Hans Journal of Chemical Engineering and Technology
Vol. 10  No. 06 ( 2020 ), Article ID: 38761 , 7 pages
10.12677/HJCET.2020.106057

La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15)电解质的制备及性能研究

卢南宁,蔡春,李佳园,赵海兰,常一方,张洁

郑州师范学院物理与电子工程学院,河南 郑州

收稿日期:2020年11月5日;录用日期:2020年11月18日;发布日期:2020年11月25日

摘要

固体氧化物燃料电池(SOFC)由于能量转换效率高、燃料适用范围广及环保清洁等特点受到人们的青睐。Co掺杂的La0.8Sr0.2Ga0.83Mg0.17O2.815电解质具有优异的性能,有望成为SOFC的理想电解质材料。本论文采用激光快速合成技术成功地制备了La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15)材料,结果显示,采用激光快速合成技术制备的材料由独特的矛状和叶状晶粒组成,呈现出相对有序和密堆的微观结构。样品的电学性能与Co含量的大小有关,激光快速合成技术制备La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815样品在800℃的电导率达到0.202 Scm−1,远高于固相反应法制备同样配比样品的电导率,这是由于激光快速烧结过程中产生的独特的微观结构造成的。因此La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815电解质有望作为中温固体氧化物燃料电池电解质的理想选择之一。

关键词

Co掺杂La0.8Sr0.2Ga0.83Mg0.17O2.815,激光快速合成技术,电导率,活化能

Preparation and Performance Study of La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15) Electrolyte

Nanning Lu, Chun Cai, Jiayuan Li, Hailan Zhao, Yifang Chang, Jie Zhang

College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou Henan

Received: Nov. 5th, 2020; accepted: Nov. 18th, 2020; published: Nov. 25th, 2020

ABSTRACT

Solid oxide fuel cells (SOFC) are favored by people due to their high energy conversion efficiency, wide range of fuel applications, and environmental protection and cleanliness. Co-doped La0.8Sr0.2Ga0.83Mg0.17O2.815 electrolyte has excellent properties and is expected to become an ideal electrolyte material for SOFC. In this paper the La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15) material was successfully prepared by laser rapid synthesis. The results showed that the materials prepared by laser rapid synthesis present unique microstructure. It is composed of spear-shaped and leaf-shaped crystal grains, showing a relatively ordered and densely packed microstructure. The electrical properties of the sample depend on the Co content. The conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815 prepared by laser rapid synthesis reaches 0.202 Scm−1 at 800˚C, which is much higher than that prepared by solid state reaction with the same ratio. The higher conductivity of La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815 sample prepared by the laser rapid synthesis is caused by the unique microstructure produced during the laser rapid sintering process. Therefore, La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815 electrolyte is expected to be an ideal choice for medium temperature solid oxide fuel cell electrolytes.

Keywords:Co-Doped La0.8Sr0.2Ga0.83Mg0.17O2.815, Laser Rapid Synthesis Technology, Electrical Conductivities, Activation Energy

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近年来,固体氧化物燃料电池(solid oxide fuel cells, SOFCs)由于其高能量转换效率、低污染和燃料选择范围广而受到了人们的广泛关注。传统的高温电解质会带来一系列复杂的材料问题,如高温的气密性、SOFC各组件间热膨胀系数的适配和界面反应等。因此,今后研究是重点是降低SOFC的运行温度,即开发运行温度在800℃以下的中低温燃料电池,而探索在中温区(500℃~800℃)具有较高离子电导率的新型电解质材料则是研究的重点 [1] - [14]。在这些氧离子导体材料中,掺杂的LaGaO3材料在600℃~800℃温度范围内呈现出高的氧离子电导。二价Sr2+、Mg2+阳离子分别替代三价的La3+和Ga3+掺入LaGaO3 (LSGM)后,由于电荷的补偿作用,产生大量可移动的氧空位,造成LSGM材料700℃的氧离子电导是传统氧化钇温定的氧化锆(YSZ)固体电解质的四倍。文献报道La0.8Sr0.2Ga0.83Mg0.17O2.815配比具有最好的氧离子电导,因此有望成为更有前途的中温燃料电池电解质材料。

人们普遍认为在离子导体中不适宜掺杂过渡金属阳离子,因为过渡金属阳离子的掺杂会出现n型或p型电导。然而,过渡金属元素部分替代Ga似乎是改变LSGM电解质电学性能的有效手段 [7] [8] [9] [13]。目前人们已经研究了过渡金属元素Cr、Mn、Fe、Co和Ni的Ga位替代对于LSGM电解质电学性能的影响 [5] [6] [7] [8] [9] [13]。结果显示Ni、Mn和Cr的掺杂将使LSGM电解质的电子和空穴电导得到提高,而Fe和Co掺杂的LSGM电解质则会产生较高的氧离子电导 [8] [9] [13]。对所有过渡金属阳离子掺杂的研究发现,在Ga位掺杂Co对于提高LSGM电解质的氧离子电导最为有效 [5] [7] [9] [13]。我们采用激光快速合成技术合成了纯的及Co掺杂的LaGaO3电解质La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15),并且研究了Co掺杂对于La0.8Sr0.2Ga0.83Mg0.17O2.815电解质电学性能的影响。

2. 实验步骤

六个系列的样品La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15, 0.085)采用起始材料La2O3 (99.99%)、Ga2O3 (99.99%)、MgO (99.99%)、SrCO3 (99%)和Co2O3 (99.9%)来合成。称重前MgO和La2O3在炉子中1000℃预烧7 h以分解其中的碳酸盐和氢氧化物杂质,试剂中杂质的有无通过x射线衍射(X-ray diffraction, XRD)来判定。原料混合物在研钵中研磨2 h,然后用单轴冷压机采用钢制模具在10 MPa的压强下压成40 mm × 5 mm × 5 mm的立方棒或直径为15 mm厚度为3.0 mm的圆片。压制好的立方棒烧结前在烘箱中100℃干燥2 h。前五个系列的样品使用5 kW连续波CO2激光器采用激光快速合成技术合成。激光束照射在距离焦点为120 mm的样品上,激光打在样品上的光斑直径大概为12 mm。随着激光束在前面沿着立方棒的长度方向移动,制备的样品在后面自然快速冷却至室温。前五组样品采用优化的合成条件(激光功率1100 W和光束扫描速度1 mms-1)来制备。激光快速合成技术是一种快速合成工艺,采用此技术样品能够在数十秒内合成。为了进行对比,最后一组样品La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815使用压制好的圆片采用固相反应法首先1250℃烧结10 h,然后1500℃烧结6 h,最后1600℃烧结2 h合成。所有烧结样品的密度通过阿基米德原理测量。

室温下样品的相组成使用X’Pert PRO X-Ray Diffractometer仪器进行x射线衍射进行分析,样品的微观结构使用JSM-6700F扫描电子显微镜(SEM)进行研究。激光烧结后的立方棒激光激光重新熔融,并打磨成不同尺寸的圆柱体和长方体:Φ8.50 mm × 3.40 mm (x = 0.0),Φ13.72 mm × 4.20 mm (x = 0.05),10.00 mm × 6.97 mm × 3.94 mm (x = 0.085),Φ10.50 mm × 2.72 mm (x = 0.10) and Φ10.40 mm × 3.26 mm (x = 0.15),而固相反应法制备的样品则被打磨成6.40 mm × 5.52 mm × 2.50 mm的长方体来进行电导率的测试。这些圆柱体和长方体的双面涂上铂浆,并通过铂网与铂丝连接,最后在炉子中1223 K烧结30 min。空气中样品的总电导率随温度(250℃~800℃)的变化使用Parstat 2273 (Princeton Applied Research)仪器采用交流阻抗谱进行测量,测试的频率范围为0.1~106 Hz。测得的阻抗谱采用ZSimpWin 3.0软件进行拟合得到样品的电阻值。论文所提供的电导率均为1 cm2 × 1 cm样品的电导率值。

3. 相组成

图1显示了两种方法制备La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815样品的XRD图,激光快速合成技术:(a) x = 0;(b) x = 0.05;(c) x = 0.085;(d) x = 0.10;(e) x = 0.15和(f)固相反应法x = 0.085。通过与PDF卡片的对比可以看出:高纯La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815钙钛矿可以通过激光快速合成技术合成,除了x = 0.15配比的含有少量第二相LaSrGa3O7。随着Co掺杂量的增加高角度的衍射峰发生劈裂,表明了晶体对称性的降低。此外,随着Co含量的增加衍射峰向高角度移动意味着晶格中Co在Ga位的固溶已经实现 [9],并且随着Co掺杂量的增加晶格常数逐渐变小,这是因为六配位的Co3+离子半径(63 pm)小于Mg2+离子半径(66 pm),接近六配位的Ga3+离子半径(2 pm) [9],因此随着Co掺杂量的增加晶格参数呈减小的趋势。

4. 微观结构

图2分别显示了两种方法制备La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815电解质的横断面SEM图,激光快速合成技术:(a) x = 0;(b) x = 0.05;(c) x = 0.085;(d) x = 0.10;(e) x = 0.15和(f)固相反应法x = 0.085。图2(f)可以看出固相反应法制备的La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815样品由密堆的球形颗粒组成,与其他文献报道的LSGMs和Co掺杂LSGMs的微观结构相似 [10] [11] [12],而激光快速合成技术制备的样品则是由有序或定向的矛状(2a and 2c)或叶状晶粒(2b, 2d and 2e)生长形成的,呈现出十分独特的微观结构,这样的微观结构在之前LSGMs和Co掺杂LSGMs的研究中未曾观察到。激光快速合成技术合成样品的平均晶粒尺寸大约在20~50 mm (2a, 2b, 2d and 2e),或者在宽度上大于50 mm长度上甚至远远超过50 mm。激光快速合成技术制备的x = 0,0.05,0.085,0.10,0.15样品及固相反应法合成x = 0.085样品的相对密度分别为97.2%、96.1%、98.7%、98.5%、98.1%和97.1%,表明两种方法制备的不同Co掺杂量La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815的致密度没有明显的差异。

Figure 1. XRD patterns of La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 samples prepared by two methods, laser rapid synthesis technology: (a) x = 0; (b) x = 0.05; (c) x = 0.085; (d) x = 0.10; (e) x = 0.15 and (f) solid phase reaction method x = 0.085

图1. 两种方法制备La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815样品的XRD图,激光快速合成技术:(a) x = 0;(b) x = 0.05;(c) x = 0.085;(d) x = 0.10;(e) x = 0.15和(f)固相反应法x = 0.085

Figure 2. The cross-sectional SEM images of La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 samples prepared by two methods, laser rapid synthesis technology: (a) x = 0; (b) x = 0.05; (c) x = 0.085; (d) x = 0.10; (e) x = 0.15 and (f) solid phase reaction method x = 0.085

图2. 两种方法制备La0.8Sr0.2Ga0.83Mg0.17xCoxO2.815样品的横断面SEM图,激光快速合成技术:(a) x = 0;(b) x = 0.05;(c) x = 0.085;(d) x = 0.10;(e) x = 0.15和(f) 固相反应法 x = 0.085

5. 电学性能

为了研究样品的电学性能,我们在空气中测试了250℃~700℃激光快速合成技术(x = 0, 0.05, 0.085, 0.10, 0.15)和固相反应法(x = 0.085)合成La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815样品的交流阻抗谱,并通过对实验数据进行等效电路拟合后计算得到样品的总电导率。

表1列出了计算得到的样品在250℃至800℃的总电导率。从表中可以明显看出,Co掺杂能够使La0.8Sr0.2Ga0.83Mg0.17O2.815电解质的总电导率得以提高,并且除了x = 0.15之外,随着Co含量的增加样品的总电导率呈总体增加的趋势。激光快速合成技术合成La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815电解质在600、700和800℃的总电导率分别达到0.067、0.124和0.202 Scm−1,明显高于固相反应法制备的同样配比样品的电导率(0.026, 0.065 and 0.105 Scm−1),尽管二者具有相似的纯度和致密度。激光快速合成技术制备样品的高电导率主要是由于其独特的微观结构造成的:相对定向生长的矛状或叶状晶粒具有较大和规则的晶粒尺寸及高的相对密度,这些都极大的降低了载流子在迁移运动中散射的可能,从而使它们的电导率得到提高。

Table 1. Electrical properties of La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 samples synthesized by laser rapid synthesis technology (x = 0, 0.05, 0.085, 0.10, 0.15) and solid state reaction method (x = 0.085)

表1. 激光快速合成技术(x = 0, 0.05, 0.085, 0.10, 0.15)和固相反应法(x = 0.085)合成La0.8Sr0.2Ga0.83Mg0.17xCoxO2.815样品的电学性能

图3分别显示了激光快速合成技术(x = 0, 0.05, 0.085, 0.10, 0.15)和固相反应法(x = 0.085)合成La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815样品总电导率的Arrhenius曲线。从图中可以看出随着Co含量的增加,激光快速合成技术合成样品的Arrhenius曲线斜率逐渐减小,这表明随Co含量的增加电导活化能逐渐减小,并且固相反应法制备La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815样品的活化能要明显高于同样配比激光快速合成技术合成样品。表1也列出了激光快速合成技术(x = 0, 0.05, 0.085, 0.10, 0.15)和固相反应法(x = 0.085)合成La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815样品的电导活化能。其中Co含量x ≤ 0.085样品的电导活化能接近文献报道的具有相似配比样品的活化能数值 [9] [11] [12]。

Figure 3. Arrhenius curve of total conductivity of La0.8Sr0.2Ga0.83Mg0.17xCoxO2.815 synthesized by laser rapid synthesis technology (x = 0, 0.05, 0.085, 0.10, 0.15) and solid phase reaction method (x = 0.085)

图3. 激光快速合成技术(x = 0, 0.05, 0.085, 0.10, 0.15)和固相反应法(x = 0.085)合成La0.8Sr0.2Ga0.83Mg0.17xCoxO2.815样品总电导率的Arrhenius曲线

图4显示了激光快速合成技术合成样品的电导活化能随Co掺杂量的变化曲线。电导活化能是在600℃~800℃温度范围进行估算的。显而易见,随着Co含量的增加电导活化能不断减小直到Co含量达到8.5 mol%,当Co含量进一步增加时活化能出现了陡然下降的趋势,该趋势与文献报道其他配比Co掺杂LSGMs活化能的规律相一致 [9] [11] [13]。Co含量大于8.5 mol%时活化能的陡然下降表明空位电导逐渐起主要作用 [9] [13]。高温区激光快速合成技术合成x = 0.085样品的活化能降低至0.53 ev,达到了Khorkounov et al.发现的Co掺杂LSGM的离子电导活化能的范围0.51~0.68 eV [14],这一点意味着在高温区x = 0.085样品的氧离子电导占主导。然而,激光快速合成技术制备的x ≥ 0.10样品的电导活化能要远远低于文献报道离子电导活化能的范围。

Figure 4. The change curve of activation energy of samples synthesized by laser rapid synthesis technology with Co doping amount

图4. 激光快速合成技术合成样品的电导活化能随Co掺杂量的变化曲线

6. 结论

我们采用激光快速合成技术(LRS)制备了应用于中温SOFC的La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15)电解质,从合成样品的相组成、微观结构和电学性能出发,研究了Co掺杂对于La0.8Sr0.2Ga0.83Mg0.17O2.815电解质性能的影响,并且与传统固相反应法制备的样品进行了对比。总结如下:

1) 合成方法和相分析:激光快速合成技术适用于合成可控配比的高纯的Co掺杂LSGMs电解质。随着Co含量的增加XRD衍射峰向高角度移动表明晶格常数逐渐变小,这是因为Mg2+离子被六配位的Co3+离子取代,而六配位的Co3+离子半径小于Mg2+离子半径,因此随着Co掺杂量的增加晶格参数呈减小的趋势。

2) 微观结构:激光快速合成技术制备的样品由有序或定向的矛状或叶状晶粒生长形成的,呈现出十分独特的微观结构,这种微观结构在有关LaGaO3基电解质的文献中未见报道。如此独特的微观结构主要是由于受到液滴状熔池中热量定向传输的影响形成了相对定向的晶粒生长。

3) 电学性能:激光快速合成技术制备的La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815电解质呈现出比固相反应法更加优越的电学性能。其中最佳配比La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815在600℃、700℃和800℃的总电导率分别达到0.067、0.124和0.202 Scm−1,明显高于固相反应法制备的同样配比样品的电导率(0.026, 0.065 and 0.105 Scm−1)因此采用激光快速合成技术制备的La0.8Sr0.2Ga0.83Mg0.085Co0.085O2.815有望作为中温固体氧化物燃料电池电解质的理想选择之一,其总电导的提高是由于在激光快速合成过程中产生的独特的微观结构造成的。

基金项目

本项目由2017河南省科技计划项目(No.172102210115);2018河南省科技计划项目(No.182102210140);2018河南省重点研发与推广专项(No.182102210564);河南省高校科技创新人才计划(No.18HASTIT030);河南省大学生创新训练计划项目(202012949018);郑州师范学院科技创新团队支持计划;郑州师范学院大学生创新性实验计划(DCZ2019028)提供经费支持。

文章引用

卢南宁,蔡 春,李佳园,赵海兰,常一方,张 洁. La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815 (x = 0, 0.05, 0.085, 0.10, 0.15)电解质的制备及性能研究
Preparation and Performance Study of La0.8Sr0.2Ga0.83Mg0.17−xCoxO2.815(x = 0, 0.05, 0.085, 0.10, 0.15) Electrolyte[J]. 化学工程与技术, 2020, 10(06): 442-448. https://doi.org/10.12677/HJCET.2020.106057

参考文献

  1. 1. Tan, Z., Takagaki, A. and Ishihara, T. (2019) Infiltration of Rare Earth Oxide into NiO-YSZ Anode Substrate for the High Performance Micro-Tubular SOFC Using LSGM Electrolyte Film. ECS Transactions, 91, 1807-1814. https://doi.org/ 10.1149/09101.1807ecst

  2. 2. Fu, R., Jiang, P., Xu, H., et al. (2019) Performance of Pd-Impregnated Sr1.9FeNb0.9Mo0.1O6−δ Double Perovskites as Symmetrical Electrodes for Direct Hydrocarbon Solid Oxide Fuel Cells. International Journal of Hydrogen Energy, 44, 31394-31405. https://doi.org/ 10.1016/j.ijhydene.2019.09.221

  3. 3. Yuk, S., Lee, D.W., Song, K.Y., et al. (2020) Detrimental Effect of Ce4+ Ion on the Pt/C Catalyst in Polymer Electrolyte Membrane Fuel Cells. Journal of Power Sources, Article ID: 227447. https://doi.org/ 10.1016/j.jpowsour.2019.227447

  4. 4. Xue, Y., An, S., Li, S., et al. (2020) The Electrical Conduc-tivity of Dy3+/Sc3+ Co-Doped CeO2 Solid Electrolytes. Journal of Solid State Electrochemistry, 24, 1639-1646. https://doi.org/ 10.1007/s10008-020-04705-z

  5. 5. Stevenson, J.W., Hasinska, K., Canfield, N.L., et al. (2000) In-fluence of Cobalt and Iron Additions on the Electrical and Thermal Properties of (La, Sr)(Ga, Mg)O3−δ. Journal of The Electrochemical Society, 147, 3213-3218. https://doi.org/ 10.1149/1.1393885

  6. 6. Kharton, V.V., Viskup, A.P., Yaremchenko, A.A., et al. (2000) Ionic Conductivity of La(Sr)Ga(Mg,M)O3−δ (M = Ti, Cr, Fe, Co, Ni): Effects of Transition Metal Dopants. Solid State Ionics, 132, 119-130. https://doi.org/ 10.1016/S0167-2738(00)00696-2

  7. 7. Trofimenko, N. and Ullmann, H. (1999) Co-Doped LSGM: Composition-Structure-Conductivity Relations. Solid State Ionics, 124, 263-270. https://doi.org/ 10.1016/S0167-2738(99)00217-9

  8. 8. Trofimenko, N. and Ullmann, H. (1999) Transition Metal Doped Lanthanum Gallates. Solid State Ionics, 118, 215-227. https://doi.org/ 10.1016/S0167-2738(98)00464-0

  9. 9. Ishihara, T., Furutani, H., Honda, M., et al. (1999) Im-proved Oxide Ion Conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 by Doping Co. Chemistry of Materials, 11, 2081-2088. https://doi.org/ 10.1021/cm981145w

  10. 10. Polini, R., Falsetti, A. and Traversa, E. (2005) Sol-Gel Synthesis and Characterization of Co-Doped LSGM Perovskites. Journal of the European Ceramic Society, 25, 2593-2598. https://doi.org/ 10.1016/j.jeurceramsoc.2005.03.108

  11. 11. Polini, R., Falsetti, A., Traversa, E., et al. (2007) Sol-Gel Synthesis, X-Ray Photoelectron Spectroscopy and Electrical Conductivity of Co-Doped (La, Sr)(Ga, Mg)O3−δ. Journal of the European Ceramic Society, 27, 4291-4296. https://doi.org/ 10.1016/j.jeurceramsoc.2007.02.147

  12. 12. Xue, J.F., Shen, Y., Zhou, Q.J., et al. (2010) Combustion Synthesis and Properties of Highly Phase-Pure Perovskite Electrolyte Co-Doped La0.9Sr0.1Ga0.8Mg0.2O2.85 for IT-SOFCs. International Journal of Hydrogen Energy, 35, 294-300. https://doi.org/ 10.1016/j.ijhydene.2009.10.087

  13. 13. Ishihara, T., Akbay, T., Furutani, H., et al. (1998) Improved Oxide Ion Conductivity of Co Doped La0.8Sr0.2Ga0.8Mg0.2O3 Perovskite Type Oxide. Solid State Ionics, 113-115, 585-591. https://doi.org/ 10.1016/S0167-2738(98)00325-7

  14. 14. Khorkounov, B.A., Näfe, H. and Aldinger, F. (2006) Relationship between the Ionic and Electronic Partial Conductivities of Co-Doped LSGM Ceramics from Oxygen Partial Pressure Dependence of the Total Conductivity. Journal of Solid State Electrochemistry, 10, 479-487. https://doi.org/ 10.1007/s10008-005-0022-x

期刊菜单