Advances in Clinical Medicine
Vol. 13  No. 10 ( 2023 ), Article ID: 73477 , 9 pages
10.12677/ACM.2023.13102203

线粒体功能障碍与帕金森病

刘洋,雷晶,马建华*

新疆医科大学第一附属医院,新疆 乌鲁木齐

收稿日期:2023年9月9日;录用日期:2023年10月3日;发布日期:2023年10月10日

摘要

帕金森病(PD)是一种常见的与年龄相关的神经系统变性疾病,以大脑黑质多巴胺能神经元的进行性丢失为主要病理特征。神经元需要很高的能量来维持其基本的生理活动,因此线粒体稳态对神经元的存活至关重要。研究表明,PD患者黑质多巴胺能神经元的变性和凋亡与多种因素密切相关,线粒体功能障碍可能在其中起关键作用。近年来,越来越多的研究开始关注线粒体与PD的相关性,本文主要阐述可导致线粒体功能障碍并介导PD发生发展的相关机制。

关键词

帕金森病,线粒体功能障碍,基因,α-突触核蛋白

Mitochondrial Dysfunction and Parkinson’s Disease

Yang Liu, Jing Lei, Jianhua Ma*

The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Sep. 9th, 2023; accepted: Oct. 3rd, 2023; published: Oct. 10th, 2023

ABSTRACT

Parkinson’s disease (PD) is a common age-related neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra. Neurons require high energy to maintain their basic physiological activities, so mitochondrial homeostasis is crucial for neuronal survival. Studies have shown that degeneration and apoptosis of nigrostriatal dopaminergic neurons in PD patients are closely related to a variety of factors, in which mitochondrial dysfunction may play a key role. In recent years, more and more studies have begun to focus on the relevance of mitochondria to PD, and this article focuses on the relevant mechanisms that can lead to mitochondrial dysfunction and mediate the development of PD.

Keywords:Parkinson’s Disease, Mitochondrial Dysfunction, Genetics, α-Synuclein

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

帕金森病(PD)是第二大最常见的与年龄有关的神经系统变性疾病,目前仍无法治愈,其以黑质致密部中多巴胺能神经元的进行性丢失为主要病理特征,从而导致多巴胺能神经元缺失以及α-突触核蛋白(α-synuclein, α-Syn)积累。PD在临床上以静息性震颤、运动迟缓等运动症状和焦虑、抑郁等非运动症状为特征。路易小体形成和α-Syn积累是PD发生发展的关键因素,虽然已针对此展开大量研究,但其潜在机制尚不明确。PD患者神经元的变性和凋亡与多种因素密切相关,其中包括线粒体功能障碍,线粒体功能的改变可能在帕金森病的发病机制中起决定性作用的第一个证据可以追溯到20世纪80年代,当时有36种线粒体毒素被报道导致帕金森病 [1] 。大量研究显示,线粒体功能障碍可通过多种途径造成多巴胺能神经元进行性死亡,从而介导PD发病机制。

线粒体是生物体能量代谢中心,在细胞生理过程中发挥重要作用,以维持正常生命活动 [2] 。最近的研究表明,线粒体功能障碍在包括PD在内的中枢神经系统(CNS)疾病的发展和破坏性后果中起着重要作用 [3] 。线粒体是中枢神经系统损伤中活性氧(ROS)产生的主要部位 [4] 。线粒体电子传递链(ETC)相关酶功能缺陷导致ROS的过量产生,导致线粒体DNA (mtDNA)、蛋白质和脂质的氧化损伤 [5] ,引起线粒体功能障碍,并最终导致PD发生发展。早在上世纪末,线粒体复合体I (MCI)缺陷就已在PD中大量观察到 [6] ,到2021年Joana Magalhaes等人发现散发性帕金森病是由线粒体的通路阻塞引起 [7] ,众多研究表明线粒体功能障碍影响着PD的发生发展。对此,本文将就不同因素所致线粒体功能障碍在PD发生发展中的作用予以综述。

2. 线粒体相关基因

已有研究发现20余种PD相关基因会通过调控线粒体功能参与PD [8] ;如Parkin、PINK1、DJ-1与常染色体隐性PD相关,其中由PINK1介导编码的PINK1蛋白是初次将帕金森病机制与线粒体功能障碍相联系的蛋白。

2.1. Parkin基因

Parkin是一种具有神经保护活性的E3泛素连接酶,包含465个氨基酸残基,具有线粒体分布,可降解底物蛋白,对调控线粒体正常功能起重要作用。Parkin通过三个独立的机制轴 [9] 发挥其功能,其中一条是通过线粒体吞噬和囊泡运输调控线粒体质量控制。生理状态下,Parkin结合pS65-泛素使之保留在线粒体外膜上,同时其功能处于抑制状态,当线粒体受损时被激活,此时E3连接酶发挥其功能启动线粒体自噬过程。而当Parkin发生基因突变后,E3连接酶活性降低,最终导致毒性蛋白在细胞内聚集和神经元死亡。有研究发现,Parkin基因相关的帕金森病致病突变K161N、R275W和G430D不能泛素化VDAC1,可能会阻止受损的线粒体释放促凋亡因子,进而导致受损线粒体的积累 [10] 。最近的研究表明,Parkin突变患者的神经元显示出线粒体缺陷和mtDNA代谢紊乱,Parkin还能保护中脑神经元免受神经系统变性的影响 [11] 。

2.2. PINK1基因

PINK1编码一种具有线粒体易位序列的丝氨酸/苏氨酸激酶,包含581个氨基酸,主要定位在线粒体外膜,参与线粒体功能调控,且其在线粒体自噬途径中发挥重要作用 [12] 。PINK1的激酶活性已被证明是由激酶结构域内(Ser228、Ser402和Thr257)特定位点的自磷酸化调控的 [13] ,该过程是线粒体应激下Parkin易位到线粒体的必要过程,研究表明,PINK1基因变异与常染色体显性遗传帕金森病的发生发展密切相关 [14] 。早在2006年,一系列关于PINK1缺陷果蝇模型的研究揭示了和PINK1和Parkin之间的相互作用,具有PINK1缺陷的雄性果蝇不育,并出现多巴胺能神经元明显退化、线粒体超微结构改变,证明其功能缺陷与线粒体功能障碍及PD的相关性 [15] [16] 。前期研究发现,PINK1突变或缺失可引起PD细胞中线粒体呼吸功能下降,ATP合成下降和PD细胞中α-syn升高。PINK1基因突变会使线粒体异常 [17] ,使损伤的线粒体不能被有效地清除,从而使DA能神经元死亡,从而引发PD。然而,目前尚不清楚这些蛋白质的基因缺失是如何导致多巴胺能神经退行性变的,这些重要的研究问题应在今后的研究中加以解决。

2.3. mtDNA

线粒体DNA共有37个基因,它所编码的多肽与其它细胞核内的蛋白质一起,形成了一种重要的、参与氧化磷酸化过程的关键酶。线粒体被氧化磷酸化后产生的活性氧(ROS)能损伤mtDNA,导致mtDNA变异积累,致使线粒体功能障碍,并最终导致细胞死亡。传递线粒体细胞质杂交(或短杂交)的研究首次暗示了mtDNA的改变在PD的发病机制中 [18] 。虽然目前没有证据表明遗传性mtDNA突变在PD中起作用,但其与黑质致密部呼吸链功能障碍的发生相关 [19] 。此外,对来自大型(原发性帕金森病)IPD队列的全外显子组序列进行的多基因风险评分分析显示,mtDNA维持途径的遗传变异增加 [20] 。

2.4. DJ-1基因

DJ-1基因(又称PARK7基因)编码的DJ-1蛋白由189个氨基酸组成。DJ-1蛋白有转录调节、抗氧化作用及线粒体调节功能。DJ-1的基因突变导致常染色体隐性PD,但比Parkin或PINK1的突变更不常见。关于DJ-1,已经有几个与线粒体功能受损有关的机制联系被描述过,首先便是DJ-1的缺失改变了线粒体形态 [21] ,此外,在人类和小鼠中DJ-1突变或缺失的ipsc来源神经元中证实了多巴胺氧化、线粒体和溶酶体功能障碍之间的关联 [22] 。另有研究显示,DJ-1发生突变或缺失时,可对线粒体中ATP合成途径和自噬过程产生干扰,而当该突变出现在多巴胺能神经元细胞时,将会导致线粒体自噬增加 [23] ,从而使神经元能量供应减少,并最终致使多巴胺能神经元缺失,参与PD发生发展。

2.5. α-syn

α-突触核蛋白(α-syn)是一种含有140个氨基酸的蛋白质,在中枢神经系统中高表达。早在1997年,α-突触核蛋白就被发现其基因突变与早发性帕金森病的家族病例相关 [24] 且其聚集物是路易小体的主要成分,而路易小体是PD的标志 [25] 。从那时起,一些研究已经坚定地确定了α-突触核蛋白参与了帕金森病的发病机制 [26] [27] [28] [29] 。虽然α-syn的确切生物学机制尚不清楚,但它可以影响线粒体功能的能力是明确的,多项独立研究表明,在不同实验条件下,培养细胞中的α-syn定位于线粒体,并在小鼠和人黑质DA神经元中表达 [30] [31] 。虽然Gorbatyuk及其同事的研究是唯一将神经退行性病变直接归因于α-syn的缺失的研究,但其他研究表明,α-syn的减少会导致诸如线粒体功能和自噬等细胞过程的破坏 [32] ,侧面说明α-syn缺失可影响PD发生发展。同时,一系列研究表明,α-syn过表达也可导致神经元中的线粒体功能异常,从而参与PD发生机制 [33] [34] 。同时,线粒体功能障碍亦会影响α-syn堆积 [35] ,二者相互依赖、相互作用,共同参与PD的发病机制。但其具体的分子生物学机制仍需进一步研究。

3. 泛素–蛋白酶体系统

泛素–蛋白酶体系统(ubiquitin-proteasome system, UPS)是清除细胞内神经毒性蛋白的两种分解系统之一,负责处理细胞内大部分蛋白质转换,其具有高效、选择性等特点,对维持细胞稳态和蛋白质降解具有重要意义,对于其具体作用机制Tapan Behl等人已进行详细综述 [36] 。前期研究已经证实,UPS的功能依赖于线粒体 [37] 。而细胞内蛋白降解系统(特别是UPS)功能紊乱是PD发生的重要原因,UPS的损伤导致异常蛋白积累和多巴胺能细胞死亡,因此,UPS功能障碍被认为是PD发病机制的驱动因素。最近的几项研究揭示了UPS异常与PD的病因之间的密切联系 [38] [39] 。全基因组关联研究显示,USP24、USP37和USP40的单核苷酸多态性与帕金森病易感性相关 [40] 。每一个家族性PD相关基因,UCH-L1、parkin和α-共聚核蛋白,都已被证明会干扰正常的UPS活性,从而干扰蛋白质降解 [41] 。此外,散发性PD患者的大脑被发现有蛋白酶体缺陷,提示UPS功能障碍可能是散发性和家族性PD之间的共同联系 [42] 。阐明UPS在PD中的作用不仅有助于阐明PD的发病机制,而且有助于发现PD新的治疗靶点。

4. 线粒体自噬

自噬是一种高度保守的细胞整体降解过程,其可选择性或非选择性地清除受损蛋白质和细胞器,包括非必要的胞质成分。哺乳动物细胞中存在三类不同的自噬:大自噬、伴侣介导的自噬(CMA)和微自噬。线粒体损伤是帕金森病(PD)的核心病理改变,正常情况下,自噬功能可使细胞选择性地清除损伤的线粒体,从而维持其稳态。而当线粒体自噬功能被破坏时,衰老的线粒体将在细胞内堆积,最终导致细胞退变,甚至死亡。大量证据表明,线粒体自噬缺陷参与PD发生发展 [43] ,前期研究发现,在PD发病过程中,VPS35 D620N基因缺失显著降低了细胞的自噬水平,并导致细胞内ATG9A的转运能力下降 [44] 。并且,利用操控Polo样激酶2或激活分子伴侣介导的自噬能降低α-Syn的聚集,但是,在PD患者的黑质中,发现了自噬活性的异常,所以会造成α-Syn的异常聚集 [45] 。另有研究表明,Atg、Uth1、Aup1、NIX、PINK1和Parkin等均与线粒体自噬相关,且都参与线粒体自噬的调控 [46] ,其中PINK1和Parkin与PD发病密切相关,进一步证明PD的发生发展与线粒体自噬有关。

目前研究发现的线粒体自噬机制通常可以分为两类:泛素依赖型和非泛素依赖型,二者协同维持线粒体和细胞稳态。泛素依赖途径是指依靠线粒体表面蛋白的广泛泛素化来促进线粒体自噬,在这些机制中,PTEN诱导的PINK1/Parkin通路是目前研究最广泛的,它参与了哺乳动物中受损线粒体的消除 [47] 。当线粒体受损时,PINK1进入线粒体内膜的路径被阻断,导致PINK1稳定地积聚在线粒体外膜,同时Parkin的空间构象发生改变,发挥催化作用的半胱氨酸暴露并转化为活化的E3泛素连接酶 [48] 。PINK1与Parkin相互作用,共同参与调控线粒体自噬过程,同时维持线粒体质量,两者中的任何一个缺失都会导致线粒体损伤。非泛素依赖途径和PINK1/Parkin调控的泛素化线粒体自噬不同,线粒体外膜上有许多含有LC3互作结构域的蛋白质,它们是自噬的受体。它们可以不经泛素化而直接与LC3结合,从而启动线粒体自噬。在哺乳动物中,这些受体主要包括Nip3样蛋白X (NIX)/BCL2相互作用蛋白3 (BNIP3L)受体、BCL2相互作用蛋白3 (BNIP3)受体、含FUN14结构域1 (FUNDC1)受体等,与其相关的自噬途径即受体介导的线粒体自噬。NIX起初被发现参与红细胞成熟过程中的线粒体清除,其可以通过BH3结构域与LC3直接结合 [49] ,诱导线粒体自噬。BNIP3作用机制与NIX类似,有研究发现,敲除BNIP3后,缺氧条件下小鼠神经元细胞的线粒体自噬水平明显降低 [50] 。FUNDC1是一种线粒体外膜蛋白,通过与LC3相互作用,可诱导哺乳动物细胞在缺氧条件下发生非依赖型线粒体自噬 [51] 。

目前,线粒体自噬的分子调控机制是线粒体自噬及细胞自噬研究领域的热点,其与多种疾病密切相关 [52] ,根据众多研究,在PD发生发展过程中,线粒体自噬异常所导致的线粒体功能缺陷起到了关键作用。尽管自噬缺陷和帕金森病发病机制之间存在着有趣的联系,但确切的潜在致病机制在很大程度上仍不清楚,仍需要对帕金森病大脑中的疾病特异性变化进行系统分析,并在适当的细胞和动物模型中进行功能研究。

5. 线粒体复合物I

线粒体复合物I (MCI)由40多个亚基组成,是线粒体ATP产生所需的电子传递链中的第一个酶。已有文献报道,PD中CMI的活力下降,其氧化还原状态下降,产生的自由基增多,引起线粒体膜电位去极化,细胞膜通透性变化。MCI的功能障碍,可引起多巴胺能神经元的退化,是PD发病机制中的关键一环。功能失调的线粒体参与PD的第一个迹象来自于观察到MPTP和鱼藤酮都阻断MCI功能,出现了不可逆的帕金森样症状。早期研究发现,MPTP中毒会出现不可逆的帕金森样症状 [53] ,后来的分析表明,MPTP是一种神经毒素,通过胶质单胺氧化酶转化为MPP+ (1-甲基-4-苯基吡啶),而MPP+是一种弱线粒体CI抑制剂,通过多巴胺转运蛋白释放到细胞外基质中,并被DA神经元主动吸收,并通过阳离子转运体进一步到线粒体中 [54] [55] ,达到足以抑制MCI的水平。另有研究发现鱼藤酮可特异性与MCI结合并抑制其功能、减少ATP、促进自由基生成,并最终导致线粒体损伤,引起细胞死亡 [56] 。此外,早在20世纪90年代末,Parker等人就发现PD患者死后的大脑表现出MCI缺陷 [57] 。近来,Gonzalez-Rodriguez等人的一项研究通过在多巴胺能神经元中条件敲除ndufs2,揭示了MCI功能障碍在PD发病机制中的作用 [58] 。

6. 钙离子超载

钙是一种在细胞活动中具有多种作用的必需离子。钙通过钙离子通道进入线粒体并用于其能量生产过程 [59] ,但钙过量会引发细胞死亡 [60] ,如果通道不能闭合,线粒体就会保留以ATP形式合成的能量,这将造成氧化剂积累和钙超载,导致线粒体肿胀和细胞应激 [61] [62] ,并引起多种疾病,其中包括帕金森病。正常情况下,钙离子会触发特定的信号通路,但过量的钙会对大脑造成损害。

越来越多的证据表明,细胞内钙稳态的紊乱在PD的病因中起着重要作用 [63] 。钙通道与线粒体功能和氧化应激有关,两者在PD的病因中都很重要。最近发现钙调节也与内质网功能和未折叠蛋白反应相互作用 [64] 。溶酶体越来越被认为是钙稳态的关键成分,溶酶体功能障碍被认为在PD中发挥作用 [65] 。多巴胺代谢将加剧钙介导的氧化应激增加,使黑质致密部神经元更容易受损 [66] 。帕金森病必备症状是运动障碍,特征是运动活动过度,包括不自主的运动,如震颤和扭动,有研究发现,大脑基底神经节和小脑区域中过量钙的沉积会导致不自主运动 [67] 。同时,一些流行病学研究发现,与其他降压药物相比,用CCBs(钙通道阻滞剂)治疗的患者PD的发病率更低 [68] ,进一步印证了钙离子稳态与PD的相关性。Sirabella等通过一项体外实验观察到,NCX3的表达水平和活性降低,这一现象伴随着线粒体钙超载,并可引起该功能区线粒体功能障碍和神经元凋亡 [69] ,进一步证明了细胞内钙离子稳态与线粒体功能障碍之间存在因果关系,并导致神经元变性退化。

7. 结语

随着人口老龄化问题逐渐突出,以PD为代表的神经系统变性疾病也日益增多。然而PD目前仍以对症治疗为主要干预手段,核心问题在于其发病机制仍不明确。但随着相关研究的推进,PD可能的发病机制不断被发掘,而其中的关键环节可能与线粒体功能障碍相关。线粒体相关基因、UPS、MCI功能缺陷及自噬障碍、钙超载等均可能导致线粒体功能障碍,最终影响PD发生发展。因此,预防线粒体功能障碍是未来PD治疗的有效策略。

文章引用

刘 洋,雷 晶,马建华. 线粒体功能障碍与帕金森病
Mitochondrial Dysfunction and Parkinson’s Disease[J]. 临床医学进展, 2023, 13(10): 15759-15767. https://doi.org/10.12677/ACM.2023.13102203

参考文献

  1. 1. Langston, J.W., Ballard, P., Tetrud, J.W. and Irwin, I. (1983) Chronic Parkinsonism in Humans Due to a Product of Meperidine-Analog Synthesis. Science, 219, 979-980. https://doi.org/10.1126/science.6823561

  2. 2. Su, L., Zhang, J., Gomez, H., Kellum, J.A. and Peng, Z.Y. (2023) Mitochondria ROS and Mitophagy in Acute Kidney Injury. Autoph-agy, 19, 401-414. https://doi.org/10.1080/15548627.2022.2084862

  3. 3. Tapias, V. (2019) Mitochondrial Dysfunc-tion and Neurodegeneration. Frontiers in Neuroscience, 13, Article 514192. https://doi.org/10.3389/fnins.2019.01372

  4. 4. He, Z., Ning, N., Zhou, Q., Khoshnam, S.E. and Farzaneh, M. (2020) Mitochondria as Atherapeutic Target for Ischemic Stroke. Free Radical Biology and Medicine, 146, 45-58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005

  5. 5. Bhatti, J.S., Bhatti, G.K. and Reddy, P.H. (2017) Mito-chondrial Dysfunction and Oxidative Stress in Metabolic Disorders—A Step towards Mitochondria Based Therapeutic Strategies. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1066-1077. https://doi.org/10.1016/j.bbadis.2016.11.010

  6. 6. Betarbet, R., Sherer, T.B., MacKenzie, G., Garcia-Osuna, M., Panov, A.V. and Greenamyre, J.T. (2000) Chronic Systemic Pesticide Exposure Reproduces Features of Parkinson’s Disease. Nature Neuroscience, 3, 1301-1306. https://doi.org/10.1038/81834

  7. 7. Magalhaes, J., Tresse, E., Ejlerskov, P., et al. (2021) PIAS2-Mediated Blockade of IFN-β Signaling: A Basis for Sporadic Parkinson Disease Dementia. Molecular Psychiatry, 26, 6083-6099. https://doi.org/10.1038/s41380-021-01207-w

  8. 8. Dauer, W. and Przedborski, S. (2003) Parkinson’s Disease: Mechanisms and Models. Neuron, 39, 889-909. https://doi.org/10.1016/S0896-6273(03)00568-3

  9. 9. Winklhofer, K.F. (2014) Parkin and Mitochondrial Quality Control: Toward Assembling the Puzzle. Trends in Cell Biology, 24, 332-341. https://doi.org/10.1016/j.tcb.2014.01.001

  10. 10. Youle, R.J. and van der Bliek, A.M. (2012) Mitochondrial Fission, Fusion, and Stress. Science, 337, 1062-1065.

  11. 11. Wasner, K., Smajic, S., Ghelfi, J., et al. (2022) Parkin Deficiency Impairs Mitochondrial DNA Dynamics and Propagates Inflammation. Movement Disorders, 37, 1405-1415. https://doi.org/10.1002/mds.29025

  12. 12. Wang, L., Cho, Y.L., Tang, Y., et al. (2018) PTEN-L Is a Novel Protein Phosphatase for Ubiquitin Dephosphorylation to Inhibit PINK1-Parkin-Mediated Mitophagy. Cell Research, 28, 787-802. https://doi.org/10.1038/s41422-018-0056-0

  13. 13. Aerts, L., Craessaerts, K., De Strooper, B. and Morais, V.A. (2015) PINK1 Kinase Catalytic Activity Is Regulated by Phosphorylation on Serines 228 and 402. Journal of Biological Chemistry, 290, 2798-2811. https://doi.org/10.1074/jbc.M114.620906

  14. 14. Li, Y., Chen, H., Xie, X., et al. (2023) PINK1-Mediated Mitophagy Promotes Oxidative Phosphorylation and Redox Homeostasis to Induce Drug-Tolerant Persister Cancer Cells. Cancer Research, 83, 398-413. https://doi.org/10.1158/0008-5472.CAN-22-2370

  15. 15. Yang, Y., Gehrke, S., Imai, Y., Huang, Z., Ouyang, Y., Wang, J.W., Yang, L., Beal, M.F., Vogel, H. and Lu, B. (2006) Mitochondrial Pathology and Muscle and Dopaminergic Neuron Degeneration Caused by Inactivation of Drosophila Pink1 Is Rescued by Parkin. Proceedings of the National Academy of Sciences of the United States of America, 103, 10793-10798. https://doi.org/10.1073/pnas.0602493103

  16. 16. Clark, I.E., Dodson, M.W., Jiang, C., Cao, J.H., Huh, J.R., Seol, J.H., Yoo, S.J., Hay, B.A. and Guo, M. (2006) Drosophila Pink1 Is Required for Mitochondrial Function and Interacts Genetically with Parkin. Nature, 441, 1162-1166. https://doi.org/10.1038/nature04779

  17. 17. Ando, M., Fiesel, F.C., Hudec, R., et al. (2017) The PINK1 p.1368N Mutation Affects Protein Stability and Ubiquitin Kinase Activity. Molecular Neurodegeneration, 12, Article No. 32. https://doi.org/10.1186/s13024-017-0174-z

  18. 18. Grunewald, A., Kumar, K.R. and Sue, C.M. (2019) New Insights into the Complex Role of Mitochondria in Parkinson’s Disease. Progress in Neurobiology, 177, 73-93. https://doi.org/10.1016/j.pneurobio.2018.09.003

  19. 19. Bender, A., Krishnan, K.J., Morris, C.M., et al. (2006) High Levels of Mitochondrial DNA Deletions in Substantia Nigra Neurons in Aging and Parkinson Disease. Nature Genetics, 38, 515-517. https://doi.org/10.1038/ng1769

  20. 20. Gaare, J.J., Nido, G.S., Sztromwasser, P., Knappskog, P.M., Dahl, O., Lund-Johansen, M., Maple-Grodem, J., Alves, G., Tysnes, O.B., Johansson, S., Haugarvoll, K. and Tzoulis, C. (2018) Rare Genetic Variation in Mitochondrial Pathways Influences the Risk for Parkinson’s Disease. Movement Dis-orders, 33, 1591-1600. https://doi.org/10.1002/mds.64

  21. 21. Irrcher, I., Aleyasin, H., Seifert, E.L., Hewitt, S.J., Chhabra, S., Phillips, M., Lutz, A.K., Rousseaux, M.W., Bevilacqua, L., Jahani-Asl, A., Callaghan, S., MacLaurin, J.G., Winklhofer, K.F., Rizzu, P., Rippstein, P., Kim, R.H., Chen, C.X., Fon, E.A., Slack, R.S., Harper, M.E., McBride, H.M., Mak, T.W. and Park, D.S. (2010) Loss of the Parkinson’s Disease-Linked Gene DJ-1 Perturbs Mitochondrial Dynamics. Human Molecular Genetics, 19, 3734-3746. https://doi.org/10.1093/hmg/ddq288

  22. 22. Burbulla, L.F., Song, P., Mazzulli, J.R., Zampese, E., Wong, Y.C., Jeon, S., Santos, D.P., Blanz, J., Obermaier, C.D., Strojny, C., Savas, J.N., Kiskinis, E., Zhuang, X., Kruger, R., Surmeier, D.J. and Krainc, D. (2017) Dopamine Oxidation Mediates Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Science, 357, 1255-1261. https://doi.org/10.1126/science.aam9080

  23. 23. Lazarou, M., Sliter, D.A., Kane, L.A., et al. (2015) The Ubiquitin Kinase PINK1 Recruits Autophagy Receptors to Induce Mitophagy. Nature, 524, 309-314. https://doi.org/10.1038/nature14893

  24. 24. Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Pa-papetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L. (1997) Mutation in the α-Synuclein Gene Identifified in Families with Parkinson’s Disease. Science, 276, 2045-2047. https://doi.org/10.1126/science.276.5321.2045

  25. 25. Rocha, E.M., De Miranda, B. and Sanders, L.H. (2018) α-Synuclein: Pathology, Mitochondrial Dysfunction and Neuroinflammation in Parkinson’s Disease. Neurobiology of Disease, 109, 249-257. https://doi.org/10.1016/j.nbd.2017.04.004

  26. 26. Spillantini, M.G., Crowther, R.A., Jakes, R., Hasegawa, M. and Goedert, M. (1998) α-Synuclein in Filamentous Inclusions of Lewy Bodies from Parkinson’s Disease and Dementia with Lewy Bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469-6473. https://doi.org/10.1073/pnas.95.11.6469

  27. 27. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A. and Mucke, L. (2000) Dopaminergic Loss and Inclusion Body Formation in α-Synuclein Mice: Implications for Neurodegenerative Disorders. Science, 287, 1265-1269. https://doi.org/10.1126/science.287.5456.1265

  28. 28. Feany, M.B. and Bender, W.W. (2000) A Drosophila Model of Parkinson’s Disease. Nature, 404, 394-398. https://doi.org/10.1038/35006074

  29. 29. Kuwahara, T., Koyama, A., Gengyo-Ando, K., Masuda, M., Kowa, H., Tsunoda, M., Mitani, S. and Iwatsubo, T. (2006) Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans. Journal of Biological Chemistry, 281, 334-340. https://doi.org/10.1074/jbc.M504860200

  30. 30. Devi, L., Raghavendran, V., Prabhu, B.M., Avadhani, N.G. and Anandatheerthavarada, H.K. (2008) Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain. Journal of Biological Chemistry, 283, 9089-9100. https://doi.org/10.1074/jbc.M710012200

  31. 31. Li, W.W., Yang, R., Guo, J.C., Ren, H.M., Zha, X.L., Cheng, J.S. and Cai, D.F. (2007) Localization of α-Synuclein to Mitochondria within Midbrain of Mice. NeuroReport, 18, 1543-1546. https://doi.org/10.1097/WNR.0b013e3282f03db4

  32. 32. Cali, T., Ottolini, D., Negro, A. and Brini, M. (2012) α-Synuclein Controls Mitochondrial Calcium Homeostasis by Enhancing Endoplasmic Reticulum-Mitochondria Interac-tions. Journal of Biological Chemistry, 287, 17914-17929. https://doi.org/10.1074/jbc.M111.302794

  33. 33. Luth, E.S. and Stavrovskaya, I.G. (2019) Measuring Mitochondrial Dysfunction Caused by Soluble α-Synuclein Oligomer. In: Bartels, T., Ed., α-Synuclein, Humana Press, New York 183-198. https://doi.org/10.1007/978-1-4939-9124-2_14

  34. 34. Vasquez, V., Mitra, J., Wang, H., et al. (2020) A Mul-ti-Faceted Genotoxic Network of alpha-Synuclein in the Nucleus and Mitochondria of Dopaminergic Neurons in Parkin-son’s Disease: Emerging Concepts and Challenges. Progress in Neurobiology, 185, Article ID: 101729. https://doi.org/10.1016/j.pneurobio.2019.101729

  35. 35. Faustini, G., Bono, F., Valerio, A., et al. (2017) Mitochon-dria and α-Synuclein: Friends or Foes in the Pathogenesis of Parkinson’s Disease? Genes, 8, Article 377. https://doi.org/10.3390/genes8120377

  36. 36. Behl, T., Kumar, S., Althafar, Z.M., Sehgal, A., Singh, S., Sharma, N., Badavath, V.N., Yadav, S., Bhatia, S., Al-Harrasi, A., Almoshari, Y., Almikhlafi, M.A. and Bungau, S. (2022) Explor-ing the Role of Ubiquitin-Proteasome System in Parkinson’s Disease. Molecular Neurobiology, 59, 4257-4273. https://doi.org/10.1007/s12035-022-02851-1

  37. 37. Jaime, R., Lars, O. and Giuseppe, C. (2015) Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin. International Journal of Molecular Sciences, 16, 19458-19476. https://doi.org/10.3390/ijms160819458

  38. 38. Zhu, Q., Zhuang, X.X., Chen, J.Y., Yuan, N.N., Chen, Y., Cai, C.Z., Tan, J.Q., Su, H.X. and Lu, J.H. (2021) Lycorine, a Natural Alkaloid, Promotes the Degradation of α-Synuclein via PKA-Mediated UPS Activation in Transgenic Parkinson’s Disease Models. Phytomedicine, 87, Article ID: 153578. https://doi.org/10.1016/j.phymed.2021.153578

  39. 39. Ham, S.J., Lee, D., Xu, W.J., Cho, E., Choi, S., Min, S., Park, S. and Chung, J. (2021) Loss of UCHL1 Rescues the Defects Related to Parkinson’s Disease by Suppressing Glycolysis. Science Advances, 7, eabg4574. https://doi.org/10.1126/sciadv.abg4574

  40. 40. Martins, M., Rosa, A., Guedes, L.C., Fonseca, B.V., Gotovac, K., Vi-olante, S., et al. (2011) Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson’s Disease. PLOS ONE, 6, e25443. https://doi.org/10.1371/journal.pone.0025443

  41. 41. Wijeyekoon, R.S., Moore, S.F., Farrell, K., Breen, D.P., Barker, R.A. and Williams-Gray, C.H. (2020) Cerebrospinal Fluid Cytokines and Neurodegeneration-Associated Proteins in Parkinson’s Disease. Movement Disorders, 35, 1062- 1066. https://doi.org/10.1002/mds.28015

  42. 42. Jiang, P. and Dickson, D.W. (2018) Parkinson’s Disease: Experimental Models and Reality. Acta Neuropathologica, 135, 13-32. https://doi.org/10.1007/s00401-017-1788-5

  43. 43. Li, W., He, P., Huang, Y., et al. (2021) Selective Autophagy of Intracellular Organelles: Recent Research Advances. Theranostics, 11, 222-256. https://doi.org/10.7150/thno.49860

  44. 44. Zavodszky, E., Seaman, M.N., Moreau, K., et al. (2014) Mutation in VPS35 Associated with Parkinson’s Disease Impairs WASH Complex Association and Inhibits Autophagy. Nature Communications, 5, Article No. 3828. https://doi.org/10.1038/ncomms4828

  45. 45. Oueslati, A., Schneider, B.L., Aebischer, P. and Lashuel, H.A. (2013) Polo-Like Kinase 2 Regulates Selective Autophagic α-Synuclein Clearance and Suppresses Its Toxicity in Vivo. Proceed-ings of the National Academy of Sciences of the United States of America, 110, E3945-3954. https://doi.org/10.1073/pnas.1309991110

  46. 46. Dernie, F. (2020) Mitophagy in Parkinson’s Disease: From Patho-genesis to Treatment Target. Neurochemistry International, 138, Article ID: 104756. https://doi.org/10.1016/j.neuint.2020.104756

  47. 47. Mishra, E. and Thakur, M.K. (2023) Mitophagy: A Promising Therapeutic Target for Neuroprotection during Ageing and Age-Related Diseases. British Journal of Pharmacology, 180, 1542-1561.

  48. 48. Riley, B.E., Lougheed, J.C., Callaway, K., Velasquez, M., Brecht, E., Nguyen, L., et al. (2013) Struc-ture and Function of Parkin E3 Ubiquitin Ligase Reveals Aspects of RING and HECT Ligases. Nature Communications, 4, Article No. 1982. https://doi.org/10.1038/ncomms2982

  49. 49. Tang, Y., Wang, L., Qin, J., et al. (2023) Targeting Mitophagy to Promote Apoptosis Is a Potential Therapeutic Strategy for Cancer. Autophagy, 19, 1031-1033. https://doi.org/10.1080/15548627.2022.2112830

  50. 50. Shi, R.Y., Zhu, S.H., Li, V., Gibson, S.B., Xu, X.S. and Kong, J.M. (2014) BNIP3 Interacting with LC3 Triggers Excessive Mitophagy in Delayed Neuronal Death in Stroke. CNS Neuroscience & Therapeutics, 20, 1045-1055. https://doi.org/10.1111/cns.12325

  51. 51. Huang, C.F., Hsieh, Y.H., Yang, S.F., et al. (2023) Mitophagy Effects of Protodioscin on Human Osteosarcoma Cells by Inhibition of p38MAPK Targeting NIX/LC3 Axis. Cells, 12, Article 395. https://doi.org/10.3390/cells12030395

  52. 52. Lisanti, M.P., Martinez-Outschoorn, U.E., Chiavarina, B., Pavlides, S., Whitaker-Menezes, D., Tsirigos, A., et al. (2010) Understanding the “Lethal” Drivers of Tumor-Stroma Co-Evolution: Emerging Role(s) for Hypoxia, Oxidative Stress and Autophagy/Mitophagy in the Tumor Micro-Environment. Cancer Biology & Therapy, 10, 537-542. https://doi.org/10.4161/cbt.10.6.13370

  53. 53. Langston, J.W. and Ballard Jr, P.A. (1983) Parkinson’s Disease in a Chemist Working with 1-Methyl-4-Phenyl-1, 2, 5, 6-Tetrahydropyridine. The New England Journal of Medicine, 309, 310. https://doi.org/10.1056/NEJM198308043090511

  54. 54. Bezard, E., Gross, C.E., Fournier, M.C., Dovero, S., Bloch, B. and Jaber, M. (1999) Absence of MPTP-Induced Neuronal Death in Mice Lacking the Dopamine Transporter. Ex-perimental Neurology, 155, 268-273. https://doi.org/10.1006/exnr.1998.6995

  55. 55. Przedborski, S., Tieu, K., Perier, C. and Vila, M. (2004) MPTP as a Mitochondrial Neurotoxic Model of Parkinson’s Disease. Journal of Bioenergetics and Biomembranes, 36, 375-379. https://doi.org/10.1023/B:JOBB.0000041771.66775.d5

  56. 56. Talpade, D.J., Greene, J.G., Higgins, D.S., et al. (2000) In Vivo Labeling of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase) in Rat Brain Using [3H] Di-hydrorotenone. Journal of Neurochemistry, 75, 2611-2621. https://doi.org/10.1046/j.1471-4159.2000.0752611.x

  57. 57. Parker Jr, W.D., Boyson, S.J. and Parks, J.K. (1989) Abnormalities of the Electron Transport Chain in Idiopathic Parkinson’s Disease. Annals of Neurology, 26, 719-723. https://doi.org/10.1002/ana.410260606

  58. 58. González-Rodríguez, P., et al. (2021) Disruption of Mitochondrial Complex I Induces Progressive Parkinsonism. Nature, 599, 650-656. https://doi.org/10.1038/s41586-021-04059-0

  59. 59. Kristián, T. (2004) Metabolic Stages, Mitochondria and Calcium in Hypoxic/Ischemic Brain Damage. Cell Calcium, 36, 221-233. https://doi.org/10.1016/j.ceca.2004.02.016

  60. 60. Duchen, M.R. (1999) Contributions of Mitochondria to Animal Physiology: From Homeostatic Sensor to Calcium Signalling and Cell Death. The Journal of Physiology, 516, 1-17. https://doi.org/10.1111/j.1469-7793.1999.001aa.x

  61. 61. Halestrap, A.P. and Pasdois, P. (2009) The Role of the Mi-tochondrial Permeability Transition Pore in Heart Disease. Biochim. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1787, 1402-1415. https://doi.org/10.1016/j.bbabio.2008.12.017

  62. 62. Duchen, M.R. (2004) Roles of Mitochondria in Health and Dis-ease. Diabetes, 53, S96-S102. https://doi.org/10.2337/diabetes.53.2007.S96

  63. 63. Zaichick, S.V., McGrath, K.M. and Caraveo, G. (2017) The Role of Ca2+ Signaling in Parkinson’s Disease. Disease Models & Mechanisms, 10, 519-535. https://doi.org/10.1242/dmm.028738

  64. 64. Santos, C.X., Tanaka, L.Y., Wosniak Jr, J. and Laurindo, F.R. (2009) Mechanisms and Implications of Reactive Oxygen Species Generation during the Unfolded Protein Response: Roles of Endoplasmic Reticulum Oxidoreductases, Mitochondrial Electron Transport, and NADPH Oxidase. Antioxid. Antioxi-dants & Redox Signaling, 11, 2409-2427. https://doi.org/10.1089/ars.2009.2625

  65. 65. Navarro-Romero, A., Montpeyó, M. and Martinez-Vicente, M. (2020) The Emerging role of the Lysosome in Parkinson’s Disease. Cells, 9, Article 2399. https://doi.org/10.3390/cells9112399

  66. 66. Duda, J., Pötschke, C. and Liss, B. (2016) Converging Roles of Ion Channels, Calcium, Metabolic Stress, and Activity Pattern of Substantia nigra Dopaminergic Neurons in Health and Par-kinson’s Disease. Journal of Neurochemistry, 139, 156-178. https://doi.org/10.1111/jnc.13572

  67. 67. Schuster, S., Doudnikoff, E., Rylander, D., Berthet, A., Aubert, I., Ittrich, C., Bloch, B., Cenci, M.A., Surmeier, D.J., Hengerer, B., et al. (2009) Antagonizing L-Type Ca2+ Channel Reduces Development of Abnormal Involuntary Movement in the Rat Model of L-3,4-Dihydroxyphenylalanine-Induced Dyskinesia. Biological Psychiatry, 65, 518-526. https://doi.org/10.1016/j.biopsych.2008.09.008

  68. 68. Ritz, B., Rhodes, S.L., Qian, L., Schernhammer, E., Olsen, J.H. and Friis, S. (2010) L-Type Calcium Channel Blockers and Parkinson Disease in Denmark. Annals of Neurology, 67, 600-606. https://doi.org/10.1002/ana.21937

  69. 69. Sirabella, R., Sisalli, M.J., Costa, G., et al. (2018) NCX1 and NCX3 as Potential Factors Contributing to Neurodegeneration and Neuroinflammationinthe A53T Transgenic Mouse Model of Parkinson’s Disease. Cell Death & Disease, 9, Article No. 725. https://doi.org/10.1038/s41419-018-0775-7

  70. NOTES

    *通讯作者。

期刊菜单