化系统失衡,最终导致细胞、组织损伤。研究表明氧化应激促进CKD患者VC发生发展,Yamada S [8] 等人用由含腺嘌呤的饮食诱导CKD大鼠发生动脉内侧钙化,且动脉内侧钙化随全身氧化应激时间依赖性增加。Mei Huang [28] 等人研究发现氧化应激可能通过诱导VSMCs中的成骨细胞转变促进VC的发展,且抑制氧化应激可以预防CKD患者VC的进展。

5. 肠源性尿毒症毒素蓄积

肠道菌群具有多重功能,被视为人体具有代谢活性的虚拟器官 [29] 。肠道菌群失调是指特定部位微生物群组成发生改变,CKD患者由于肠道屏障受损,微生物群组成的变化,产生过多的尿毒症毒素,如对甲酚硫酸盐(P-cresol sulfate, PCS)、硫酸吲哚酚(Indoxyl sulfate, IS)和氧化三甲胺(Trimethylamine N-oxide, TMAO)等,同时肾功能减退导致毒素清除减少,最终导致尿毒症毒素在体内蓄积。研究表明,尿毒症毒素的蓄积促进VC的发生发展。IS和PCS分别来源于肠道微生物对酪氨酸/苯丙氨酸和色氨酸分解,并经过肝脏代谢生成,由于IS和PCS与血浆白蛋白亲和力很高,传统的透析并不能有效清除,与健康人群相比,MHD患者血浆IS浓度可高达100倍 [30] 。研究发现,IS、PCS可以通过氧化应激、促进血管平滑肌转分化、破坏钙化平衡等机制促进血管钙化 [9] [31] 。一项基础实验研究证明,长期暴露于与CKD患者相似血清浓度的IS、PCS下,可显著增加CKD大鼠的主动脉和外周动脉的钙化 [32] 。TMAO是另一种尿毒症毒素,由肉碱、磷脂酰胆碱、甜菜碱、左旋肉碱在肠道经微生物作用后形成,TMAO促进VC发展的机制尚未完全阐明,既往研究表明,TMAO可以通过引发血管炎症、氧化应激和内皮功能障碍促进VC的发展 [33] [34] 。最近研究发现,TMAO可能通过诱导VSMC的表型转化、编码VSMC成骨细胞分化的蛋白质的基因(Runt相关转录因子2 (Runx2)、骨形态发生蛋白2 (BMP2))的mRNA表达来诱导VC的发生 [35] 。

6. 高尿酸血症

尿酸(Uric acid, UA)是嘌呤代谢的终产物,人体内80%UA来源于内源性,20%来源于食物。尿酸主要通过肾脏排泄,极少一部分通过肠道排泄,生理情况下,尿酸的生成与排泄处于动态平衡。CKD患者由于肾脏功能减退,尿酸通过肾脏排泄减少,血尿酸水平进行性升高,ESRD患者高尿酸血症的患病率高达50% [36] 。研究表明高尿酸血症与血管钙化相关,且尿酸水平是冠脉钙化的独立预测因子 [10] [37] 。一项meta分析 [38] 纳入了11项研究共1081名受试者,分析显示CKD合并高尿酸血症患者血管钙化风险明显升高,血清UA水平每增加31 mg/dL,冠状动脉钙化进展的风险增加95%。胡壮彬等 [39] 研究表明高尿酸血症加剧了MHD患者血管钙化的发生,降尿酸治疗可以延缓血管钙化的发展。

7. 微量营养元素缺乏

微量营养元素对维持人体正常新陈代谢具有重要意义,MHD患者由于肾功能下降、透析治疗和膳食限制等因素使机体容易出现微量营养元素缺乏。锌是一种必需的微量元素,是体内含量第二丰富的二价阳离子,在MHD患者中,锌缺乏患病率可达78%以上 [40] 。Chen [41] 等研究表明,高锌饮食与成人重度腹主动脉钙化风险降低独立相关。与健康人群相比,CKD患者的血锌水平较低,低锌与中重度冠状动脉钙化有关 [42] 。一项体外研究发现 [43] ,锌抑制了磷酸盐诱导的VSMC成骨表型转换导致的血管钙化的发展。然而,尚缺乏研究证明补锌可以预防CKD患者血管钙化。部分终末期肾脏病的患者,由于饮食摄入减少、呕吐、腹泻、大剂量利尿剂的使用等因素,可出现低镁血症。MHD使用低镁透析液并合并低蛋白血症的患者发生低镁血症的风险更高。研究表明,低镁血症与血管钙化呈负相关 [44] 。体外实验研究发现补充镁可以延缓羟基磷灰石的形成,降低血管钙化的发生率 [45] 。维生素K是一种人体必需的脂溶性维生素,可作为辅酶参与维生素K依赖性蛋白的羧化。基质Gla蛋白(Matrix Gla-protein, MGP)是一种维生素K依赖性蛋白,作为体外和体内血管钙化的强烈抑制因子,它可以防止甚至是逆转动脉壁的矿化,MGP必须在维生素K辅助下活化并发挥生物学活性。部分MHD患者由于长期低盐、低钾饮食及服用维生素K拮抗剂,常合并维生素K缺乏。Chen [46] 等人对包含有21,222名受试者的592项研究进行meta分析,发现维生素K缺乏与CKD患者主动脉钙化相关。魏萌 [7] 等发现在MHD患者中,血管钙化患者的血维生素K水平普遍低于非钙化患者,提示提高补充维生素K水平有利于预防血管钙化。

8. 透析龄

血液透析是终末期肾脏病患者重要的治疗手段,研究表明随着透析年龄的积累,MHD患者血管钙化的风险逐渐增加。杨洁 [47] 等研究表明长透析龄是腹主动脉钙化的独立危险因素。贾凤玉 [48] 等研究发现心脏瓣膜钙化患者的透析龄显著大于非瓣膜钙化患者,且透析龄越长,心脏瓣膜钙化的发生率越高。

9. 小结

综上所述,MHD患者血管钙化是多因素共同作用的结果,除传统因素外,与疾病相关的非传统危险因素已逐渐受到临床医师的重视,目前血管钙化尚无有效的治疗方法,充分认识及防治血管钙化的危险因素,针对患者制定个体化预防措施,有望减低CKD患者血管钙化的发生率及心血管事件的死亡率。

文章引用

张家玉,李六生. 维持性血液透析患者血管钙化危险因素研究进展
Research Progress on Risk Factors for Vascular Calcification in Maintenance Hemodialysis Patients[J]. 临床医学进展, 2023, 13(07): 11180-11186. https://doi.org/10.12677/ACM.2023.1371561

参考文献

  1. 1. Hill, N.R., Fatoba, S.T., Oke, J.L., et al. (2016) Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLOS ONE, 11, e158765. https://doi.org/10.1371/journal.pone.0158765

  2. 2. Zhang, L., Wang, J., Yang, C.W., et al. (2021) International Society of Nephrology Global Kidney Health Atlas: Structures, Organization and Services for the Management of Kidney Failure in North and East Asia. Kidney International Supplements (2011), 11, e77-e85. https://doi.org/10.1016/j.kisu.2021.01.011

  3. 3. 刘志红. 中华医学会肾脏病学分会慢性肾脏病矿物质和骨异常诊治指导[C]//中华医学会肾脏病学分会2013年学术年会论文集. 2013: 3.

  4. 4. Liu, Z.H., Yu, X.Q., Yang, J.W., et al. (2018) Prevalence and Risk Factors for Vascular Calcification in Chinese Patients Receiving Dialysis: Baseline Results from a Prospective Cohort Study. Current Medical Research and Opinion, 34, 1491-1500. https://doi.org/10.1080/03007995.2018.1467886

  5. 5. Zununi, V.S., Mostafavi, S., Hosseiniyan, K.S., et al. (2020) Vascular Calcification: An Important Understanding in Nephrology. Vascular Health and Risk Management, 16, 167-180. https://doi.org/10.2147/VHRM.S242685

  6. 6. Carrillo-Lopez, N., Panizo, S., Alonso-Montes, C., et al. (2019) High-Serum Phosphate and Parathyroid Hormone Distinctly Regulate Bone Loss and Vascular Calcification in Experimental Chronic Kidney Disease. Nephrology Dialysis Transplantation, 34, 934-941. https://doi.org/10.1093/ndt/gfy287

  7. 7. 魏萌, 魏丽敏, 王萌, 等. 维持性血液透析患者血管钙化的危险因素分析[J]. 中国血液净化, 2020, 19(11): 742-746.

  8. 8. Yamada, S., Taniguchi, M., Tokumoto, M., et al. (2012) The Antioxidant Tempol Ameliorates Arterial Medial Calcification in Uremic Rats: Important Role of Oxidative Stress in the Pathogenesis of Vascular Calcification in Chronic Kidney Disease. Journal of Bone and Mineral Research, 27, 474-485. https://doi.org/10.1002/jbmr.539

  9. 9. Muteliefu, G., Enomoto, A., Jiang, P., et al. (2009) Indoxyl Sulphate Induces Oxidative Stress and the Expression of Osteoblast-Specific Proteins in Vascular Smooth Muscle Cells. Nephrology Dialysis Transplantation, 24, 2051-2058. https://doi.org/10.1093/ndt/gfn757

  10. 10. 马莉莉, 蒋麟, 王婷婷, 等. 高基础水平血尿酸与动脉硬化的相关性及其预测作用[J]. 临床和实验医学杂志, 2020, 19(7): 748-751.

  11. 11. Tani, M., Tanaka, S., Takamiya, K., et al. (2020) Effects of Repetitive Diet-Induced Fluctuations in Plasma Phosphorus on Vascular Calcification and Inflammation in Rats with Early-Stage Chronic Kidney Disease. Journal of Clinical Biochemistry and Nutrition, 66, 139-145. https://doi.org/10.3164/jcbn.19-93

  12. 12. Jono, S., McKee, M.D., Murry, C.E., et al. (2000) Phosphate Regulation of Vascular Smooth Muscle Cell Calcification. Circulation Research, 87, E10-E17. https://doi.org/10.1161/01.RES.87.7.e10

  13. 13. Park, K.S., Park, J., Choi, S.H., et al. (2016) Serum Phosphorus Concentration and Coronary Artery Calcification in Subjects without Renal Dysfunction. PLOS ONE, 11, e151007. https://doi.org/10.1371/journal.pone.0151007

  14. 14. 柳青, 王迪生. 低钙透析液联合高通量血液透析对尿毒症患者钙磷及血管钙化的影响[J]. 临床医药文献电子杂志, 2019, 6(55): 74.

  15. 15. Tentori, F., Wang, M., Bieber, B.A., et al. (2015) Recent Changes in Therapeutic Approaches and Association with Outcomes among Patients with Secondary Hyperparathyroidism on Chronic Hemodialysis: The DOPPS Study. Clinical Journal of the American Society of Nephrology, 10, 98-109. https://doi.org/10.2215/CJN.12941213

  16. 16. Neves, K.R., Graciolli, F.G., Dos, R.L., et al. (2007) Vascular Calcification: Contribution of Parathyroid Hormone in Renal Failure. Kidney International, 71, 1262-1270. https://doi.org/10.1038/sj.ki.5002241

  17. 17. 张蕊, 张念荣, 席秋萍, 等. 维持性血液透析合并难治性继发性甲状旁腺功能亢进患者腹主动脉钙化相关因素分析[J]. 肾脏病与透析肾移植杂志, 2017, 26(5): 432-437.

  18. 18. 阮欣然, 杜小红, 刘萍, 等. 西那卡塞联合骨化三醇对维持性血液透析合并继发性甲状旁腺功能亢进患者冠状动脉钙化和心功能的影响[J]. 中国临床医生杂志, 2023, 51(3): 307-311.

  19. 19. Freedman, B.I., Divers, J., Russell, G.B., et al. (2015) Plasma FGF23 and Calcified Atherosclerotic Plaque in African Americans with Type 2 Diabetes Mellitus. American Journal of Nephrology, 42, 391-401. https://doi.org/10.1159/000443241

  20. 20. Donate-Correa, J., Martin-Nunez, E., Hernandez-Carballo, C., et al. (2019) Fibroblast Growth Factor 23 Expression in Human Calcified Vascular Tissues. Aging (Albany NY), 11, 7899-7913. https://doi.org/10.18632/aging.102297

  21. 21. Huang, C.L. and Moe, O.W. (2011) Klotho: A Novel Regulator of Calcium and Phosphorus Homeostasis. Pflügers Archiv, 462, 185-193. https://doi.org/10.1007/s00424-011-0950-5

  22. 22. Desjardins, L., Liabeuf, S., Renard, C., et al. (2012) FGF23 Is Independently Associated with Vascular Calcification but Not Bone Mineral Density in Patients at Various CKD Stages. Osteoporosis International, 23, 2017-2025. https://doi.org/10.1007/s00198-011-1838-0

  23. 23. Kuro-o, M., Matsumura, Y., Aizawa, H., et al. (1997) Mutation of the Mouse Klotho Gene Leads to a Syndrome Resembling Ageing. Nature, 390, 45-51. https://doi.org/10.1038/36285

  24. 24. Palmer, S.C., Hayen, A., Macaskill, P., et al. (2011) Serum Levels of Phos-phorus, Parathyroid Hormone, and Calcium and Risks of Death and Cardiovascular Disease in Individuals with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. JAMA, 305, 1119-1127. https://doi.org/10.1001/jama.2011.308

  25. 25. Rivara, M.B., Ravel, V., Kalantar-Zadeh, K., et al. (2015) Uncorrected and Albumin-Corrected Calcium, Phosphorus, and Mortality in Patients Undergoing Maintenance Dialysis. Journal of the American Society of Nephrology, 26, 1671-1681. https://doi.org/10.1681/ASN.2014050472

  26. 26. 吴胜英, 蔡嫣, 薛林, 等. 高钙血症加重大鼠血管钙化[J]. 中国动脉硬化杂志, 2008, 16(5): 337-340.

  27. 27. Yamada, S., Tokumoto, M., Tatsumoto, N., et al. (2016) Very Low Protein Diet Enhances Inflammation, Malnutrition, and Vascular Calcification in Uremic Rats. Life Sciences, 146, 117-123. https://doi.org/10.1016/j.lfs.2015.12.050

  28. 28. Huang, M., Zheng, L., Xu, H., et al. (2020) Oxidative Stress Contributes to Vascular Calcification in Patients with Chronic Kidney Disease. The Journal of Molecular and Cellular Cardiology, 138, 256-268. https://doi.org/10.1016/j.yjmcc.2019.12.006

  29. 29. Marchesi, J.R., Adams, D.H., Fava, F., et al. (2016) The Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 65, 330-339. https://doi.org/10.1136/gutjnl-2015-309990

  30. 30. Lano, G., Burtey, S. and Sallee, M. (2020) Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins (Basel), 12, Article No. 229. https://doi.org/10.3390/toxins12040229

  31. 31. Adijiang, A., Goto, S., Uramoto, S., et al. (2008) Indoxyl Sulphate Promotes Aortic Calcification with Expression of Osteoblast-Specific Proteins in Hypertensive Rats. Nephrology Dialysis Transplantation, 23, 1892-1901. https://doi.org/10.1093/ndt/gfm861

  32. 32. Opdebeeck, B., Maudsley, S., Azmi, A., et al. (2019) Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. Journal of the American Society of Nephrology, 30, 751-766. https://doi.org/10.1681/ASN.2018060609

  33. 33. Li, T., Chen, Y., Gua, C., et al. (2017) Elevated Circulating Trimethylamine N-Oxide Levels Contribute to Endothelial Dysfunction in Aged Rats through Vascular Inflammation and Oxidative Stress. Frontiers in Physiology, 8, Article No. 350. https://doi.org/10.3389/fphys.2017.00350

  34. 34. Seldin, M.M., Meng, Y., Qi, H., et al. (2016) Trimethylamine N-Oxide Promotes Vascular Inflammation through Signaling of Mitogen-Activated Protein Kinase and Nuclear Fac-tor-kappaB. Journal of the American Heart Association, 5, e002767. https://doi.org/10.1161/JAHA.115.002767

  35. 35. Zhang, X., Li, Y., Yang, P., et al. (2020) Trimethylamine-N-Oxide Promotes Vascular Calcification through Activation of NLRP3 (Nucleotide-Binding Domain, Leucine-Rich-Containing Family, Pyrin Domain-Containing-3) Inflammasome and NF-kappaB (Nuclear Factor kappaB) Signals. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 751-765. https://doi.org/10.1161/ATVBAHA.119.313414

  36. 36. Park, C., Obi, Y., Streja, E., et al. (2017) Serum Uric Acid, Protein Intake and Mortality in Hemodialysis Patients. Nephrology Dialysis Transplantation, 32, 1750-1757. https://doi.org/10.1093/ndt/gfw419

  37. 37. Rodrigues, T.C., Maahs, D.M., Johnson, R.J., et al. (2010) Serum Uric Acid Predicts Progression of Subclinical Coronary Atherosclerosis in Individuals without Renal Disease. Diabetes Care, 33, 2471-2473. https://doi.org/10.2337/dc10-1007

  38. 38. Liang, L., Hou, X., Bainey, K.R., et al. (2019) The Association between Hyperuricemia and Coronary Artery Calcification Development: A Systematic Review and Meta-Analysis. Clinical Cardiology, 42, 1079-1086. https://doi.org/10.1002/clc.23266

  39. 39. 胡壮彬, 陈瑞燕, 黄俊成. 血透患者血尿酸水平与血管钙化相关性及非布司他干预作用[J]. 数理医药学杂志, 2022, 35(9): 1339-1341.

  40. 40. Dvornik, S., Cuk, M., Racki, S., et al. (2006) Serum Zinc Concentrations in the Maintenance Hemodialysis Patients. Collegium Antropologicum, 30, 125-129.

  41. 41. Chen, W., Eisenberg, R., Mowrey, W.B., et al. (2020) Association between Dietary Zinc Intake and Abdominal Aortic Calcification in US Adults. Nephrology Dialysis Transplantation, 35, 1171-1178. https://doi.org/10.1093/ndt/gfz134

  42. 42. Zhang, D., Zhu, Y., Li, H., et al. (2023) Associations of Whole Blood Zinc Levels with Coronary Artery Calcification and Future Cardiovascular Events in CKD Patients. Biological Trace Element Research. https://doi.org/10.1007/s12011-023-03655-7

  43. 43. Nagy, A., Petho, D., Gall, T., et al. (2019) Zinc Inhibits HIF-Prolyl Hydroxylase Inhibitor-Aggravated VSMC Calcification Induced by High Phosphate. Frontiers in Physiology, 10, Article No. 1584. https://doi.org/10.3389/fphys.2019.01584

  44. 44. Leenders, N., Vermeulen, E.A., van Ballegooijen, A.J., et al. (2021) The Association between Circulating Magnesium and Clinically Relevant Outcomes in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Clinical Nutrition, 40, 3133-3147. https://doi.org/10.1016/j.clnu.2020.12.015

  45. 45. Ter Braake, A.D., Tinnemans, P.T., Shanahan, C.M., et al. (2018) Magnesium Prevents Vascular Calcification in Vitro by Inhibition of Hydroxyapatite Crystal Formation. Scientific Re-ports, 8, Article No. 2069. https://doi.org/10.1038/s41598-018-20241-3

  46. 46. Chen, H.G., Sheng, L.T., Zhang, Y.B., et al. (2019) Association of Vitamin K with Cardiovascular Events and All-Cause Mortality: A Systematic Review and Meta-Analysis. European Journal of Nutrition, 58, 2191-2205. https://doi.org/10.1007/s00394-019-01998-3

  47. 47. 杨洁, 陈天怡, 王玲. 维持性血液透析患者腹主动脉钙化的危险因素[J]. 中国老年学杂志, 2021, 41(16): 3467-3471.

  48. 48. 贾凤玉, 徐斌, 龚德华, 等. 维持性血液透析患者心血管钙化的发生率及分布特点[J]. 肾脏病与透析肾移植杂志, 2014, 23(5): 401-406.

  49. NOTES

    *通讯作者。

期刊菜单