Advances in Clinical Medicine
Vol. 08  No. 10 ( 2018 ), Article ID: 28021 , 8 pages
10.12677/ACM.2018.810153

The Value of Magnetic Resonance Diffusion Tensor Imaging (DTI) Technology in the Early Diagnosis of Alzheimer’s Disease

Kewei Wang1,2, Hui Zhang1,2, Liangyu Zou1,2*

1Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Guangdong

2Affiliated Hospital of Southern University of Science and Technology, Shenzhen Guangdong

Received: Nov. 22nd, 2018; accepted: Dec. 7th, 2018; published: Dec. 14th, 2018

ABSTRACT

Alzheimer's disease (AD) is a progressive, central nervous system degenerative disease that accounts for 50% - 70% of all dementia types. In recent years, with the maturity of magnetic resonance imaging technology, magnetic resonance diffusion tensor imaging (DTI) technology has been found to have abnormal changes in the white matter of early AD patients, which may help us find new imaging markers for early diagnosis of AD. This article summarizes the application of DTI in the early diagnosis of AD by combining the latest research results both in China and abroad.

Keywords:Alzheimer’s Disease, Diffusion Tensor Imaging, Early Diagnosis

磁共振弥散张量成像对于阿尔茨海默病早期诊断价值

汪克为1,2,张慧1,2,邹良玉1,2*

1暨南大学第二临床医学院(深圳市人民医院),广东 深圳

2南方科技大学第一附属医院,广东 深圳

收稿日期:2018年11月22日;录用日期:2018年12月7日;发布日期:2018年12月14日

摘 要

阿尔茨海默病(Alzheimer’s disease, AD)是一种起病隐匿的进行性进展的中枢神经系统退行性疾病,占所有痴呆类型的50%~70%。近年来,随着磁共振成像技术的成熟,利用磁共振弥散张量成像(Diffusion tensor imaging, DTI)技术发现在早期AD患者脑白质中存在异常改变,这可能为AD早期诊断寻找到新的影像学标志。本文结合国内外最新研究成果,就DTI在AD的早期诊断中的应用进行综述。

关键词 :阿尔茨海默病,扩散张量成像,早期诊断

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 阿尔兹海默病(Alzheimer’s Disease, AD)及其早期诊断

阿尔茨海默病是一种起病隐匿的进行性发展的中枢神经系统退行性疾病,占所有痴呆类型的50%~70% [1] 。临床上以记忆障碍、失语、失用、失认、视空间技能损害、执行功能障碍以及人格和行为改变等全面性痴呆表现为特征 [2] 。其特征性病理表现包括老年斑(senile plaque, SP)的形成、神经原纤维缠结(neurofibrillary tangle, NET)形成及神经元的脱失 [3] [4] 。此外还包括一些神经元颗粒空泡变性、血管壁淀粉样蛋白变性。由于AD早期缺乏特异性的诊断手段,很多AD患者在明确诊断时已处于疾病中晚期,无法生活自理,给家庭和社会带来了巨大的精神和经济负担。Jessen [5] 2014年提出的主观认知下降(subjective cognitive decline, SCD)诊断框架指出,SCD,轻度认知功能障碍(mild cognition impairment, MCI),AD有可能是痴呆三部曲。因此寻找SCD和MCI的影像学标记物对于AD的早期诊断意义重大。近年来,关于AD多模态磁共振成像(magnetic resonance imaging, MRI)的相关研究越来越多,其中磁共振弥散张量成像(Diffusion tensor imaging, DTI)在早期阿尔茨海默病的研究中有某些新的提示,这或许能为AD早期诊断提供新的有价值的“生物学标志物”。

2. 磁共振弥散加权成像(Diffusion Tensor Imaging, DTI)

本DTI于1994年Basser等人首次提出弥散加权成像(Diffusion tensor imaging, DTI)的概念 [6] ,应用DTI技术可无创地检测脑组织中水分子的运动情况,并可追踪脑白质纤维束的走行情况。其常用的参数包括部分各向异性参数(fractional anisotropy, FA)、表观扩散系数(apparent diffusion coefficient, ADC)、平均扩散系数(mean diffusion, MD)、轴向扩散率(axial diffusivity, AxD)和径向扩散率(radial diffusivity, RD)以及局域各向异性参数(geodesic anisotropy,GA)。

FA指弥散张量的各向异性成分占整个弥散张量的比例,代表了神经纤维的完整性。FA值下降通常被认为代表白质纤维完整性破坏 [7] [8] 。GA值是2004年Fletcher首次定义的一个新的扩散张量的测量参数,能够提供白质纤维更具体的损伤程度 [9] 。MD指水分子在各方向的平均扩散程度,在细胞膜和髓鞘等扩散屏障受损时,MD值升高 [5] [10] 。AxD和RD分别指水分子在平行和垂直于白质纤维走行方向的扩散程度 [11] ,能够提供更多的脑白质微观结构信息,可能提示脑白质损伤的病理机制。研究表明,轴突缺损(如华勒氏变性)会引起AxD值改变,伴或不伴RD值升高:髓鞘分解会导致RD值增高,不伴AxD改变 [7] [12] 。

3. AD患者磁共振弥散加权成像的影像学特点

3.1. 海马

海马是记忆环路的重要组成部分,其传入及传出纤维在记忆的产生、存储、识别等方面起着重要作用。研究表明 [13] [14] [15] ,与年龄匹配的正常对照组相比,MCI、AD患者海马回、后扣带回、胼胝体等区域均有FA值下降,MD值增高的表现。Remy等 [16] 利用DTI测量前驱期AD患者双侧钩束、海马旁回、胼胝体及穹窿FA值,发现上述部位FA值显著低于正常对照组,并且钩束FA值降低和MD值升高与海马体积降低显著相关。由此提出前驱期AD双侧额叶海马结构白质纤维连接进行性损害与双侧海马体积降低伴行的观点,即AD早期边缘系统白质纤维束微观改变破坏可能源于海马结构神经元减少。Fellgiebel等 [17] 研究得出左侧海马前部MD值的升高在AD前期就已出现。但也有研究表明 [18] 双侧的海马的MD值在AD前期均有升高,所以AD患者海马的MD升高已经得到公认,但是具体以海马哪个部位为主,左右侧海马有没有差异等仍存在争议,需要进一步研究。

3.2. 扣带回

扣带束是多突触通路中的重要白质纤维,是海马回路中情景记忆的基本神经元结构,与情节记忆关系紧密。海马和扣带束被普遍认为是与记忆相关的重要联络基质。众多研究 [13] [14] [15] 发现AD及MCI阶段扣带回出现FA值降低、MD值增高。Wanda等 [19] 联合DTI与定量磁化转移(qMT)研究AD患者的白质纤维束发现FA值在双侧扣带回均显著降低,强调了AD的白质纤维束可能有连接中断,而这种中断可能与神经元的退行性变、微血管功能障碍、β-淀粉样蛋白沉积等病理机制相关。相关研究 [20] [21] 也证实了在AD的早期即MCI阶段后扣带回和海马间的扣带束就出现受损,这些改变可能是预测aMCI向AD病程转归的敏感指标之一。Kantarci等 [22] 更从病理学的角度指出AD患者腹侧扣带、楔前叶和内嗅白质中FA值降低、MD值升高和临床疾病严重程度相关。但也有研究显示 [23] [24] ,扣带束 FA 值与AD的疾病严重程度之间并无相关性。造成分歧的原因可能与研究的入组标准、扫描参数和分析方法的影响相关。

3.3. 穹隆

穹窿是下丘脑最粗大的传入纤维,也是海马的主要传出纤维,参与Papez环路构成。海马通过穹窿与隔核及下丘脑乳头体相连,后部穹窿纤维连接丘脑前核与扣带回。这些连接破坏与情境记忆受损密切相关。穹窿与扣带束共同参与胆碱能通路,影响胆碱能纤维向海马的输入及向其他部位的输出。该通路破坏会导致空间识别能力下降及记忆受损。Sexton等 [25] 发现:AD患者情景记忆功能损害与扣带回和穹隆处 MD 相关。Mielke等 [26] 在一项关于穹窿完整性对MCI患者记忆下降及向AD转归预测作用的长达 2.5 年的纵向研究中发现,穹窿DTI参数改变与神经心理学量表改变及海马萎缩程度呈明显相关,而扣带束参数仅MD、DR能预示病程进展,但其相关性无明显统计学意义,提示在病程转归中穹窿的预测作用优于扣带束,可能与病程进展更相关。研究进一步指出穹窿 DTI 值能预测 MCI 患者记忆衰退,可能作为预测疾病进展的神经影像标志物。

3.4. 内囊

内囊是执行初级运动功能的纤维束,AD、MCI患者的执行功能均有不同程度受损。Liu等 [27] 研究表明aMCI患者内囊、小脑、脑干等区域亦有受累。Geumsook等 [28] 的研究表明,AD患者脑白质的微结构变化可能在海马萎缩之前,左侧内囊晶状体后部MD值的升高可能成为AD敏感的预测因子。但是研究 [29] 发现AD患者内囊前肢FA值不变,后肢FA值下降。研究 [30] 则认为AD患者内囊不受累。由于内囊后肢由脉络膜前动脉和豆纹动脉供血,这些小血管对于脑灌注压的下降很敏感,FA值的下降、MD值升高均可能与年龄相关变性疾病和微血管疾病有关。因此,内囊是否累及尚需进一步验证。

3.5. 胼胝体

胼胝体是脑内最大的联合纤维,DTI研究发现,AD患者整体胼胝体FA值显著下降 [10] 。但AD早期胼胝体膝部 [31] 还是压部 [32] 病理改变更明显尚存在争议。Sexton的研究表明 [32] ,胼胝体压部FA值及MD值变化比膝部更加显著,这与AD患者颞-顶叶连接受损较额叶纤维束受损更严重的观点相符合。也有研究 [33] 指出,胼胝体后部区域在疾病进程的早期首先受损,而前部区域主要在疾病晚期发生改变。不同的研究结论可能与选取患者的认知受损的严重程度、所处疾病进程有关。目前关于胼胝体在AD中的不同阶段预测作用的研究较少,仍需要更多的大样本研究进一步明确。

3.6. 其它脑白质

顶叶、枕叶、额叶在空间信息处理、记忆编码、事物鉴别等方面具有重要作用。上纵束是联络纤维中最长的纤维束,连接额叶、顶叶、枕叶、颞叶结构,将感觉、视觉、听觉、体感信息从大脑的后部传递到大脑的前部。研究 [9] 发现AD患者上纵束FA、GA明显低于对照组患者,也同样发现顶叶、额叶、颞叶脑白质的完整性下降,上纵束的损伤可能是颞叶、额叶、项叶信息传递障碍的原因,与AD患者记忆力、注意力、执行能力下降有关。关于AD早期阶段颞叶白质损伤的研究 [34] 认为尽管AD患者颞叶白质完整性受到明显破坏,但在aMCI阶段颞叶未发生明显改变,类似的研究 [22] 认为颞叶内侧边缘发生的DTI改变,与AD神经纤维缠结相关,也与临床疾病严重程度有关,具有预测意义。

有研究 [35] [36] 认为MCI患者的执行功能与额叶、顶叶白质FA和MD相关。Teipel等 [37] 的研究均发现,双侧钩束、双侧上纵束、双侧下纵束及双侧额枕下束等联络纤维FA值在AD、MCI和正常对照三组均有显著差异。Nishioka等 [38] 利用DTI技术MCI和AD患者进行视觉通路分析,发现AD患者白质损伤可进一步扩展到视觉系统,MCI患者有类似改变但尚不明显,视觉系统损伤有可能作为MCI与AD的分界标记物。

3.7. 灰质

以往研究认为DTI对脑灰质结构的评价作用不大,但也有研究显示DTI同样可用于纤维结构含量比较丰富的深部灰质结构如丘脑的定量分析 [39] ,下丘脑功能障碍所导致的代谢和体重的变化以及神经内分泌功能的异常变化可能也是导致AD的一个病因 [40] 。AD的动物模型,APP/PS1转基因小鼠存在广泛的脑结构异常,包括灰质区域如新皮层、海马、纹状体、丘脑、下丘脑、屏状核、杏仁核及梨状皮层,和白质区域如胼胝体/外囊、扣带束、隔、内囊、海马伞及视束,这些受损部位均表现为FA值、DA值升高 [41] 。临床研究 [42] 也发现,aMCI者的灰质和白质完整性均降低,特别是在颞叶和下颞叶灰质区域MD升高,与言语流畅性、视觉和言语记忆表现存在显着的相关性,而且与对照或naMCI相比,aMCI中的MD更高。由于传统DTI方法无法准确测定交叉纤维的水分子扩散,而灰质区域交叉纤维较多,增加了研究难度。Tao Wang等 [43] 发现HARDI (high angular resolution diffusion imaging)完美解决了传统的DTI在交叉白质纤维区域受到的干扰。Hwang等 [44] 近期在研究139名临床前AD者的16个大脑灰质区域发现,10个独特的结构性脑连接损伤与淀粉样蛋白积聚显着相关,其中7个脑链接FA值降低与较低的认知功能相关联,从而提供证据表明AD灰质区域相关的结构连接性损失与认知衰退的相关性。以上研究进一步表明,AD的白质微结构变化可能发生更早,但灰质区域也有受损,仍需我们不断改善方法及思路进一步研究。

3.8. DTI的其他相关研究

Taoka等 [45] 在AD的动物模型中发现AD脑内淋巴系统的活性受损,可用DTI技术进行评估,即沿血管周围空间的扩散张量图像分析(DTI-ALPS)。研究中发现DTI-APLS上沿血管周围空间的较低扩散性似乎反映了淋巴系统的损伤,与MMSE评分之间存在显着正相关,与AD严重程度相关。

2005年,Sporns等 [46] 人将DTI技术应用于AD患者的脑白质网络的构建分析。目前有越来越多的研究者 [47] [48] [49] 整合出AD患者的多模态脑网络来研究AD不同阶段的差异性,试图发现AD患者脑萎缩区域与脑网络拓扑结构失调之间的联系及颅神经缺失退化等深层次脑网络信息。Tao Wang等 [43] 应用DTI的脑网络研究发现,AD组在多个局部皮质和皮质下区域(例如楔前叶,颞叶,海马和丘脑)中的连接较弱,进一步指出通过DTI研究可以更深刻地了解神经元纤维对髓鞘分解、轴突损伤和肿胀以及其他微结构事件的相互作用的敏感性。

4. 与AD及MCI相关的DTI数据库

EDSD [50] 是第一个公开发布的大型多中心DTI数据集。该数据集是MCI、AD患者以及匹配的健康对照的DTI和MRI数据的集合。截至2016年3月,它包含来自13个扫描仪的数据。该数据需要包括DTI和解剖学T1加权MRI扫描,以及临床和神经心理学表征,以及健康个体的匹配对照组 [50] 。关于MCI受试者,需要临床随访(转换为痴呆)或脑脊液(CSF)信息。其多中心结构允许在不同的扫描仪和临床环境中验证DTI的使用,探讨DTI的成像标记物用于预测MCI受试者的潜在病理学和转变为痴呆的可能性。

阿尔茨海默病神经影像学计划(ADNI)数据库 [51] 于2004年在Michael W. Weiner博士的领导下开始,是一项纵向多中心研究,旨在开发临床、影像学、遗传学和生物化学生物标志物,用于早期发现和追踪AD。在研究的每个阶段,新的参与者都在整个北美地区招募,并按相同标准完成各种成像和临床评估。随着时间的推移,参与者被跟踪并重新评估以跟踪疾病进展的病理学。目前已经有越来越多的研究应用ADNI的影像数据进行进一步的分析。

5. 小结

目前AD的治疗仍然是世界级难题,鉴于AD早期阶段的可治疗性,探讨AD早期阶段的诊断生物标记物意义重大。磁共振新技术DTI成像发现海马区、扣带回、穹窿及颞叶白质的损伤程度与疾病的严重程度相关,可以发现AD的早期阶段——MCI,并预测AD的发生与发展,在AD早期诊断中意义重大。如果DTI参数联合脑脊液、PET等其他指标综合研究可以进一步完善AD的病理学机制的研究,从而提出敏感性和特异性较高的AD早期新的生物学标志物,这仍是我们继续努力和探讨的方向。

基金项目

深圳市卫计委资助项目(201601015),深圳市科技计划项目(JCYJ20160422170522075)。

文章引用

汪克为,张 慧,邹良玉. 磁共振弥散张量成像对于阿尔茨海默病早期诊断价值
The Value of Magnetic Resonance Diffusion Tensor Imaging (DTI) Technology in the Early Diagnosis of Alzheimer’s Disease[J]. 临床医学进展, 2018, 08(10): 922-929. https://doi.org/10.12677/ACM.2018.810153

参考文献

  1. 1. Alzheimer’s Association (2010) Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 6, 158-194. https://doi.org/10.1016/j.jalz.2010.01.009

  2. 2. Almkvist, O. and Tallberg, I.M. (2009) Cognitive Decline from Estimated Premorbid Status Predicts Neurodegeneration in Alzheimer’s Disease. Neuropsychology, 23, 117-124. https://doi.org/10.1037/a0014074

  3. 3. Okonkwo, O.C., Xu, G., Dowling, B.B., et al. (2012) Family History of Alzheimer Disease Predicts Hippocampal Atrophy in Healthy Middle-Aged Adults. Neurology, 78, 1769-1776. https://doi.org/10.1212/WNL.0b013e3182583047

  4. 4. Amlien, I.K. and Fjell, A.M. (2014) Diffusion Tensor Imaging of White matter Degeneration in Alzheimer’s Disease and Mild Cognitive Impairment. Neuroscience, 276, 206-215. https://doi.org/10.1016/j.neuroscience.2014.02.017

  5. 5. Jessen, F., Amariglio, R.E., van Boxtel, M., et al. (2014) A Conceptual Framework for Research on Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Alzheimer’s & Dementia, 10, 844-852. http://doi.org/10.1016/j.jalz.2014.01.001

  6. 6. Basser, P.J., Mattiello, J. and Le Bihan, D. (1994) MR Diffusion Tensor Spectroscopy and Imaging. Biophysical Journal, 66, 259-267. https://doi.org/10.1016/S0006-3495(94)80775-1

  7. 7. Struyfs, H., van Hecke, W., Veraart, J., et al. (2015) Diffu-sion Kurtosis Imaging: A Possible MRI Biomarker for AD Diagnosis. Journal of Alzheimer's Disease, 48, 937-948. https://doi.org/10.3233/JAD-150253

  8. 8. Nir, T.M., Jahanshad, N., Villalon-Renina, J.E., et al. (2015) Effec-tiveness of Regional DTI Measures in Distinguishing Alzheimer’s Disease, MCI, and Normal Aging. Neuroimage: Clinical, 48, 937-948. https://doi.org/10.1016/j.nicl.2013.07.006

  9. 9. Fletcher, P.T. and Joshi, S. (2004) Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors. Proceedings of ECCV 200 Workshop on Computer Vision Ap-proaches to Medical Image Analysis (CVAMIA) LNCS, 3117, 87-98. https://doi.org/10.1007/978-3-540-27816-0_8

  10. 10. Douaud, G., Jbabdi, S., Behrens, T.E., et al. (2011) DTI Measures in Crossing-Fibre Areas: Increased Diffusion Anisotropy Reveals Early White Matter Alteration in Mci and Mild Alzheimer’s Disease. Neuroimage, 55, 880-890. https://doi.org/10.1016/j.neuroimage.2010.12.008

  11. 11. Kugel, H., Heindel, W., Ernestus, R., et al. (1992) Human Brain Tumors: Spectral Patterns Detected with Localized H-1 MR Spectroscopy. Radiology, 183, 701-709. https://doi.org/10.1148/radiology.183.3.1584924

  12. 12. Liao, W., et al. (2015) A Pilot Study on Measurement of Metabolite in the Hippocampal Subfields: Based on Multivoxel 1HMRS and Segmentation from High Resolution Volumetric MRI. The 23rd Annual Meeting of Magnetic Resonance in Medicine, Toronto, Ontario, Canada, 30 Ma -5 June 2015.

  13. 13. Zhang, Y., Schuff, N., Jahng G.H., et al. (2007) Diffusion Tensor Imaging of Cingulum Fibers in Mild Cognitive Impairment and Alzheimer Disease. Neurology, 68, 13-19. https://doi.org/10.1212/01.wnl.0000250326.77323.01

  14. 14. Bozzali, M., MacPherson, S.E., Cercignani, M., et al. (2012) White Matter Integrity Assessed by Diffusion Tensor Tractography in a Patient with a Large Tumor Mass But Minimal Clinical and Neuropsychological Deficits. Functional Neurology, 27, 239-246.

  15. 15. Cho, H., Yang, D.W., Shon, Y.M., et al. (2008) Abnormal Integrity of Corticocortical Tracts in Mild Cognitive Impairment: A Diffusion Tensor Imaging Study. Journal of Korean Medical Science, 23, 477-483. https://doi.org/10.3346/jkms.2008.23.3.477

  16. 16. Rémy, F., Vayssière, N., Saint-Aubert, L., et al. (2015) White Matter Disruption at the Prodromal Stage of Alzheimer’s Disease: Relationships with Hippocampal Atrophy and Epi-sodic Memory Performance. NeuroImage: Clinical, 7, 482-492. https://doi.org/10.1016/j.nicl.2015.01.014

  17. 17. Fellgiebel, A. and Yakushev, I. (2011) Diffusion Tensor Imaging of the Hippocampus in MCI and Early Alzheimer’s Disease. Journal of Alzheimer’s Disease, 26, 257-262. https://doi.org/10.3233/JAD-2011-0001

  18. 18. Wang, D., Guo, Z.H., Liu, X.H., et al. (2015) Examination of Hip-pocampal Differences between Alzheimer Disease, Amnestic Mild Cognitive Impairment and Normal Aging: Diffusion Kurtosis. Current Alzheimer Research, 12, 80-87. https://doi.org/10.2174/1567205012666141218142422

  19. 19. Wanda, M., Snow, R.D., O’Brien-Moran, Z., et al. (2017) In Vivo Detection of Gray Matter Neuropathology in the 3xTg Mouse Model of Alzheimer’s Disease with Dif-fusion Tensor Imaging. Journal of Alzheimer’s Disease, 58, 841-853. https://doi.org/10.3233/JAD-170136

  20. 20. Fu, J.L., Liu, Y., Li, Y.M., et al. (2014) Use of Diffusion Tensor Imaging for Evaluating Changes Amnestic-Type Mild Cognitive Impairment Converting to Alzheimer’s Disease. Journal of Neuroimaging, 4, 343-348. https://doi.org/10.1111/jon.12061

  21. 21. Liu, X., Chen, W., Hou, H., et al. (2017) Decreased Functional Connectivity between the Dorsal Anterior Cingulate Cortex and Lingual Gyrus in Alzheimer’s Disease Patients with Depression. Behavioural Brain Research, 326, 132-138. https://doi.org/10.1016/j.bbr.2017.01.037

  22. 22. Kantarci, K., Murray, M.E., et al. (2017) White Matter Integrity on DTI and the Pathologic Staging of Alzheimer’s Disease. Neurobiology of Aging, 56, 172-179. https://doi.org/10.1016/j.neurobiolaging.2017.04.024

  23. 23. Yin, C., Li, S., Zhao, W., et al. (2013) Brain Imaging of Mild Cognitive Impairment and Alzheimer’s Disease. Neural Regeneration Research, 8, 435-444.

  24. 24. Sali, D., Verganelakis, D.A., Gotsis, E., et al. (2013) Diffusion Tensor Imaging (DTI) in the Detection of White Matter Lesions in Patients with Mild Cognitive Impairment (MCI). Acta Neurologica Belgica, 113, 441-451. https://doi.org/10.1007/s13760-013-0224-4

  25. 25. Sexton, C.E., Mackay, C.E., Lonie, J.A., et al. (2010) MRI Correlates of Episodic Memory in Alzheimer’s Disease, Mild Cognitive Impairment, and Healthy Aging. Psychiatry Research: Neuroimaging, 184, 57-62. https://doi.org/10.1016/j.pscychresns.2010.07.005

  26. 26. Mielke, M.M., Okonkwo, O.C., Oishi, K., et al. (2012) Fornix Integrity and Hippocampal Volume Predict Memory Decline and Progression to Alzheimer’s Disease. Alzheimer’s & Dementia, 8, 105-113. https://doi.org/10.1016/j.jalz.2011.05.2416

  27. 27. Liu, Y., Spulber, G., Lehtimaki, K.K., et al. (2011) Diffusion Tensor Imaging and Tract-Based Spatial Statistics in Alzheimer’s Disease and Mild Cognitive Impairment. Neurobiology Aging, 32, 1558-1571. https://doi.org/10.1016/j.neurobiolaging.2009.10.006

  28. 28. Shim, G., Choi, K.Y., et al. (2017) Predicting Neurocognitive Function with Hippocampal Volumes and DTI Metrics in Patients with Alzheimer’s Dementia and Mild Cognitive Impairment. Brain and Behavior, 7, 1-9. https://doi.org/10.1002/brb3.766

  29. 29. Sajat, D.H., Tuch, D.S., Greve, D.N., et al. (2005) Age-Related Alterations in White Matter Microstructure Measured by Diffusion Tensor Imaging. Neurobiology of Aging, 26, 1215-1227. https://doi.org/10.1016/j.neurobiolaging.2004.09.017

  30. 30. Huang, J., Friedland, R.P. and Auchus, A.P. (2007) Diffusion Tensor Imaging of Normal-Appearing White Matter in Mild Cognitive Impairment and Early Alzheimer Disease: Preliminary Evidence of Axonal Degeneration in the Temporal Lobe. American Journal of Neuroradiology, 28, 1943-1948. https://doi.org/10.3174/ajnr.A0700

  31. 31. Xie, S., Xiao, J.X., Gong, G.L., et al. (2006) Voxel-Based Detection of White Matter Abnormalities in Alzheimer Disease. Neurology, 66, 1845-1849. https://doi.org/10.1212/01.wnl.0000219625.77625.aa

  32. 32. Sexton, C.E., Kalu, U.G., Filippini, N., et al. (2011) A Meta-Analysis of Diffusion Tensor Imaging in Mild Cognitive Impairment and Alzheimer’s Disease. Neurobiology of Aging, 32, 2322e5-2322e18. https://doi.org/10.1016/j.neurobiolaging.2010.05.019

  33. 33. Brun, A. and Englund, E. (1981) Regional Pattern of Degeneration in Alzheimer’s Disease: Neuronal Loss and Histopathological Grading. Histopathology, 5, 549-564. https://doi.org/10.1111/j.1365-2559.1981.tb01818.x

  34. 34. Saykin, A.J., Wishart, H.A., Rabin, L.A., et al. (2004) Cholinergic Enhancement of Frontal Lobe Activity in Mild Cognitive Impairment. Brain: A Journal of Neurology, 127, 1574-1583. https://doi.org/10.1093/brain/awh177

  35. 35. Nowrangi, M.A., Okonkwo, O., Lyketsos, C., et al. (2015) Atlas-Based Diffusion Tensor Imaging Correlates of Executive Function. Journal of Alzheimer’s Disease, 44, 585-598. https://doi.org/10.3233/JAD-141937

  36. 36. Liu, D., Shu, H., Wang, Z., et al. (2014) White Matter Change in Diffusion Tensor Imaging of Amnestic Mild Cognitive Impairment. PLoS ONE, 8, e59440. https://doi.org/10.1371/journal.pone.0059440

  37. 37. Teipel, S.J., Grothe, M.J., Fillippo, M., et al. (2014) Fractional Anisotropy Changes in Alzheimer’s Disease Depend on the Underlying Fiber Tract Architecture: A Multiparametric DTI Study Using Joint Independent Component Analysis. Journal of Alzheimer’s Disease, 41, 69-83. https://doi.org/10.3233/JAD-131829

  38. 38. Nishioka, C., Poh, C. and Sun, S.W. (2015) Diffusion Tensor Imaging Reveals Visual Pathway Damage in Patients with Mild Cognitive Impairment and Alzheimer’s Disease. Journal of Alzheimer’s Disease, 45, 97-107. https://doi.org/10.3233/JAD-141239

  39. 39. Zarei, M., Patenaude, B., Damoiseaux, J., et al. (2010) Combining Shape and Connectivity Analysis: An MRI Study of Thalamic Degeneration in Alzheimer’s Disease. NeuroImage, 49, 1-8. https://doi.org/10.1016/j.neuroimage.2009.09.001

  40. 40. Ishii, M. and Iadecola, C. (2015) Metabolic and Non-Cognitive Manifestations of Alzheimer’s Disease: The Hypothalamus as Both Culprit and Target of Pathology. Cell Metabolism, 22, 761⁃776. https://doi.org/10.1016/j.cmet.2015.08.016

  41. 41. Qin, Y.Y., Li, M.W., Zhang, S., et al. (2013) In Vivo Quantitative Whole-Brain Diffusion Tensor Imaging Analysis of APP/PS1 Transgenic Mice Using Voxel-Based and Atlas-Based Methods. Neuroradiology, 55, 1027-1038. https://doi.org/10.1007/s00234-013-1195-0

  42. 42. Gyebnár, G., Szabó, Á., et al. (2018) What Can DTI Tell about Early Cognitive Impairment?—Differentiation between MCI Subtypes and Healthy Controls by Diffusion Tensor Imaging. Psychiatry Research: Neuroimaging, 272, 46-57. https://doi.org/10.1016/j.pscychresns.2017.10.007

  43. 43. Wang, T., Shi, F., et al. (2016) Multilevel Deficiency of White Matter Connectivity Networks in Alzheimer’s Disease: A Diffusion MRI Study with DTI and HARDI Models. Neural Plasticity, 2016, Article ID: 2947136. https://doi.org/10.1155/2016/2947136

  44. 44. Hwang, S.J., Adluru, N., et al. (2018) Associations between PET Amyloid Pathology and DTI Brain Connectivity in Preclinical Alzheimer’s Disease. Brian Connectivity, 1-36. https://doi.org/10.1089/brain.2018.0590

  45. 45. Taoka, T., Masutani, Y., et al. (2017) Evaluation of Glymphatic System Activity with the Diffusion MR Technique: Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) in Alzheimer’s Disease Cases. Japanese Journal of Radiology, 35, 172-178. https://doi.org/10.1007/s11604-017-0617-z

  46. 46. Sporns, O., Tononi, G. and Kötter, R. (2005) The Human Connectome: A Structural Description of the Human Brain. PLOS Computational Biology, 1, e42. https://doi.org/10.1371/journal.pcbi.0010042

  47. 47. Prasad, G., Joshi, S.H., Nir, T.M., et al. (2015) Brain Connectivity and Novel Network Measures for Alzheimer’s Disease Classification. Neurobiology Aging, 36, S121-S131. https://doi.org/10.1016/j.neurobiolaging.2014.04.037

  48. 48. Friedman, E.J., Young, K., Tremper, G., et al. (2015) Directed Network Motifs in Alzheimer’s Disease and Mild Cognitive Impairment. PLoS ONE, 10, e0124453. https://doi.org/10.1371/journal.pone.0124453

  49. 49. Jie, B., Zhang, D., Wee, C.Y., et al. (2012) Structural Feature Selection for Connectivity Network-Based MCI Diagnosis. In: International Conference on Multimodal Brain Image Analysis, Springer, Heidelberg, 175-184. https://doi.org/10.1007/978-3-642-33530-3_15

  50. 50. Brueggen, K., Grothe, M.J., et al. (2017) The European DTI Study on Dementia—A Multicenter DTI and MRI Study on Alzheimer’s Disease and Mild Cognitive Impairment. NeuroImage, 144, 305-308. https://doi.org/10.1016/j.neuroimage.2016.03.067

  51. 51. http://adni.loni.usc.edu/

  52. NOTES

    *通讯作者。

期刊菜单