Advances in Clinical Medicine
Vol. 14  No. 02 ( 2024 ), Article ID: 80704 , 5 pages
10.12677/ACM.2024.142393

FOXP3、TGF-β1在子宫内膜异位症诊疗中的 研究进展

刘佳伟1,索静2*

1内蒙古医科大学第一临床医学院,内蒙古 呼和浩特

2内蒙古医科大学附属医院妇产科,内蒙古 呼和浩特

收稿日期:2024年1月7日;录用日期:2024年2月1日;发布日期:2024年2月8日

摘要

子宫内膜异位症严重影响育龄期女性的生活质量,其发病机制至今尚未阐明。调节性T细胞在机体免疫抑制中发挥关键作用,近年来大量研究证明,FOXP3相关免疫抑制可影响肿瘤微环境,在其发生发展中起到关键性作用,肿瘤微环境与内异症局部微环境相似,免疫功能异常在内异症发生发展中至关重要。TGF-β1可在免疫排斥和免疫抑制中发挥作用,参与子宫内膜异位症的发生发展过程。本文主要探究FOXP3、TGF-β1与内异症发病机制的相关性,为其免疫治疗提供新方向。

关键词

子宫内膜异位症,FOXP3,TGF-β1,免疫抑制

Research Progress of FOXP3 and TGF-β1 in Diagnosis and Treatment of Endometriosis

Jiawei Liu1, Jing Suo2*

1First Clinical Medical College, Inner Mongolia Medical University, Hohhot Inner Mongolia

2Gynecology and Obstetrics, Affiliated Hospital of Inner Mongolia Medical University, Hohhot Inner Mongolia

Received: Jan. 7th, 2024; accepted: Feb. 1st, 2024; published: Feb. 8th, 2024

ABSTRACT

Endometriosis seriously affects the quality of life of women of childbearing age, and its pathogenesis has not been elucidated. Regulatory T cells play a key role in immunosuppression. In recent years, a large number of studies have proved that FOXP3-related immunosuppression can affect the tumor microenvironment and play a key role in its occurrence and development. Tumor microenvironment is similar to the local microenvironment of endometriosis, and immune dysfunction plays an important role in the occurrence and development of endometriosis. TGF-β1 may play a role in immune rejection and immunosuppression, and participate in the occurrence and development of endometriosis. This article mainly explores the correlation between FOXP3, TGF-β1 and the pathogenesis of endometriosis, and provides a new direction for its immunotherapy.

Keywords:Endometriosis, FOXP3, TGF-β1, Immunosuppression

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

子宫内膜异位症(endometriosis, MT)在育龄期女性中发病率较高,2/3内异症患者在青春期表现出临床症状,但据研究表明患者从出现症状到最终确诊存在约7年的诊断延迟,严重损害育龄期女性的工作效率和生活质量 [1] [2] 。目前,内异症发病机制尚不明确,现有学说不能完整解释其发病机制,众多学者对其发病机制进行探究。近年来有研究发现 [3] ,子宫内膜异位症与自身免疫性疾病如系统性红斑狼疮、炎症性肠病、自身免疫性甲状腺疾病等之间存在显著相关性,这表明免疫因素在内异症发生发展中发挥重要作用。

有研究表明 [4] ,调节性T细胞(regulatory T cell, Treg)在内异症患者外周血和腹腔液中表达升高,Treg可参与免疫逃逸机制,改变子宫和腹膜局部微环境促进子宫内膜异位病变的建立和生长,但具体机制尚不明确。叉头翼状螺旋转录因子3 (forkhead box protein 3, FOXP3)是Treg最可靠的天然分子标记,可直接或间接控制数百个基因,同时可与转录因子活化T细胞核因子相互作用,共同调控Treg细胞的分化和功能。生长转化因子-β (transforming growth factor-β, TGF-β)是一种免疫炎症因子,可在免疫排斥和免疫抑制中发挥作用,参与子宫内膜异位症的发生发展过程。本文就FOXP3与TGF-β在子宫内膜异位症发生发展及相关免疫治疗中的研究进展进行综述。

2. FOXP3与子宫内膜异位症

2.1. Treg细胞与子宫内膜异位症

Treg平衡在正常妊娠与生殖过程中起着关键作用 [5] ,雌激素、孕激素和人绒毛膜促性腺激素均可促进Treg募集。内异症是激素依赖性疾病,在内异症小鼠模型中发现 [6] ,雌激素可促进Treg分化,并可诱导IL-10、TGF-β等细胞因子的释放,人工益母草SCM-198可通过影响雌激素的表达抑制小鼠异位病变的生长。正常女性子宫内膜中Treg含量存在周期性变化,而内异症患者无此种表现,Treg含量在内异症小鼠模型腹腔液中亦明显增加,进一步体外培养实验将异位内膜细胞与CD4+CD28+Treg在腹腔液中共培养发现,内膜细胞的增殖与侵袭能力增强 [7] 。一项动物实验发现 [8] ,雌性小鼠交配后3.5天Treg在子宫中募集,防止母体对受精卵进行免疫攻击,由此可见Treg在胚胎着床时起到关键作用,内异症患者体内Treg分布不平衡与内异症不孕相关机制有关。综上所述,内异症患者体内存在免疫代谢异常,了解Treg与内异症发病机制的相关性可为内异症的免疫治疗提供新思路。

2.2. FOXP3在子宫内膜异位症中的表达及意义

Foxp3在多种恶性肿瘤(胰腺癌、乳腺癌、非小细胞肺癌及肝癌等 [9] )患者中表达,并可通过多种信号通路参与癌症的发生发展。Li Yianna [10] 等人发现Foxp3可调节肺腺癌组织中肿瘤细胞周期G1/S期的基因位点,促使细胞增殖,同时通过上调IL-35、TGF-β和HOMX1等细胞因子的表达促进肿瘤迁移和侵袭,促进免疫逃逸。另有研究表明 [11] ,应用siRNA敲除细胞中FoxP3基因后,T淋巴细胞白血病细胞出现凋亡,作用机制可能为通过降低NOTCH 1信号通路造成微环境改变导致肿瘤细胞生长抑制。有研究者 [12] 利用免疫组化法分析127例内异症患者的异位内膜组织和59例内异症患者的腹膜病变组织,发现内异症患者异位组织中的免疫细胞群高度紊乱;并通过比较内异症患者及健康对照组体内FoxP3的表达水平,发现FoxP3在内异症患者体内表达明显上调,尤其分泌期时上调尤为明显。章舒等 [13] 检测80例不同类型内异症患者在位及异位内膜和周围腹膜中FoxP3和CD4+CD25+Treg的水平发现,Treg细胞分布失衡普遍存在于内异症患者体内,同时发现FoxP3和CD4+CD25+Treg在不同类型内异症病灶中表达有差异,在卵巢子宫内膜异位症患者腹腔中表达显著高于腹壁内异症、会阴内异症和深部浸润型内异症。除此之外,有研究证实 [14] ,内异症患者腹腔液中大量细胞因子和趋化因子如TGF-β、CCL20等可诱导腹腔液中FoxP3+Treg比例增加,这种异常可以解释一些与内异症相关的免疫现象。

由此可见,FoxP3可导致逆行至盆腔的内膜“种子”发生免疫逃逸,其在内异症病灶和腹腔液中的表达上调可改变局部微环境,可为种子创建适宜生长的异地“土壤”,从而诱导内异症的迁移和侵袭,且经过干预RNA消除FoxP3可能成为治疗内异症的有效途径。Kuibeom Ko [15] 等人发现激动性GITR抗体可减弱Foxp3Treg介导的免疫抑制,与抗CTLA-4治疗协同,进一步增强肿瘤免疫力,可以引起有效的肿瘤免疫性而没有明显的自身免疫性疾病。

3. TGF-β1与子宫内膜异位症

TGF-β可激活纤维化相关成纤维化细胞,表达α-肌动蛋白,通过信号转导从而产生相关细胞外基质参与纤维化;也可通过磷酸肌醇-3-激酶通路、MAPK通路及Rho通路,促进癌症相关的成纤维细胞生成,进而影响多种肿瘤(如胃癌、肝癌、结肠癌等)的迁移、侵袭和转移过程 [16] 。胡琴 [17] 等人利用TGF-β1作用于人源肺泡上皮细胞A549,发现A549发生上皮间质转化的表象,并发现p62表达上调,Beclin和LC3表达下调,表明其可使细胞自噬水平下降。TGF-β/Smad信号通路已被广泛认为是肿瘤纤维化的关键因素,TGF-β1是成纤维细胞激活和分化的重要调节因子,抑制TGF-β1可以缓解肿瘤纤维化,从而促进肿瘤浸润T淋巴细胞的招募,参与肿瘤的发生发展。在子宫内膜异位症患者中,盆腔内活跃的红腹膜细胞及邻近腹膜的在位/异位内膜细胞和间皮细胞可能是转化生长因子-β的主要来源,子宫内膜异位症腹水中高浓度的TGF-β可能刺激Treg细胞并使其增殖 [18] 。

研究发现 [19] ,64%的子宫内膜异位症患者的子宫内膜中发现有梭杆菌感染,并通过体外实验证明,使用梭杆菌感染子宫内膜细胞,可刺激TGF-β信号导致TAGLN+肌成纤维细胞形成,进而使内膜细胞获得增殖、粘附和迁移的能力。李冰冰 [20] 等评估卵巢子宫内膜异位症患者异位子宫内膜和在位子宫内膜中TGF-β1、Smad2/3的表达发现卵巢异位症异位内膜中TGF-β1、Smad2/3的表达水平高,其表明TGF-β/Smad信号通路可能与内异症纤维化形成有关。一项体外试验中 [21] ,将内膜基质细胞与CD14+单核细胞共培养能上调Treg的免疫抑制功能,上调促炎因子的表达,同时对内膜细胞的血管生成作用起到协同作用,其作用机制可能为TGF-β介导EKR1/2/p38信号通路增强IL-8与VEGF的表达从而促进血管生成。TGF-β大量存在于内异症病灶中,HULL [22] 等在内异症的小鼠模型中发现,TGF-β1基因缺失的造模小鼠体内卵巢囊肿重量较对照组减少,体内巨噬细胞和肌成纤维细胞亦减少,但具体发病机制仍需进一步探究。与正常子宫内膜异位症组织相比,子宫内膜异位症组织中TGF-β1的表达明显升高。TGF-β1过表达上调增殖细胞核抗原和细胞周期蛋白D1 [23] ,还可增加子宫内膜基质细胞的增殖,并激活了细胞外信号调节激酶(ERK)/丝裂原活化蛋白激酶(MAPK)信号通路,从而增强异位内膜基质细胞的迁移和侵袭。子宫内膜异位症患者异位子宫内膜TGF-β1,可通过减少细胞凋亡导致的细胞死亡及增加细胞繁殖,导致异位子宫内膜细胞活力增强,并参与上皮间质转化过程 [24] 。这提示TGF-β1表达的上调可促进异位病灶形成的迁移、侵袭及血管生成过程,诱导局部免疫细胞群分布失衡,导致局部免疫功能异常促进内异症发生发展,进一步研究TGF-β1与内异症发生发展的相关机制能更有效的治疗内异症。

有研究证实 [25] ,β-谷甾醇可增加Smad 7的表达,降低TGF-β1的活性,降低Smad 2和Smad 3的磷酸化水平,可触发异位子宫内膜间质细胞细胞凋亡,抑制细胞的增殖和迁移,从而抑制子宫内膜异位症病变的形成和发展。在子宫内膜异位症的小鼠模型中发现 [26] ,川芎嗪可抑制血小板活化,降低TGF-β1的生成,从而阻止上皮–间质转化和成纤维细胞向肌成纤维细胞转分化过程,进而延缓子宫内膜异位症病变过程和纤维化严重程度。

4. 结论与展望

外泌体作为一种细胞外囊泡,可参与细胞间的通讯,其携带的长链非编码RNA (LncRNA)可以与微小RNA相互作用,从而参与子宫内膜异位症的增值、侵袭和转移过程,并可以影响表观遗传、细胞自噬等过程 [27] 。并且外泌体在不同条件下都具有稳定性,其携带的LncRNA为子宫内膜异位症特异性治疗提供了新靶点。近年来有学者发现,阴道及肠道微生物群紊乱亦可影响Treg相关局部免疫微环境,导致内膜细胞持续在腹腔环境中存活。综上所述,免疫抑制与子宫内膜异位症发病机制密切相关,并可导致局部免疫微环境紊乱,从而造成内膜“种子”逃过免疫监视,定植于异地“土壤”中。越来越多的免疫抑制剂及相关因子靶向药物治疗的研究为子宫内膜异位症的治疗提供新的靶点。

文章引用

刘佳伟,索 静. FOXP3、TGF-β1在子宫内膜异位症诊疗中的研究进展
Research Progress of FOXP3 and TGF-β1 in Diagnosis and Treatment of Endometriosis[J]. 临床医学进展, 2024, 14(02): 2784-2788. https://doi.org/10.12677/ACM.2024.142393

参考文献

  1. 1. Greene, R., Stratton, P., Cleary, S.D., et al. (2009) Diagnostic Experience among 4,334 Women Reporting Surgically Diagnosed Endometriosis. Fertility and Sterility, 91, 32-39. https://doi.org/10.1016/j.fertnstert.2007.11.020

  2. 2. Nnoaham, K.E., Hummelshoj, L., Webster, P., et al. (2019) Reprint of: Impact of Endometriosis on Quality of Life and Work Productivity: A Multicenter Study across Ten Countries. Fertility and Sterility, 112, e137-e152. https://doi.org/10.1016/j.fertnstert.2019.08.082

  3. 3. Shafrir Amy, L., Palmor Marissa, C., Fourquet, J., et al. (2021) Co-Occurrence of Immune-Mediated Conditions and Endometriosis among Adolescents and Adult Women. American Journal of Reproductive Immunology, 86, e13404. https://doi.org/10.1111/aji.13404

  4. 4. Khan Khaleque, N., Yamamoto, K., Fujishita, A., et al. (2019) Differential Levels of Regulatory T Cells and T-Helper-17 Cells in Women with Early and Advanced Endometriosis. The Journal of Clinical Endocrinology & Metabolism, 104, 4715-4729. https://doi.org/10.1210/jc.2019-00350

  5. 5. Huang, N., Chi, H.B. and Qiao, J. (2020) Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Frontiers in Immunology, 11, Article 1023. https://doi.org/10.3389/fimmu.2020.01023

  6. 6. Li, Y.Y., Lin, Y.K., Li, Y., et al. (2022) SCM-198 Alleviates En-dometriosis by Suppressing Estrogen-ERα Mediated Differentiation and Function of CD4CD25 Regulatory T Cells. In-ternational Journal of Biological Sciences, 18, 1961-1973. https://doi.org/10.7150/ijbs.68224

  7. 7. Hey-Cunningham, A.J., Riaz, A., Fromm, P.D., et al. (2022) Circulating and Endometrial Regulatory T Cell and Related Populations in Endometriosis and Infertility: Endometriosis Is Associated with Blunting of Endometrial Cyclical Effects and Reduced Proportions in Moderate-Severe Disease. Reproductive Sci-ences, 29, 229-242. https://doi.org/10.1007/s43032-021-00658-4

  8. 8. Robertson, S.A., Guerin, L.R., Moldenhauer, L.M., et al. (2009) Activating T Regulatory Cells for Tolerance in Early Pregnancy—The Contribution of Seminal Fluid. Journal of Repro-ductive Immunology, 83, 109-116. https://doi.org/10.1016/j.jri.2009.08.003

  9. 9. Wang, J., Gong, R., Zhao, C., et al. (2023) Human FOXP3 and Tu-mour Microenvironment. Immunology, 168, 248-255. https://doi.org/10.1111/imm.13520

  10. 10. Li, Y.N., Li, D., Yang, W., et al. (2016) Overexpression of the Transcrip-tion Factor FOXP3 in Lung Adenocarcinoma Sustains Malignant Character by Promoting G1/S Transition Gene CCND1. Tumor Biology, 37, 7395-7404. https://doi.org/10.1007/s13277-015-4616-3

  11. 11. Yonekura, S., Itoh, M., Shiratori, E., et al. (2018) FOXP3 Knockdown Inhibits the Proliferation and Reduces NOTCH1 Expression of T Cell Acute Lymphoblastic Leukemia Cells. BMC Research Notes, 11, Article No. 582. https://doi.org/10.1186/s13104-018-3700-3

  12. 12. Berbic, M., Hey-Cunningham, A.J., Ng, C., et al. (2010) The Role of Foxp3+ Regulatory T-Cells in Endometriosis: A Potential Controlling Mechanism for a Complex, Chronic Im-munological Condition. Human Reproduction, 25, 900-907. https://doi.org/10.1093/humrep/deq020

  13. 13. 章舒, 李骏驰, 周争立, 等. 不同类型子宫内膜异位症及其周围组织中Foxp3和CD4+ CD25+ Treg的表达及意义[J]. 中国妇幼保健, 2017, 32(20): 4906-4909.

  14. 14. Olkowska-Truchanowicz, J., Sztokfisz-Ignasiak, A., Zwierzchowska, A., et al. (2021) Endometriotic Peritoneal Fluid Stimulates Recruitment of CD4+CD25highFOXP3+ Treg Cells. Journal of Clinical Medicine, 10, Article 3789. https://doi.org/10.3390/jcm10173789

  15. 15. Ko, K., Yamazaki, S., Nakamura, K., et al. (2005) Treatment of Ad-vanced Tumors with Agonistic Anti-GITR mAb and Its Effects on Tumor-Infiltrating Foxp3+CD25+CD4+ Regulatory T Cells. Journal of Experimental Medicine, 202, 885-891. https://doi.org/10.1084/jem.20050940

  16. 16. Shi, X.K., Young, C.D., Zhou, Ho, M., et al. (2020) Transforming Growth Factor-β Signaling in Fibrotic Diseases and Can-cer-Associated Fibroblasts. Biomolecules, 10, Article 1666. https://doi.org/10.3390/biom10121666

  17. 17. 胡琴, 张晨曦, 柯少瑞. 细胞自噬调控上皮间质转化在肺纤维化中的作用机制[J]. 实用医学杂志, 2022, 38(1): 38-44.

  18. 18. Khan, K.N., Yamamoto, K., Fujishita, A., et al. (2019) Association between FOXP3 Regulatory T-Cells and Occurrence of Peritoneal Lesions in Women with Ovarian Endometrioma and Dermoid Cysts. Reproductive BioMedicine Online, 38, 857-869. https://doi.org/10.1016/j.rbmo.2019.01.011

  19. 19. Muraoka, A., Suzuki, M., Hamaguchi, T., et al. (2023) Fusobacterium Infection Facilitates the Development of Endometriosis through the Phenotypic Transition of Endometrial Fibroblasts. Science Translational Medicine, 15, eadd1531. https://doi.org/10.1126/scitranslmed.add1531

  20. 20. 李冰冰, 谢苗, 郭亚楠, 等. TGF-β1、Smads在子宫内膜异位症中的表达和意义[J]. 中国生育健康杂志, 2022, 33(1): 33-37.

  21. 21. Wang, X.Q., Zhou, W.J., Luo, X.Z., et al. (2017) Synergistic Effect of Regulatory T Cells and Proinflammatory Cytokines in Angiogenesis in the Endometriotic Milieu. Human Reproduction, 32, 1304-1317. https://doi.org/10.1093/humrep/dex067

  22. 22. Hull, M.L., Johan, M.Z., Hodge, W.L., et al. (2012) Host-Derived TGFB1 Deficiency Suppresses Lesion Development in a Mouse Model of Endometriosis. American Journal of Patholo-gy: Official Publication of the American Association of Pathologists, 180, 880-887. https://doi.org/10.1016/j.ajpath.2011.11.013

  23. 23. Liu, Z.H., Yi, L.S., Du, M.M., et al. (2019) Overexpression of TGF-β Enhances the Migration and Invasive Ability of Ectopic Endometrial Cells via ERK/MAPK Signaling Pathway. Experimental and Therapeutic Medicine, 17, 4457-4464. https://doi.org/10.3892/etm.2019.7522

  24. 24. Johnson, M.C., Torres, M., Alves, A., et al. (2005) Augmented Cell Survival in Eutopic Endometrium from Women with Endometriosis: Expression of c-myc, TGF-β1 and Bax Genes. Re-productive Biology and Endocrinology, 3, Article No. 45. https://doi.org/10.1186/1477-7827-3-45

  25. 25. Wen, Y., Pang, L.L., Fan, L.X., et al. (2023) β-Sitosterol Inhibits the Proliferation of Endometrial Cells via Regulating Smad7-Mediated TGF-β/Smads Signaling Pathway. Cell Journal, 25, 554-563.

  26. 26. Huang, S.H., Xiao, F.Y., Guo, S.W., et al. (2022) Tetramethylpyrazine Retards the Progression and Fibrogenesis of Endometriosis. Reproductive Sci-ences, 29, 1170-1187. https://doi.org/10.1007/s43032-021-00813-x

  27. 27. Wang, M., Zheng, L.W., Lin, R.X., et al. (2023) A Comprehensive Overview of Exosome lncRNAs: Emerging Biomarkers and Potential Therapeutics in Endo-metriosis. Frontiers in Endocrinology, 14, Article ID: 1199569. https://doi.org/10.3389/fendo.2023.1199569

  28. NOTES

    *通讯作者。

期刊菜单