Advances in Environmental Protection
Vol. 09  No. 01 ( 2019 ), Article ID: 28934 , 14 pages
10.12677/AEP.2019.91008

Research Progress on Nitrogen Removal Performance of Electricity-Producing Constructed Wetland: A Review

Zihao Chen1, Fei Zhong2, Juan Wu1,3, Shuiping Cheng1,3*

1Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai

2School of Life Sciences, Nantong University, Nantong Jiangsu

3Shanghai Institute of Pollution Control and Ecological Security, Shanghai

Received: Jan. 30th, 2019; accepted: Feb. 13th, 2019; published: Feb. 20th, 2019

ABSTRACT

The electricity-producing constructed wetland is a new type of enhanced sewage treatment coupling system, which is formed by integrating the microbial fuel cell (MFC) into the constructed wetland (CW). The focus of studies on CW-MFC is gradually transferred from the electricity production and the removal of organic matter to the enhanced nitrogen removal. In this paper, the structural parameters and technological characteristics of the typical coupling system were reviewed, and the performances of its electricity production and nitrogen removal of CW-MFC were listed. The factors on nitrogen removal in CW-MFC were analyzed. Those were material, size, spacing and installment method of the electrode, the plant, substrate, alkalinity, and salinity of the system, as well as the inlet nitrogen concentration, hydraulic loading and operation pattern of CW-MFC. Accordingly, the problems were presented and the further studies were prospected.

Keywords:Constructed Wetland, Microbial Fuel Cell, Coupling System, Nitrogen Removal, Influencing Factors

产电型人工湿地脱氮性能研究进展

陈子豪1,钟非2,吴娟1,3,成水平1,3*

1同济大学环境科学与工程学院,长江水环境教育部重点实验室,上海

2南通大学生命科学学院,江苏 南通

3上海污染控制与生态安全研究院,上海

收稿日期:2019年1月30日;录用日期:2019年2月13日;发布日期:2019年2月20日

摘 要

产电型人工湿地(CW-MFC)是将微生物燃料电池(MFC)与人工湿地(CW)耦合的一种新兴强化污水处理技术。随着研究的深入,焦点逐渐从CW-MFC产电、有机物的去除等到了强化脱氮上面。文章综述了典型CW-MFC的结构参数和工艺特点,列举了一些耦合系统的产电情况和脱氮性能。对电极的材料、大小、间距、设置方式和系统的植物、基质、碱度、盐度以及耦合系统进水浓度、水力负荷、运行方式等影响CW-MFC脱氮效果的各种因素进行了全面而深入的分析,并由此提出了有待解决的问题,展望了未来的研究方向。

关键词 :人工湿地,微生物燃料电池,耦合系统,脱氮,影响因素

Copyright © 2019 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

人工湿地–微生物燃料电池耦合系统(CW-MFC),也称产电型人工湿地,是一种新兴的污水处理复合工艺。CW-MFC系统是利用人工湿地(CW)中天然存在的不同区域的厌氧与好氧条件,在其中构建微生物燃料电池(MFC),形成耦合系统。在湿地生态系统中加入电化学作用,可以用MFC来强化CW的污水处理效果,并回收一部分电能。

人工湿地是在自然或半自然湿地系统基础上发展起来的污水净化系统 [1] ,其工艺成熟、成本低廉 [2] 、运行简单、高效稳定 [3] ,已用被广泛用于生活污水 [4] 、工农业废水处理 [5] 和面源污染控制 [6] 、防治水体富营养化等方面 [7] 。关于对人工湿地的探索,从基质 [8] [9] 、植物 [10] [11] [12] 、微生物 [13] 到环境参数 [12] 、运行条件 [2] [14] [15] [16] [17] [18] 以及组合工艺 [10] 等方面的研究均有涉及。然而在有限的土地面积下,通过各种强化手段(曝气、回流、分级进水、补充碳源等)来进一步提升其脱氮等污水处理效果 [19] ,仍是研究的热点。

微生物燃料电池最初用作以微生物催化化学能转换的电能生产单元,但低电极催化密度的MFC其功率密度较低,而其本身的成本较高,并不适用于工程化的电能生产 [20] 。随之涌现出大量用污水作为MFC基质来去除一些污染物的报道 [21] [22] 。较早的MFC多用于印染废水 [23] 、焦化废水 [24] 、垃圾渗滤液 [25] 等处理以及重金属的去除、回收 [26] 等,而近些年富养水体营养元素的污染控制逐渐被关注 [27] 。Nam等研究了高氨氮电解液对MFC产电的影响 [28] ,Kim等研究了MFC中氨氮去除率随进水氨氮浓度变化的规律 [29] ,Kuntke等用双室MFC回收氨氮 [30] ,Naga Samrat等利用海水中的微生物实现MFC的反硝化作用 [31] ,Hasany等探讨了在不同水力条件下MFC基质中各种形态的氮素及磷含量的变化 [32] ,Park等用空气阴极MFC同时实现了有机物和总氮的去除 [33] 。

在CW-MFC出现之前,就有用MFC等电化学手段强化污水处理的报道。如升流式厌氧污泥反应器–微生物燃料电池(UASB-MFC) [34] 、固定化曝气生物滤池–微生物燃料电池(UML-MFC) [35] 、厌氧流化床–微生物燃料电池(AFB-MFC) [36] 、厌氧缺氧好氧反应器–微生物燃料电池(A2O-MFC) [37] 等组合工艺均能提升污水脱碳脱氮的效果。

随着生态文明建设步伐的加速,兼具景观效益的CW在工程应用中颇受青睐。将MFC阳极置于湿地底部,有机物等失电子传递到阳极(阳极半反应);而阴极置于湿地表层,电子由阳极经导线传导至阴极表面与O2 NO 3 等结合(阴极半反应);系统内外构成闭合电路原电池而产生电流 [38] ,两套装置形成一个耦合系统(CW-MFC)。利用MFC的电化学作用,则可以促进CW有机物和氮素等污染物的降解或去除。

2. 耦合系统的结构与性能

2.1. CW-MFC结构与运行

耦合系统的组成要素包括CW的基本元素(填料、植物)和MFC的基本元素(电极、电路)以及二者共有的微生物群落 [39] 。采用不同的填料和植物会影响耦合系统的表现,而优选电极材料或对电极修饰 [40] 和改性 [41] 也可以提高系统性能。

关于CW-MFC的报道,最早见于2012年Yadav等人的文章。近六、七年很多学者设计了一些新颖的系统来开展研究 [38] [42] - [63] 。不同的耦合系统其电池结构有所不同,主要包括:双室有分隔系统、单室空气阴极系统、生物阴极系统等 [64] 。隔膜或玻璃纤维等分隔物可以维持阴阳极之间较大的氧化还原电位差,提高电流密度和电池功率 [20] ,但也会加大系统的内阻 [65] 、容易产生堵塞问题且增加系统成本 [39] ,因而耦合系统多采用空气生物阴极结构 [66] 。电极材料、基质、植物等与传统的MFC和CW差别不大。另外从运行方式来看,CW-MFC有序批式和连续流两种。而按照布水方式,连续流的耦合系统又分为表面流系统、水平潜流系统和垂直流系统(包括上行流和下行流等)。一些典型耦合系统的具体结构见表1

Table 1. Structure of typical CW-MFC systems

表1. 典型CW-MFC耦合系统结构

Continued

2.2. CW-MFC产电性能

利用微生物催化作用将化学能转变为清洁的电能是研究者追求的目标。但从目前研究结果来看,为降低成本 [67] 而较多采用的生物阴极耦合系统 [68] 其电能的转化效率不高,产电水平甚至低于传统的MFC。以污水处理为主要目的的耦合系统,其外电压在100~1000 mV居多,功率密度大多在100~103 mW∙m−2 (或102~103 mW∙m−3),库伦效率一般小于10% [42] [43] [45] [46] [47] [48] [50] [52] - [57] [61] [62] [63] 。尽管如此,回收电能与污水处理之间较为密切的相关关系,使得电学化指标对于表征MFC强化CW污染物去除作用仍具有重要意义 [63] 。对于耦合系统电化学性能的研究,大多仍是沿用MFC研究中的一些指标,诸如外电压、内阻值、功率密度、库伦效率等 [39] 。表2列举了一些典型耦合系统的产电情况。

2.3. CW-MFC脱氮效果

早期在CW-MFC耦合系统刚刚出现之时,对于其污水处理效果,学者们主要关注以有机物为主的物质或是一些难降解物质的去除情况,考察指标以COD为主。随着研究的深入,耦合系统有助于提升湿地脱氮能力的功效逐渐被发现。

在传统的CW系统中,有机物的去除一般能够取得较为满意的效果,但其往往面临硝化作用不完全、反硝化碳源不足等问题;而MFC恰好可以解决这些问题 [69] [70] 。越来越多的研究表明耦合系统可以取得更理想的脱氮效果。Virdis等在MFC阳极完成的有机物去除,阴极完成了同步硝化反硝化过程 [71] ;Pous等探讨了在反硝化过程中,生物阴极的胞外电子传递规律 [72] ;Corbella等发现耦合系统中MFC的作用使生活污水的出水氨氮多降低25% [53] ;Wang等也发现在闭合电路条件下,耦合系统硝酸盐还原菌的群落数量增加,从而使硝酸盐去除率提升一倍 [59] 。目前现有的耦合系统脱氮研究成果 [38] [45] [47] [50] - [58] [60] [61] [62] [63] [73] [74] [75] 汇总于表3

Table 2. Power production of CW-MFC systems

表2. CW-MFC耦合系统产电情况

Table 3. Nitrogen removal performance of CW-MFC systems

表3. CW-MFC耦合系统脱氮效果

Continued

3. CW-MFC系统脱氮效果影响因素分析

污水中的总氮(TN)主要有氨氮( NH 4 + -N)、硝态氮( NO 3 -N)以及亚硝态氮、有机氮等形态。以湿地系统为基础,氨氮主要靠硝化作用、短程硝化作用等方式去除, NO 3 -N的去除途径则以反硝化作用为主。而电极的存在和电路的形成能够促进微生物的代谢,有利于提升脱氮效果。前文已综述了现阶段耦合系统脱氮情况的相关报道,影响耦合系统脱氮效果的因素较多,但仍可归结到MFC与CW两大部分的组成要素以及整个系统的运行方式条件等三大方面进行分析。

3.1. 电极特性对耦合系统的影响

3.1.1. 电极材料

MFC要求电极材料具有良好的导电性、易于微生物附着,并且抗氧化、可持久 [39] 。因此碳材质电极以其较大的表面积、较高的孔隙率、较好的生物附着性、较强的导电性、较优的稳定性和较廉的价格等优势,得到广泛应用 [76] 。由于阳极是有机物的电子受体,阴极承载着氧化性物质(O2 NO 3 等)得电子的功能,所以有些学者致力于比选不同材料 [77] 的性能或修饰 [40] 、改性 [41] 电极材料 [78] ,以期强化其电化学功效。由于贵金属修饰电极造价昂贵,不符合污水处理的可持续发展理念,故少见于脱氮研究之中。相应地,比较不同电极材料性能的研究有较多相关报道。

Wang等利用空气生物阴极型耦合系统探究了不同电极材料对 NO 3 -N去除的影响,发现 NO 3 -N去除率依次为:泡沫镍(84.32%) > 碳毡(80.70%) > 不锈钢网(69.78%) > 石墨棒(42.48%) [60] 。一方面,较其他两种材料相比,泡沫镍和碳毡电极表面更加利于 α -变形菌、 β -变形菌等产电菌生长,从而使得电子更快地被传导至阴极,进而促进了系统反硝化反应,提高了脱氮效果;另一方面,作为自养型反硝化菌,脱氯单胞菌等在泡沫镍阳极表面相对丰度很高,这也有助于系统脱氮。

Corbella等进一步比较了导电材料石墨棒和砾石(缠绕不锈钢网)作为阳极时对生活污水的处理效果。统计学结果显示二者对于有机物、氮、磷等去除效果并无显著差异 [53] 。其原因可能是污水中的悬浮物较易附着在石墨棒表面,从而降低了其传输电子的能力。

3.1.2. 电极间距

早在2014年Sajana等做沉积物型微生物燃料电池(SMFC)时就指出 [79] ,电极间距对于总氮的去除有要影响。当MFC某一极位置确定了之后,电极间距不同就意味着阴极或阳极的氧化还原条件不同。

在Doherty等人的研究中,两组实验电极间距分别是11 cm (有分隔物)和31 cm (无分隔),所取得的 NH 4 + -N去除率均为48%,而TN的去除率也十分接近 [47] 。这可能是由于两组装置阳极位置相同,前者有分隔物而后者无分隔,所以尽管阴极位置不同(电极间距不同),但其氧化还原条件相似。由此可见,通过调整电极间距能够实现电极氧化还原条件的调控;而增大电极间距可以替代阴阳极室间质子交换膜或分隔物的使用,在保证其污水处理效果的基础上大大降低了系统成本。

Oon等在上行连续流耦合系统中研究了不同的电极间距对于系统性能的影响,结果显示:间距为30 cm,氨氮的削减率显著高于电极间距为15 cm和45 cm的情况 [74] 。当阴极位置确定时,由于扩散作用使得间距为30 cm时阳极的DO也在0.5 mg/L以上,即可令氨氮得到了很大去除;而过大的间距使得其厌氧程度过高,利于反硝化作用但不利于硝化作用;过小的间距使阳极位置靠上,污水在到达阳极之前 NH 4 + -N含量已经很低,电极也不能充分发挥作用,故也不能取得最高的去除率。Sajana等也得到了类似的结论 [79] ,即:较大的电极间距利于阳极区的厌氧反应,有利于提升TN的去除效果。

3.1.3. 电极大小及设置

在SMFC的相关研究中,曾经有学者通过平面扩散和径向扩散机理解释了MFC电极的几何形状和大小会改变传质过程,进而影响MFC性能 [80] 。系统电极的选用,一般是与装置的几何特点相匹配,但也不乏一些新颖的设计。

Fang等比较了直径为20 cm、22.5 cm、25 cm、27.5 cm的阴极碳毡(阳极均为20 cm)对于含氮染料活性红(有机氮)的处理情况。结果表明,选用直径为25 cm的阴极取得了最大含氮染料脱色能力 [58] 。这是由于较大的阴极面积能够增加电流密度,并且更容易在阴极出现局部缺氧区域(利于染料的偶氮基团分解),这样就提升了阴极的脱色能力;然而过大的阴极会增加电极活化内阻,同时也会限制系统脱色主要贡献区阳极的表现。

Shen等 [51] 通过对比将碳刷阳极直接放入沉积物中和封闭在多孔极室材料中发现,两种处理下的阳极表面的硫还原地杆菌和 β -变形菌相对丰度明显不同。将电极置于多孔极室中,利于电极接触间隙水,这样能增加阳极材料表面环境的稳定性,使其更适合微生物生长,从而使这两种重要的产电菌相对丰度显著提高。并且其中的 β -变形菌还能够利用底物中的氨来产能,因此对提升系统 NH 4 + -N的去除率有较大贡献。

3.2. 系统基质、植物及盐碱度的影响

3.2.1. 植物

植物是湿地系统的重要组成部分。成水平等 [1] 将植物的作用归纳为吸收营养元素及其他污染物、为根区好氧微生物输氧以及改善系统水力条件。而在CW-MFC耦合系统的研究中,也有不少结果表明了植物的重要作用。Oon等发现栽种植物(宽叶香蒲)的系统处理效果明显好于无植物的对照组,他们认为这可能是由于植物加强了耦合系统阴极区微生物的反应动力,并且植物根系泌氧作用也能提高阴极附近水体的溶解氧含量 [81] ;此外他们还研究了沉水植物伊乐藻对于 NH 4 + -N和 NO 3 -N的去除效果,结果显示栽种伊乐藻可以强化硝化作用约17% [56] 。Shen等报道了耦合系统对于 NH 4 + -N去除的研究,栽种沉水植物组和无植物组分别取得了88.9%和67.8%的去除率 [51] 。Wang等指出,与对照组相比,植物组对于 NH 4 + -N、 NO 3 -N和TN三个指标的去除率分别有23.9%、7.2%和11.6%的提高 [61] 。

而不同的植物对于CW-MFC脱氮的影响也有所差异。Wang等探究了耦合系统中灯芯草、香蒲、水葱等三种不同湿地植物对生活污水处理效果的差异,结果表明:香蒲和水葱中具有更高的脱氮效率,其中栽种水葱的耦合系统效果最好, NH 4 + -N、 NO 3 -N和TN的去除率可以分别达到47.3%、85.3%和74.2% [61] 。这是因为除了直接吸收作用之外,大型植物(尤其是香蒲和水葱)的根系分泌物有助提高系统微生物多样性,包括:脱硫球茎菌等好氧脱氮微生物,红环菌、丛毛单胞菌等利用硝酸盐为电子受体进行反硝化作用的微生物,以及土杆菌、硫杆菌等反硝化细菌。

Shen等研究了表面流湿地耦合微生物燃料电池系统对生活污水的处理效果 [51] ,他们发现无植物的对照组电极表面生物膜较少,而根系的分泌物则有利于其表面附着生长电化学活性菌(EAB),大部分EAB能够促进硝化反硝化作用;此外植物也能吸收一部分 NH 4 + -N用作自身生长的氮源。

3.2.2. 系统基质

基质(填料)占据了系统绝大部分空间,其理化特性除影响本身的吸附性能之外,还与系统的水力传导性能、植物生长状况、微生物群落结构等密切相关。

Yakar等从基质物化特性角度深入分析了沸石、火山岩、石英砂等三种填料对于耦合系统脱氮的影响 [54] 。结果表明沸石最为理想,可以分别取得93.2%和81.1%的 NH 4 + -N和 NO 3 -N去除率。获得较优的处理效果主要是由于其特殊的表面区域、多孔的组成以及自身的结构特点。一方面,沸石外层有较多凸起、表面粗糙,更加有利于微生物附着和生物膜的形成;另一方面,多孔的结构可以利于氧的填充从而创造了相对好氧的条件;另外,沸石的化学成分决定了其易于通过离子交换和吸附作用束缚阳离子,从而延长了 NH 4 + 的水力停留时间;除此之外,沸石还可以为植物的生长提供矿物元素,进而增加了植物的生物量,强化了植物根系对氮素的吸收。

Wang等研究了填料大小对于耦合系统污染物去除及微生物群落结构分布的影响 [75] 。他们发现,大粒径填料有利于提高系统β-变形菌的相对丰度,有助于系统内氧的扩散,可以提升系统产电;相对地,小粒径填料则有利于提高系统微生物的多样性。因而相比于对照组5.2 mm的石英砂粒径,2.8 mm的实验组取得了87.1%的更高硝酸盐去除率。这可能是由于小粒径填料具有更大的比表面积,从而促进了包括红环菌、丛毛单胞菌等在内的脱氮微生物的生长。

3.2.3. 系统碱度与盐度

系统的碱度和盐度不仅取决于污水本身的性质,还会受到系统湿地基质、植物以及电极和电路的影响。因有机物厌氧分解产生脂肪酸,Zhao等测得系统阳极附近的pH值比阴极附近低0.90~0.98 [82] 。类似地,Wu等发现由于O2在阴极表面得电子并与H+结合生成水,所以可以监测到(一个序批周期内)耦合系统阴极附近的pH有增大趋势 [45] 。而Sajana等指出,pH = 8.5时系统TN去除率要高于pH = 6.5时的情况 [79] 。

Wang等通过加入磷酸缓冲液设置了5.2、7.3、8.8三个进水pH梯度,结果显示中性和偏碱性条件对于 NO 3 -N的去除效果要好于酸性条件 [59] 。在中性条件下,系统内硝酸盐还原菌的相对丰度最高(为22.3%)。而在过酸的条件下,产电菌的活性被抑制,这也会影响硝酸盐通过外电路获取电子而被还原的过程。

盐度对于耦合系统的影响主要体现在其对系统内的植物和微生物的作用。在高盐度溶液中,植物容易出现生长速率减慢甚至枯萎的现象。而对于一些微生物,高盐(NaCl > 1%)会使其发生质壁分离进而抑制其生长活性 [83] 。Villaseñor Camacho等报道了当NaCl浓度高于3 g/L时,即会对微生物产生有害作用进而影响污水处理效果 [84] 。而Oon等 [81] 通过实验证实了如果微生物能够适应耦合系统盐度的变化,则污水处理效果( NO 3 -N的去除和含氮染料的脱色)基本不会受到影响。但NaCl浓度过高,植物的光合作用会受到影响,进而系统的DO水平会降低。

3.3. CW-MFC运行条件及方式的影响

3.3.1. 耦合系统进水浓度

Wang等测试了在不同 NO 3 -N进水浓度下,耦合系统的脱氮效率 [60] 。当 NO 3 -N浓度由20.29 mg/L提升至79.36 mg/L时,对于碳毡电极、不锈钢网电极和泡沫镍电极三套系统, NO 3 -N去除率分别下降了2.0%,5.7%和2.4%,而对于石墨棒电极系统, NO 3 -N去除率提高了7.3%。可见耦合系统反硝化潜力巨大, NO 3 -N的浓度变化对于其去除率影响不大。

Fang等以含氮染料为对象探讨了有机含氮废水的处理规律 [57] 。他们认为含氮染料因生物毒性会抑制脱色菌、产电菌、发酵菌等微生物的生长,而偶氮基团的分解则需要借助共代谢底物葡萄糖来提供电子断裂化学键。故随着偶氮染料所占废水成分的比例增大,系统脱色率有所下降;而如果将进水的葡萄糖浓度从100 mg/L提高到300 mg/L,脱色率则有所增加。

Oon等通过在废水中加入含氮染料及 NO 3 -N验证了耦合系统电子传递规律 [81] ,即得电子能力 NO 3 >含氮基团 > 系统阳极。通过改变进水浓度,他们得到了类似的结论,即:进水的 NO 3 -N浓度增加两倍,系统的脱色率下降了约5%,而 NO 3 -N的去除率基本不变,系统反硝化能力很好。

3.3.2. 耦合系统水力负荷

无论是CW还是MFC,其生化反应的基础都是溶质运移和传输的水力运动。寻找到合适的水力停留时间(HRT)或水力负荷,对于优化耦合系统性能至关重要。

Fang等通过改变HRT来研究系统运行条件对有机含氮染料活性红去除的影响 [57] 。当HRT从1.5天增至4天时,系统的脱色率呈现先升高再下降趋势(从42.8%变为92.8%再到68.0%),最高的脱色率是在HRT为3天的条件下取得的。由于阳极区在去除废水里偶氮基团的过程中占有重要份额,当HRT从1.5天增加至3天时,系统阳极区的潜力则被充分利用。但若进一步延长HRT,则其共代谢底物葡萄糖在阳极耗尽,会影响系统的脱色率。

3.3.3. 耦合系统运行方式

Doherty等 [47] 指出,通过调整水流方式(由上行流变为上–下混合流),可以使 NH 4 + -N去除率由55%~59%提高至75%,TN去除率由48%提高至58%。增加下行的流动形式,可以使污水更多地与氧接触,从而强化了硝化反应;此外混合流增加了阴极表面的有机物,进而促进了阴极表面好氧反硝化细菌的生长,提高系统反硝化能力,增强TN去除效果。

补充曝气作用能够提升系统溶解氧水平,从而对脱氮过程产生重要影响。Oon等探索了不同曝气速率下的脱氮效果 [56] ,结果表明曝气速率与 NH 4 + -N去除率呈正相关,与 NO 3 -N去除率负相关。当曝气速率为60 ml/min时,耦合系统可以取得50%的 NH 4 + -N去除率和81%的 NO 3 -N去除率。

Wu等 [50] 报道了用曝气回流耦合系统处理高 NH 4 + -N养殖废水厌氧消化上清液的案例,获得了92%~98%的 NH 4 + -N去除率。出水回流给反硝化作用提供了充足的有机底物,对于系统TN的去除有较大提高;而曝气的位置不同导致TN去除效果的差异。对比发现,在阴阳两极中央和在装置底部加曝气装置分别取得了44%和69%的TN去除率。中央曝气的方式,使得系统表层的硝化细菌和底部的反硝化细菌数量剧增且层次分明,还令装置底层的厌氧氨氧化细菌提高了10倍。

4. 结论与展望

在表面流、水平潜流、垂直流等形式的人工湿地基础上,加入微生物燃料电池电极,能够形成耦合系统,提高污水处理效率。相比于传统的人工湿地,CW-MFC不仅能强化有机物的降解,还能够提高脱氮效率。通过使用不同的电极材料、调整电极间距、改变电极大小和设置方式、优选系统基质与植物、调试酸碱度与盐度以及调控耦合系统运行方式等手段,可以进一步提高CW-MFC的脱氮效率。

基于以上现有的报道,CW-MFC脱氮的相关研究还有待进一步深入,主要有以下方面:

1) 相比于通过耦合系统回收电能,利用MFC使系统自身产生电流用于强化CW污染物去除则更具现实意义。目前仅有Xu等一篇报道探究了在序批式运行条件下系统产电与脱氮过程的联系 [63] ,即:产电过程通过加强系统短程硝化反硝化作用以及生物阴极上的硝化反硝化作用来提升系统脱氮效果。他们用较为简单的线性表达式表述了脱氮过程和系统产电之间的强正相关关系,但并未加入其它影响因子作为考虑的要素。而在不同水力条件、不同系统结构(电极、基质、植物等)和不同的运行模式之下,众多因素的深层影响,尚待加入到耦合系统产电与污水脱氮关联的考虑之中。

2) 反硝化作用碳源不足是传统人工湿地的问题之一。在耦合系统中,由于硝酸盐既可以在阳极区直接利用有机物发生反应,也可在阴极局部缺氧区获得由外电路传导来的电子而进行反硝化作用,故探究在低C/N条件下,使MFC充分发挥其强化作用,从而避免或部分替代外加碳源方式,则可节约运行成本。

3) 根据人工湿地的技术经验,长期运行会产生堵塞。在人工湿地中加入电极,则更会面临这一问题。关于耦合系统堵塞与调控的报道尚未见到,故如何使CW-MFC长期稳定运行,仍是关键所在。

4) 人工湿地一直被认为是黑箱模型,耦合系统则变得更加复杂。随着人工智能不断进步,数值模拟已成为污水处理领域一大潮流。关于活性污泥以及人工湿地的模型屡见不鲜 [85] ,但有关CW-MFC的模型尚未见到相关报道。因此,探索耦合系统运行规律、简化系统内部复杂的生化过程、模拟其污染物去除效果则十分重要且前景广阔。

基金项目

本研究由国家自然科学基金(51578395)资助。

文章引用

陈子豪,钟 非,吴 娟,成水平. 产电型人工湿地脱氮性能研究进展
Research Progress on Nitrogen Removal Performance of Electricity-Producing Constructed Wetland: A Review[J]. 环境保护前沿, 2019, 09(01): 44-57. https://doi.org/10.12677/AEP.2019.91008

参考文献

  1. 1. 成水平, 吴振斌, 况琪军. 人工湿地植物研究[J]. 湖泊科学, 2002, 14(2): 179-184.

  2. 2. Wu, H., Zhang, J., Hao, H., et al. (2015) A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment : Design and Operation. Bioresource Technology, 175, 594-601. https://doi.org/10.1016/j.biortech.2014.10.068

  3. 3. Rai, U.N., Tripathi, R.D., Singh, N.K., et al. (2013) Constructed Wetland as an Ecotechnological Tool for Pollution Treatment for Conservation of Ganga River. Bioresource Technology, 148, 535-541. https://doi.org/10.1016/j.biortech.2013.09.005

  4. 4. Vymazal, J. (2008) The Use Constructed Wetlands with Horizontal Sub-Surface Flow for Various Types of Wastewater. Ecological Engineering, 5, 1-17.

  5. 5. Vymazal, J. (2014) Constructed Wetlands for Treatment of Industrial Wastewaters: A Review. Ecological Engineering, 73, 724-751. https://doi.org/10.1016/j.ecoleng.2014.09.034

  6. 6. Terzakis, S., Fountoulakis, M.S., Georgaki, I., et al. (2008) Constructed Wetlands Treating Highway Runoff in the Central Mediterranean Region. Chemosphere, 72, 141-149. https://doi.org/10.1016/j.chemosphere.2008.02.044

  7. 7. Lai, D.Y.F. and Che, K. (2008) Phosphorus Sorption by Sediments in a Subtropical Constructed Wetland Receiving Stormwater Runoff. Ecological Engineering, 5, 735-743.

  8. 8. Xu, D., Xu, J., Wu, J., et al. (2006) Studies on the Phosphorus Sorption Capacity of Substrates Used in Constructed Wetland Systems. Chemospherehe, 63, 344-352. https://doi.org/10.1016/j.chemosphere.2005.08.036

  9. 9. Huang, X., Liu, C., Wang, Z., et al. (2013) The Effects of Different Substrates on Ammonium Removal in Constructed Wetlands : A Comparison of Their Physicochemical Characteristics and Ammonium-Oxidizing Prokaryotic Communities. Clean Soil Air Water, 41, 283-290. https://doi.org/10.1002/clen.201200369

  10. 10. Vymazal, J. (2013) Emergent Plants Used in Free Water Surface Constructed Wetlands: A Review. Ecological Engineering, 61, 582-592. https://doi.org/10.1016/j.ecoleng.2013.06.023

  11. 11. Xu, Y. and Xu, J. (2014) Improving Winter Performance of Constructed Wetlands for Wastewater Treatment in Northern China : A Review. Wetlands, 34, 243-253. https://doi.org/10.1007/s13157-013-0444-7

  12. 12. Saeed, T. and Sun, G. (2012) A Review on Nitrogen and Or-ganics Removal Mechanisms in Subsurface Flow Constructed Wetlands : Dependency on Environmental Parameters, Operating Conditions and Supporting Media. Journal of Environmental Management, 112, 429-448. https://doi.org/10.1016/j.jenvman.2012.08.011

  13. 13. Calheiros, C.S.C., Duque, A.F., Moura, A., et al. (2009) Changes in the Bacterial Community Structure in Two-Stage Constructed Wetlands with Different Plants for Industrial Wastewater Treatment. Bioresource Technology, 100, 3228-3235. https://doi.org/10.1016/j.biortech.2009.02.033

  14. 14. Toet, S., Logtestijn, R.S.P., Van Kampf, R., et al. (2005) The Effect of Hydraulic Retention Time on the Removal of Pollutants from Sewage Treatment Plant Effluent in a Sur-face-Flow Wetland System. Wetlands, 25, 375-391.https://doi.org/10.1672/13

  15. 15. Cui, L., Ouyang, Y., Lou, Q., et al. (2010) Removal of Nutrients from Wastewater with Canna indica L. under Different Vertical-Flow Constructed Wetland Conditions. Ecological Engineering, 36, 1083-1088.https://doi.org/10.1016/j.ecoleng.2010.04.026

  16. 16. Ávila, C., Matamoros, V., Reyes-Contreras, C., et al. (2014) Attenuation of Emerging Organic Contaminants in a Hybrid Constructed Wetland System under Different Hydraulic Loading Rates and Their Associated Toxicological Effects in Wastewater. Science of the Total Environment, 470-471, 1272-1280.https://doi.org/10.1016/j.scitotenv.2013.10.065

  17. 17. Zhang, D.Q., Tan, S.K., Gersberg, R.M., et al. (2012) Nutrient Removal in Tropical Subsurface Flow Constructed Wetlands under Batch and Continuous Flow Conditions. Journal of Environmental Management, 96, 1-6.https://doi.org/10.1016/j.jenvman.2011.10.009

  18. 18. Caselles-Osorio, A. and García, J. (2007) Impact of Dif-ferent Feeding Strategies and Plant Presence on the Performance of Shallow Horizontal Subsurface-Flow Constructed Wetlands. Science of the Total Environment, 378, 253-262.https://doi.org/10.1016/j.scitotenv.2007.02.031

  19. 19. Wu, S., Kuschk, P., Brix, H., Vymazal, J. and Dong, R. (2014) Development of Constructed Wetlands in Performance Intensifications for Wastewater Treatment: A Nitrogen and Organic Matter Targeted Review. Water Research, 57, 40-45.https://doi.org/10.1016/j.watres.2014.03.020

  20. 20. Hu, J., Zhang, Q., Lee, D.J., Lee, D.-J. and Ngo, H.H. (2018) Feasible Use of Microbial Fuel Cells for Pollution Treatment. Renewable Energy, 129, 824-829. https://doi.org/10.1016/j.renene.2017.02.001

  21. 21. Du, Z., Li, H. and Gu, T. (2007) A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnology Advances, 25, 464-482.https://doi.org/10.1016/j.biotechadv.2007.05.004

  22. 22. Pandey, P., Shinde, V.N., Deopurkar, R.L., et al. (2016) Recent Advances in the Use of Different Substrates in Microbial Fuel Cells toward Wastewater Treatment and Simultaneous Energy Recovery. Applied Energy, 168, 706-723.https://doi.org/10.1016/j.apenergy.2016.01.056

  23. 23. He, L., Du, P., Chen, Y., et al. (2017) Advances in Microbial Fuel Cells for Wastewater Treatment. Renewable and Sustainable Energy Reviews, 71, 388-403. https://doi.org/10.1016/j.rser.2016.12.069

  24. 24. Wu, D., Yi, X., Tang, R., Feng, C. and Wei, C. (2018) Single Microbial Fuel Cell Reactor for Coking Wastewater Treatment: Simultaneous Carbon and Nitrogen Removal with Zero Alkaline Consumption. Science of the Total Environment, 621, 497-506. https://doi.org/10.1016/j.scitotenv.2017.11.262

  25. 25. Nguyen, H.T.H., Kakarla, R. and Min, B. (2017) Algae Cathode Microbial Fuel Cells for Electricity Generation and Nutrient Removal from Landfill Leachate Wastewater. International Journal of Hydrogen Energy, 42, 29433-29442. https://doi.org/10.1016/j.ijhydene.2017.10.011

  26. 26. Gude, V.G. (2016) Wastewater Treatment in Microbial Fuel Cells—An Overview. Journal of Cleaner Production, 122, 287-307. https://doi.org/10.1016/j.jclepro.2016.02.022

  27. 27. Sun, H., Xu, S., Zhuang, G. and Zhuang, X. (2016) Perfor-mance and Recent Improvement in Microbial Fuel Cells for Simultaneous Carbon and Nitrogen Removal: A Review. Journal of Environmental Sciences, 39, 242-248.https://doi.org/10.1016/j.jes.2015.12.006

  28. 28. Nam, J.-Y., Kim, H.-W. and Shin, H.-S. (2010) Ammonia Inhibition of Electricity Generation in Single-Chambered Microbial Fuel Cells. Journal of Power Sources, 195, 6428-6433. https://doi.org/10.1016/j.jpowsour.2010.03.091

  29. 29. Kim, H.-W., Nam, J.-Y. and Shin, H.-S. (2011) Ammonia Inhibition and Microbial Adaptation in Continuous Single-Chamber Mi-crobial Fuel Cells. Journal of Power Sources, 196, 6210-6213. https://doi.org/10.1016/j.jpowsour.2011.03.061

  30. 30. Kuntke, P., Geleji, M., Bruning, H., et al. (2011) Effects of Ammonium Concentration and Charge Exchange on Ammonium Recovery from High Strength Wastewater Using a Microbial Fuel Cell. Bioresource Technology, 102, 4376-4382. https://doi.org/10.1016/j.biortech.2010.12.085

  31. 31. Naga Samrat, M.V.V., Kesava Rao, K., Ruggeri, B. and Tommasi, T. (2018) Denitrification of Water in a Microbial Fuel Cell (MFC) Using Seawater Bacteria. Journal of Cleaner Production, 178, 449-456.https://doi.org/10.1016/j.jclepro.2017.12.221

  32. 32. Hasany, M., Yaghmaei, S., Mardanpour, M.M. and Naraghi, Z.G. (2017) Simultaneously Energy Production and Dairy Wastewater Treatment Using Bioelectrochemical Cells: In Different Environmental and Hydrodynamic Modes. Chinese Journal of Chemical Engineering, 25, 1847-1855. https://doi.org/10.1016/j.cjche.2017.08.003

  33. 33. Park, Y., Park, S., Nguyen, V.K., et al. (2017) Complete Nitrogen Removal by Simultaneous Nitrification and Denitrification in Flat-Panel Air-Cathode Microbial Fuel Cells Treating Domestic Wastewater. Chemical Engineering Journal, 316, 673-679. https://doi.org/10.1016/j.cej.2017.02.005

  34. 34. Zhang, B., Zhao, H., Zhou, S., et al. (2009) A Novel UASB-MFC-BAF Integrated System for High Strength Molasses Wastewater Treatment and Bioelectricity Generation. Bioresource Technology, 100, 5687-5693.https://doi.org/10.1016/j.biortech.2009.06.045

  35. 35. Cheng, J., Zhu, X., Ni, J. and Borthwick, A. (2010) Palm Oil Mill Effluent Treatment Using a Two-Stage Microbial Fuel Cells System In-tegrated with Immobilized Biological Aerated Filters. Bioresource Technology, 101, 2729-2734.https://doi.org/10.1016/j.biortech.2009.12.017

  36. 36. Huang, J., Yang, P., Guo, Y. and Zhang, K. (2011) Electricity Generation during Wastewater Treatment: An Approach Using an AFB-MFC for Alcohol Distillery Wastewater. Desalination, 276, 373-378.https://doi.org/10.1016/j.desal.2011.03.077

  37. 37. Xie, B., Dong, W., Liu, B. and Liu, H. (2014) Enhancement of Pollutants Removal from Real Sewage by Embedding Microbial Fuel Cell in Anaerobic-Anoxic-Oxic Wastewater Treatment Process. Journal of Chemical Technology & Biotechnology, 89, 448-454. https://doi.org/10.1002/jctb.4138

  38. 38. Yadav, A.K., Dash, P., Mohanty, A., Abbassi, R. and Mishra, B.K. (2012) Performance Assessment of Innovative Constructed Wetland-Microbial Fuel Cell for Electricity Production and Dye Removal. Ecological Engineering, 47, 126-131. https://doi.org/10.1016/j.ecoleng.2012.06.029

  39. 39. Doherty, L., Zhao, Y., Zhao, X., et al. (2015) A Review of a Recently Emerged Technology: Constructed Wetland—Microbial Fuel Cells. Water Research, 85, 38-45. https://doi.org/10.1016/j.watres.2015.08.016

  40. 40. Saito, T., Mehanna, M., Wang, X., et al. (2011) Effect of Nitrogen Addition on the Performance of Microbial Fuel Cell Anodes. Bioresource Technology, 102, 395-398. https://doi.org/10.1016/j.biortech.2010.05.063

  41. 41. Santoro, C., Babanova, S., Artyushkova, K., et al. (2015) Influence of Anode Surface Chemistry on Microbial Fuel Cell Operation. Bioelectrochemistry, 106, 141-149. https://doi.org/10.1016/j.bioelechem.2015.05.002

  42. 42. Villaseñor, J., Capilla, P., Rodrigo, M.A., Cañizares, P. and Fernández, F.J. (2013) Operation of a Horizontal Subsurface Flow Constructed Wetland—Microbial Fuel Cell Treating Wastewater under Different Organic Loading Rates. Water Research, 47, 6731-6738. https://doi.org/10.1016/j.watres.2013.09.005

  43. 43. Liu, S., Song, H., Wei, S., Yang, F. and Li, X. (2014) Bio-Cathode Materials Evaluation and Configuration Optimization for Power Output of Vertical Subsurface Flow Constructed Wetland—Microbial Fuel Cell Systems. Bioresource Technology, 166, 575-583. https://doi.org/10.1016/j.biortech.2014.05.104

  44. 44. Lu, L., Xing, D. and Ren, Z.J. (2015) Microbial Community Structure Accompanied with Electricity Production in a Constructed Wetland Plant Microbial Fuel Cell. Bioresource Technology, 195, 115-121.https://doi.org/10.1016/j.biortech.2015.05.098

  45. 45. Wu, D., Yang, L., Gan, L., et al. (2015) Potential of Novel Wastewater Treatment System Featuring Microbial Fuel Cell to Generate Electricity and Remove Pollutants. Ecological Engineering, 84, 624-631.https://doi.org/10.1016/j.ecoleng.2015.09.068

  46. 46. Srivastava, P., Yadav, A.K. and Mishra, B.K. (2015) The Effects of Microbial Fuel Cell Integration into Constructed Wetland on the Performance of Constructed Wetland. Bioresource Technology, 195, 223-230.https://doi.org/10.1016/j.biortech.2015.05.072

  47. 47. Doherty, L., Zhao, Y., Zhao, X. and Wang, W. (2015) Nutrient and Organics Removal from Swine Slurry with Simultaneous Electricity Gen-eration in an Alum Sludge-Based Constructed Wetland Incorporating Microbial Fuel Cell Technology. Chemical En-gineering Journal, 266, 74-81.https://doi.org/10.1016/j.cej.2014.12.063

  48. 48. Yang, Q., Wu, Z., Liu, L., Zhang, F. and Liang, S. (2016) Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell. Materials, 9, 885.

  49. 49. Zhang, S., Song, H.-L., Yang, X.-L., et al. (2016) Fate of Tetracycline and Sulfamethoxazole and Their Corresponding Resistance Genes in Microbial Fuel Cell Coupled Constructed Wetlands. The Royal Society of Chemistry, 6, 95999-96005. https://doi.org/10.1039/C6RA20509G

  50. 50. Wu, S., Lv, T., Lu, Q., Ajmal, Z. and Dong, R. (2017) Treatment of Anaerobic Digestate Supernatant in Microbial Fuel Cell Coupled Constructed Wetlands: Evaluation of Nitrogen Removal, Electricity Generation, and Bacterial Community Response. Science of the Total Environment, 580, 339-346. https://doi.org/10.1016/j.scitotenv.2016.11.138

  51. 51. Shen, X., Zhang, J., Liu, D., Hu, Z. and Liu, H. (2018) Enhance Performance of Microbial Fuel Cell Coupled Surface Flow Con-structed Wetland by Using Submerged Plants and Enclosed Anodes. Chemical Engineering Journal, 351, 312-318. https://doi.org/10.1016/j.cej.2018.06.117

  52. 52. Xu, F., Cao, F.-Q., Kong, Q., et al. (2018) Electricity Production and Evolution of Microbial Community in the Constructed Wetland-Microbial Fuel Cell. Chemical Engineering Journal, 339, 479-486.https://doi.org/10.1016/j.cej.2018.02.003

  53. 53. Corbella, C. and Puigagut, J. (2018) Improving Domestic Wastewater Treatment Efficiency with Constructed Wetland Microbial Fuel Cells: Influence of Anode Material and External Resistance. Science of the Total Environment, 631-632, 1406-1414. https://doi.org/10.1016/j.scitotenv.2018.03.084

  54. 54. Yakar, A., Türe, C., Türker, O.C., Vymazal, J. and Saza, Ç. (2018) Impacts of Various Filtration Media on Wastewater Treatment and Bioelectric Production in Up-Flow Constructed Wetland Combined with Microbial Fuel Cell (UCW-MFC). Ecological Engineering, 117, 120-132. https://doi.org/10.1016/j.ecoleng.2018.03.016

  55. 55. Oon, Y.L., Ong, S.A., Ho, L.N., et al. (2015) Hybrid System Up-Flow Constructed Wetland Integrated with Microbial Fuel Cell for Simultaneous Wastewater Treatment and Elec-tricity Generation. Bioresource Technology, 186, 270-275.https://doi.org/10.1016/j.biortech.2015.03.014

  56. 56. Oon, Y.L., Ong, S.A., Ho, L.N., et al. (2017) Role of Macrophyte and Effect of Supplementary Aeration in Up-Flow Constructed Wetland-Microbial Fuel Cell for Simultaneous Wastewater Treatment and Energy Recovery. Bioresource Technology, 224, 265-275. https://doi.org/10.1016/j.biortech.2016.10.079

  57. 57. Fang, Z., Song, H., Cang, N. and Li, X. (2015) Electricity Production from Azo Dye Wastewater Using a Microbial Fuel Cell Coupled Constructed Wetland Operating under Different Operating Conditions. Biosensors & Bioelectronics, 68, 135-141. https://doi.org/10.1016/j.bios.2014.12.047

  58. 58. Fang, Z., Cao, X., Li, X., Wang, H. and Li, X. (2017) Electrode and Azo Dye Decolorization Performance in Microbial-Fuel-Cell-Coupled Constructed Wetlands with Different Electrode Size during Long-Term Wastewater Treatment. Bioresource Technology, 238, 450-460. https://doi.org/10.1016/j.biortech.2017.04.075

  59. 59. Wang, J., Song, X., Wang, Y., et al. (2016) Nitrate Removal and Bioenergy Production in Constructed Wetland Coupled with Microbial Fuel Cell: Establishment of Electrochemically Active Bacteria Community on Anode. Bioresource Technology, 221, 358-365. https://doi.org/10.1016/j.biortech.2016.09.054

  60. 60. Wang, J., Song, X., Wang, Y., et al. (2017) Effects of Elec-trode Material and Substrate Concentration on the Bioenergy Output and Wastewater Treatment in Air-Cathode Microbial Fuel Cell Integrating with Constructed Wetland. Ecological Engineering, 99, 191-198. https://doi.org/10.1016/j.ecoleng.2016.11.015

  61. 61. Wang, J., Song, X., Wang, Y., et al. (2017) Bioenergy Gen-eration and Rhizodegradation as Affected by Microbial Community Distribution in a Coupled Constructed Wet-land-Microbial Fuel Cell System Associated with Three Macrophytes. Science of the Total Environment, 607-608, 53-62. https://doi.org/10.1016/j.scitotenv.2017.06.243

  62. 62. Xu, L., Zhao, Y., Wang, T., Liu, R. and Gao, F. (2017) Energy Capture and Nutrients Removal Enhancement through a Stacked Constructed Wetland Incorporated with Microbial Fuel Cell. Water Science and Technology, 76, 28-34.https://doi.org/10.2166/wst.2017.168

  63. 63. Xu, L., Zhao, Y., Wang, X. and Yu, W. (2018) Applying Multiple Bio-Cathodes in Constructed Wetland-Microbial Fuel Cell for Promoting Energy Production and Bioelectrical Derived Nitrification-Denitrification Process. Chemical Engineering Journal, 344, 105-113. https://doi.org/10.1016/j.cej.2018.03.065

  64. 64. He, Z. and Angenent, L.T. (2009) Application of Bacterial Biocathodes in Microbial Fuel Cells. Electroanalysis, 18, 2009-2015.https://doi.org/10.1002/elan.200603628

  65. 65. Xu, L., Zhao, Y., Tang, C. and Doherty, L. (2018) In-fluence of Glass Wool as Separator on Bioelectricity Generation in a Constructed Wetland-Microbial Fuel Cell. Journal of Environmental Management, 207, 116-123.https://doi.org/10.1016/j.jenvman.2017.11.035

  66. 66. Wang, Z., Mahadevan, G.D., Wu, Y. and Zhao, F. (2017) Progress of Air-Breathing Cathode in Microbial Fuel Cells. Journal of Power Sources, 356, 245-255.https://doi.org/10.1016/j.jpowsour.2017.02.004

  67. 67. Huang, L., Regan, J.M. and Quan, X. (2011) Electron Transfer Mechanisms, New Applications, and Performance of Biocathode Microbial Fuel Cells. Bioresource Technology, 102, 316-323.https://doi.org/10.1016/j.biortech.2010.06.096

  68. 68. Milner, E.M., Popescu, D., Curtis, T., et al. (2016) Microbial Fuel Cells with Highly Active Aerobic Biocathodes. Journal of Power Sources, 324, 8-16. https://doi.org/10.1016/j.jpowsour.2016.05.055

  69. 69. Deng, L., Ngo, H.H., Guo, W., Wang, J. and Zhang, H. (2018) Evaluation of a New Sponge Addition-Microbial Fuel Cell System for Removing Nutrient from Low C/N Ratio Wastewater. Chemical Engineering Journal, 338, 166-175.https://doi.org/10.1016/j.cej.2018.01.028

  70. 70. Liu, S., Li, L., Li, H., Wang, H. and Yang, P. (2017) Study on Ammonium and Organics Removal Combined with Electricity Generation in a Continuous Flow Microbial Fuel Cell. Bioresource Technology, 243, 1087-1096.https://doi.org/10.1016/j.biortech.2017.07.071

  71. 71. Virdis, B., Rabaey, K., Rozendal, R.A., Yuan, Z. and Keller, J. (2010) Simultaneous Nitrification, Denitrification and Carbon Removal in Microbial Fuel Cells. Water Research, 44, 2970-2980.https://doi.org/10.1016/j.watres.2010.02.022

  72. 72. Pous, N., Koch, C., Colprim, J., Puig, S. and Harnisch, F. (2014) Extracellular Electron Transfer of Biocathodes: Revealing the Potentials for Nitrate and Nitrite Reduction of Denitrifying Microbiomes Dominated by Thiobacillus sp. Electrochemistry Communications, 49, 93-97. https://doi.org/10.1016/j.elecom.2014.10.011

  73. 73. Li, T., Fang, Z., Yu, R., et al. (2016) The Performance of the Microbial Fuel Cell-Coupled Constructed Wetland System and the Influence of the Anode Bacterial Community. Environmental Technology, 37, 1683-1692.https://doi.org/10.1080/09593330.2015.1127292

  74. 74. Oon, Y.L., Ong, S.A., Ho, L.N., et al. (2016) Synergistic Effect of Up-Flow Constructed Wetland and Microbial Fuel Cell for Simultaneous Wastewater Treatment and Energy Recovery. Bioresource Technology, 203, 190-197.https://doi.org/10.1016/j.biortech.2015.12.011

  75. 75. Wang, J., Song, X., Wang, Y., et al. (2017) Bioe-lectricity Generation, Contaminant Removal and Bacterial Community Distribution as Affected by Substrate Material Size and Aquatic Macrophyte in Constructed Wetland-Microbial Fuel Cell. Bioresource Technology, 245, 372-378. https://doi.org/10.1016/j.biortech.2017.08.191

  76. 76. Zhou, M., Chi, M., Luo, J., He, H. and Jin, T. (2011) An Overview of Electrode Materials in Microbial Fuel Cells. Journal of Power Sources, 196, 4427-4435. https://doi.org/10.1016/j.jpowsour.2011.01.012

  77. 77. Wei, J., Liang, P. and Huang, X. (2011) Recent Progress in Electrodes for Microbial Fuel Cells. Bioresource Technology, 102, 9335-9344. https://doi.org/10.1016/j.biortech.2011.07.019

  78. 78. Sonawane, J.M., Yadav, A., Ghosh, P.C. and Adeloju, S.B. (2017) Recent Advances in the Development and Utilization of Modern Anode Materials for High Performance Mi-crobial Fuel Cells. Biosensors and Bioelectronics, 90, 558-576. https://doi.org/10.1016/j.bios.2016.10.014

  79. 79. Sajana, T.K., Ghangrekar, M.M. and Mitra, A. (2014) Effect of Operating Parameters on the Performance of Sediment Microbial Fuel Cell Treating Aquaculture Water. Aquacultural Engineering, 61, 17-26.https://doi.org/10.1016/j.aquaeng.2014.05.004

  80. 80. Sacco, N.J., Figuerola, E.L.M., Pataccini, G., et al. (2012) Performance of Planar and Cylindrical Carbon Electrodes at Sedimentary Microbial Fuel Cells. Bioresource Technology, 126, 328-335.https://doi.org/10.1016/j.biortech.2012.09.060

  81. 81. Oon, Y.L., Ong, S.A., Ho, L.N., et al. (2018) Up-Flow Constructed Wetland-Microbial Fuel Cell for Azo Dye, Saline, Nitrate Remediation and Bioelectricity Generation: From Waste to Energy Approach. Bioresource Technology, 266, 97-108. https://doi.org/10.1016/j.biortech.2018.06.035

  82. 82. Zhao, Y., Collum, S., Phelan, M., et al. (2013) Preliminary Investigation of Constructed Wetland Incorporating Microbial Fuel Cell: Batch and Continuous Flow Trials. Chemical Engineering Journal, 229, 364-370.https://doi.org/10.1016/j.cej.2013.06.023

  83. 83. Kargi, F. (2002) Empirical Models for Biological Treatment of Saline Wastewater in Rotating Biodisc Contactor. Process Biochemistry, 38, 399-403. https://doi.org/10.1016/S0032-9592(02)00137-1

  84. 84. Villaseñor Camacho, J., Rodríguez Romero, L., FernándezMarchante, C.M., Fernández Morales, F.J. and Rodrigo Rodrigo, M.A. (2017) The Salinity Effects on the Performance of a Constructed Wetland-Microbial Fuel Cell. Ecological Engineering, 107, 1-7. https://doi.org/10.1016/j.ecoleng.2017.06.056

  85. 85. Langergraber, G. (2008) Modeling of Processes in Subsurface Flow Constructed Wetlands: A Review. Vadose Zone Journal, 7, 830-842. https://doi.org/10.2136/vzj2007.0054

  86. NOTES

    *通讯作者。

期刊菜单