World Journal of Cancer Research
Vol. 12  No. 03 ( 2022 ), Article ID: 53774 , 6 pages
10.12677/WJCR.2022.123020

p53基因与肿瘤的研究进展

朱祥

上海交通大学医学院苏州九龙医院,呼吸与危重症医学科,江苏 苏州

收稿日期:2022年6月23日;录用日期:2022年7月4日;发布日期:2022年7月19日

摘要

目前临床研究表明,p53基因的主要作用是识别细胞损伤从而诱导细胞凋亡,该基因突变可能导致许多肿瘤发生发展。尤其在肺癌中,p53基因突变是NSCLC存活率降低的独立预后因素,并且基因突变可导致EGFR-TKI耐药,但是在免疫治疗方面等影响尚未明确。p53基因突变往往伴随着p53蛋白构象的改变。已发现AZD1775、APR-246等小分子可能有恢复p53野生型构象并重建其正常功能的作用。在这篇综述中,我们总结了p53基因目前的一些研究观点及研究进展,希望对临床肿瘤的治疗有所帮助。

关键词

p53基因,肿瘤,进展

Research Progress of p53 Gene and Tumor

Xiang Zhu

Department of Respiratory Medicine, Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiaotong University, Suzhou Jiangsu

Received: Jun. 23rd, 2022; accepted: Jul. 4th, 2022; published: Jul. 19th, 2022

ABSTRACT

Current clinical studies have shown that the main role of p53 gene is to recognize cell damage and induce apoptosis, and the mutation of this gene may lead to the occurrence and development of many tumors. Especially in lung cancer, p53 gene mutation is an independent prognostic factor of reduced survival rate of NSCLC, and gene mutation can lead to EGFR-TKI resistance, but the effect on immunotherapy is not clear. P53 gene mutations are often accompanied by conformation changes of p53 protein. It has been found that AZD1775, APR-246 and other small molecules may restore the wild-type conformation of p53 and restore its normal function. In this review, we summarize some current research views and progress of p53 gene, hoping to be helpful for the treatment of clinical tumors.

Keywords:p53 Gene, Tumor, Progress

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

p53基因是目前研究最多的抑癌基因之一,在卵巢、肺、胰腺、结肠等肿瘤中均被发现 [1]。该基因通过诱导细胞周期阻滞、DNA修复或凋亡来抑制肿瘤的形成,对损伤的DNA起到保护作用 [2]。如果p53基因发生突变,不仅丧失了原有的抑癌功能,还可导致p53蛋白产生“功能增益”活性(Gain of function, GOF),该活性可以促进肿瘤细胞侵袭、转移、增殖,导致肿瘤进展及耐药发生 [3]。本文对p53近些年的相关研究进行了小结,以期对临床有所帮助。

2. p53基因结构及功能

p53是位于染色体17p13.1上的一段长19.14 kb的基因组,由11个外显子和10个内含子组成,包括一个主要的转录本(编码完整的p53蛋白)和至少12个以上的备用转录本,这些备用转录本是由一部分外显子选择性剪接或内部启动子编码产生的 [4]。备用转录本编码合成的蛋白亚型与典型p53蛋白有明显的不同之处:缺乏一些氨基末端结构域或羧基末端结构域,如40p53,缺失残基1-39;D133p53,缺失残基1-132 [5]。目前虽然对这些蛋白亚型的结构已经基本清楚,但这些蛋白亚型的功能仍不明确。

p53基因在正常细胞中的表达较低,其半衰期约为20 min。但是在细胞应激状态下,p53的半衰期可以延长至数个小时,导致细胞中p53蛋白水平显著升高 [6]。p53基因作为细胞的“守护者”,主要作用是识别细胞损伤是否不可逆转,从而诱导细胞凋亡。p53基因可以通过其下游的p21与细胞周期蛋白依赖激酶(cyclin dependent kinase, CDK)复合物结合,抑制相应的蛋白激酶活性,导致CDK无法磷酸化Rb蛋白,进而引起细胞G1期阻滞 [7]。在细胞凋亡方面,p53基因通过Bax/Bcl-2、Fas/Apo-l、IGF/BP-3等蛋白因子完成对细胞生命的调控 [2] [8]。此外p53本身也能触发细胞反应(存活或诱导细胞凋亡)。这种能力的大小可能会根据肿瘤细胞类型或细胞损伤的程度而不同。

3. p53在肿瘤中的作用

p53基因是最早发现的肿瘤抑制基因之一,可以编码肿瘤蛋白p53。目前随着全基因组测序的深入研究,发现它是包括胶质母细胞瘤、透明细胞肾细胞癌、头颈部鳞癌、非小细胞肺癌等十余种实体肿瘤中最常见的突变基因 [9]。而在胃癌、肝细胞癌、胆管癌、乳腺癌、前列腺癌中,p53的突变率为25%~60% [10]。在造血系统恶性肿瘤中,p53突变的频率为10%~15% [11]。目前研究发现近50%的人类肿瘤中存在p53基因的突变或缺失 [12]。80%的p53突变为错义突变,多发生在编码DNA结合域的中心区域,常见突变位点包括R175、G245、R248、R249、R273和R282 [13]。基因突变可导致高度稳定的p53突变体(mut-p53)产生。mut-p53大致分为结构突变体和DNA接触突变体。其中结构突变体p53常常与共同表达的野生型p53 (wt-p53)形成混合四聚体,从而引起wt-p53蛋白的结构展开,导致wt-p53功能丧失;而DNA接触突变体则是改变p53蛋白中某些氨基酸种类,导致p53无法与DNA结合从而失去活性 [14] [15]。p53功能缺失后,受损细胞出现不断增殖,随之将突变基因遗传到下一代,正是通过这一机制,p53的去调控可以导致肿瘤的发生。另外研究发现p53突变后不光丧失了肿瘤抑制功能,还获得新的GOF,形成GOF-mut-p53。GOF-mut-p53形成后便可以通过增强细胞增殖、DNA复制、基因组不稳定性、侵袭、转移和化疗耐药性等途径来促进肿瘤发生及生长 [3] [16]。此外,研究发现GOF-mut-p53还是一种致癌转录因子,可以参与调节几种致癌基因的表达,其通过与NF-Y、Sp1等其他转录因子协同作用,以启动子为靶点,促进各自基因的转录 [17]。GOF-mut-p53还可以与肿瘤抑制因子P63和P73相互作用,隔离这些蛋白并抑制其各自的靶基因的反活化 [18]。

MicroRNA (miRNA)是一类由内源基因编码的长度约为22个核苷酸的非编码单链RNA分子,可以参与转录后基因表达调控。研究发现在p53参与细胞损伤修复或是基因突变引起肿瘤发生过程中,miRNA都是一种关键的调节因子,它可以通过调节wt-p53来增强肿瘤抑制和应激反应 [19] [20]。而mut-p53与miRNA之间的联系目前仍在研究中。Donzelli等 [21] 首先报道了miR-128b是由mut-p53转录调控的,它对肺癌细胞具有化学抗性。另一份报告 [22] 显示,在DNA损伤时,GOF-mut-p53R175H通过ZEB-1 (一种转录抑制因子)下调miR-223,同样导致肿瘤细胞产生化学抗性。其他一些miRNAs (如miR-130b、miR-27a和miR-155)也与GOF-mut-p53驱动癌细胞侵袭、转移、上皮间质转化和增殖有关 [23] [24] [25]。这些研究表明,miRNA是癌症细胞中GOF-mut-p53的重要调节因子。因此,在全基因组内识别与GOF-mut-p53相关的miRNAs对mut-p53获得新活性功能的研究至关重要。

4. p53对非小细胞肺癌的影响

肺癌是全世界发病率和死亡率均居首位的恶性疾病,且数据在逐年升高。临床上80%以上的肺癌为非小细胞肺癌(non-small cell lung cancer, NSCLC) [26],早期手术切除肿瘤病灶是最有效的治疗方法,辅助化疗(adjuvant chemotherapies, ACTs)、靶向治疗和免疫治疗为NSCLC的治疗提供了更多的选择。在靶向治疗方面,NSCLC体细胞突变相关基因中,表皮生长因子受体(epidermal growth factor recepto, EGFR)、鼠类肉瘤病毒癌基因(kirsten rat sarcoma viral oncogene, KRAS)、p53等都是常见的靶向基因。研究显示目前超过30%的NSCLC患者携带有p53基因 [27] [28]。Molina-Vila等 [29] 报道,p53基因突变是EGFR野生型或EGFR突变的晚期NSCLC存活率降低的独立预后因素。且研究表明,p53基因突变是晚期NSCLC患者使用酪氨酸激酶抑制剂(tyrosine kinase inhibitors, TKI)治疗预后的负性因素,可导致EGFR-TKI耐药 [30] [31],尤其在EGFR/p53基因共突变的情况下,患者EGFR-TKI治疗反应更低,OS更短 [32] [33]。因此在进行药物靶向治疗时,除了注意原致癌基因耐药外,还需警惕其他基因突变引起的疗效不佳。

目前EGFR/p53共突变导致晚期NSCLC患者TKIs敏感性降低的潜在机制尚不清楚。一项临床前研究报道,wt-p53可通过调控NSCLC细胞系统中Fas信号通路来增强吉非替尼的抑癌作用,而p53基因突变则导致该通路的调节作用消失 [34]。另一项研究发现mut-p53可能通过激活高转移肿瘤干细胞的IL-6、STAT3或者NF-KB的信号通路,促进上皮细胞向间质细胞转化 [35]。这提示TKI耐药与炎症活动之间存在潜在的关系。此外,EGFR突变型肺腺癌向小细胞肺癌的组织学转化被认为是TKI的另一种耐药机制。而p53突变和RB1丢失可能是小细胞癌转化的早期事件,会导致肿瘤细胞产生对TKI的抗性 [36]。

Mut-p53可以活化肿瘤细胞,对TKI治疗有负性作用,而在肿瘤免疫系统中也有重要的作用 [37]。但是此种作用是积极的还是消极的,目前仍有争论。部分研究认为p53突变常抑制机体的抗肿瘤免疫和肿瘤免疫治疗反应 [38] [39];另外一些研究认为p53突变可以促进抗肿瘤免疫活性和免疫治疗的反应性 [40] [41]。最近的一篇研究分析了来自肿瘤基因组图谱(TCGA)项目的五个恶性肿瘤组。结果发现在乳腺癌和肺腺癌中,p53突变型癌的抗肿瘤免疫信号水平明显高于p53野生型癌。相比之下,在胃腺癌、结肠腺癌和头颈部鳞状细胞癌中,p53突变型癌的抗肿瘤免疫信号水平明显低于p53野生型癌。此外,p53突变型癌比p53野生型癌存在更高的肿瘤突变负荷(tumor mutation burden, TMB),尤其在乳腺癌和肺腺癌两组中TMB差异更为显著。该研究提示p53突变与抗肿瘤免疫之间存在明显的相关性,p53突变对肿瘤免疫功能的影响取决于该肿瘤的类型 [42]。另外一项研究显示在NSCLC患者中,mut-p53与相应的wt-p53相比,因为p53功能的丧失而降低了基因组的稳定性,导致mut-p53发生了更高的TMB,因而mut-p53表达了更高水平的PD-L1蛋白 [43],提示p53突变可能是抗PD-1/PD-L1免疫治疗有效的预测因素。

5. 针对TP53突变的治疗

迄今为止,还没有被批准的针对NSCLC中TP53突变的药物。有报道AZD1775 (一种wee-1抑制剂)是一种潜在的针对mut-p53 NSCLC的抗癌治疗药物 [44],但临床数据较少。p53引起肿瘤发生的主要原因是基因突变导致抑癌功能丧失,因此,对p53进行野生型活性的修复是一种很有希望的癌症治疗策略,不仅可以避开mut-p53的癌性增益功能,还可以恢复抑癌活性,从而达到肿瘤根除的目的。目前有APR-246 (PRIMA-1MET)和COTI-2两种小分子正处于临床试验阶段。APR-246是一种针对mut-p53的小分子有机化合物,已被证明可以通过促进其活性构象来重新激活突变体或错误折叠的p53蛋白 [45]。它是一种前体药物,在体内被转化为活性形式MQ,通过半胱氨酸与mut-p53结合,恢复p53的野生型构象;另外APR-246还可以通过诱导ROS和抑制TrxR1,引起p53依赖性细胞凋亡 [46]。最新研究表明,APR-246也可以独立于TP53突变状态之外介导抗癌活性 [47]。COTI-2是一种新型的第三代巯基氨基脲,它与mut-p53结合,从而诱导构象改变,使p53恢复野生型构象及其活性 [48]。COTI-2与其他硫缩氨基脲不同,它不是传统的锌金属伴侣蛋白,同样可以通过p53依赖和p53独立的两种途径增加细胞凋亡 [49]。

总之,目前p53基因仍有许多未知等待我们进一步揭示,它与肿瘤之间的亲密关系仍待进一步探索,期望不久的将来可以有相应的靶向药物应用于临床,这将给许多肿瘤及肿瘤耐药患者带来生命的希望。

文章引用

朱 祥. p53基因与肿瘤的研究进展
Research Progress of p53 Gene and Tumor[J]. 世界肿瘤研究, 2022, 12(03): 147-152. https://doi.org/10.12677/WJCR.2022.123020

参考文献

  1. 1. Surget, S., Khoury, M.P. and Bourdon, J.C. (2013) Uncovering the Role of p53 Splice Variants in Human Malignancy: A Clinical Perspective. OncoTargets and Therapy, 7, 57-68.
    https://doi.org/10.2147/OTT.S53876

  2. 2. Wang, Z. and Sun, Y. (2010) Targeting p53 for Novel Anticancer Therapy. Translational Oncology, 3, 1-12.
    https://doi.org/10.1593/tlo.09250

  3. 3. Xu, J., Wang, J., Hu Y., et al. (2014) Unequal Prognostic Potentials of p53 Gain-of-Function Mutations in Human Cancers Associate with Drug-Metabolizing Activity. Cell Death & Disease, 5, e1108.
    https://doi.org/10.1038/cddis.2014.75

  4. 4. Marcel, V., Dichtel-Danjoy, M.L., Sagne, C., et al. (2011) Biological Functions of p53 Is Forms through Evolution: Lessons from Animal and Cellular Models. Cell Death & Differentiation, 18, 1815-1824.
    https://doi.org/10.1038/cdd.2011.120

  5. 5. Khoury, M.P. and Bourdon, J.C. (2010) The Isoforms of the p53 Protein. Cold Spring Harbor Perspectives in Biology, 2, a000927.
    https://doi.org/10.1101/cshperspect.a000927

  6. 6. Bai, L. and Zhu, W. (2006) p53: Structure, Function and Therapeutic Application. Journal of Cancer Molecules, 2, 141-153.

  7. 7. Chiang, M.F., Chou, P.Y., Wang, W.J., et al. (2013) Tumor Suppressor WWOX and p53 Alterations and Drug Resistance in Glioblastomas. Frontiers in Oncology, 3, Article No. 43.
    https://doi.org/10.3389/fonc.2013.00043

  8. 8. Bai, L. and Wang, S. (2014) Targeting Apoptosis Pathways for New Cancer Therapeutics. Annual Review of Medicine, 65, 139-155.
    https://doi.org/10.1146/annurev-med-010713-141310

  9. 9. Kastenhuber, E.R. and Lowe, S.W. (2017) Putting p53 in Context. Cell, 170, 1062-1078.
    https://doi.org/10.1016/j.cell.2017.08.028

  10. 10. Watson, I.R., Takahashi, K., Futreal, P.A., et al. (2013) Emerging Patterns of Somatic Mutations in Cancer. Nature Reviews Genetics, 14, 703-718.
    https://doi.org/10.1038/nrg3539

  11. 11. Zhang, J., Ding, L., Holmfeldt, L., et al. (2012) The Genetic Basis of Early T-Cell Precursor Acute Lymphoblastic Leukaemia. Nature, 481, 157-163.

  12. 12. Wang, S., Zhao, Y., Bernard, D., Aguilar, A. and Kumar, S. (2012) Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. Topics in Medicinal Chemistry, 8, 57-80.
    https://doi.org/10.1007/978-3-642-28965-1_2

  13. 13. Muller, P.A. and Vousden, K.H. (2013) p53 Mutations in Cancer. Nature Cell Biology, 15, 2-8.
    https://doi.org/10.1038/ncb2641

  14. 14. Hegi, M.E., Diserens, A.C., Gorlia, T., et al. (2005) MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. The New England Journal of Medicine, 352, 997-1003.
    https://doi.org/10.1056/NEJMoa043331

  15. 15. Willis, A., Jung, E.J., Wakefield, T., et al. (2019) Mutant p53 Exerts a Dominant Negative Effect by Preventing Wild-Type p53 from Binding to the Promoter of Its Target Genes. Oncogene, 23, 2330-2338.
    https://doi.org/10.1038/sj.onc.1207396

  16. 16. Oren, M. and Rotter, V. (2010) Mutant p53 Gain-of-Function in Cancer. Cold Spring Harbor Perspectives in Biology, 2, a001107.
    https://doi.org/10.1101/cshperspect.a001107

  17. 17. Strano, S., Dell’Orso, S., DiAgostino, S., et al. (2007) Mutant p53: An Oncogenic Transcription Factor. Oncogene, 26, 2212-2219.
    https://doi.org/10.1038/sj.onc.1210296

  18. 18. Gaiddon, C., Lokshin, M., Ahn, et al. (2001) A Subset of Tumor-Derived Mutant Forms of p53 Down-Regulate p63 and p73 through a Direct Interaction with the p53 Core Domain. Molecular and Cellular Biology, 21, 1874-1887.
    https://doi.org/10.1128/MCB.21.5.1874-1887.2001

  19. 19. Chang, T.C., Wentzel, E.A., Kent, O.A., et al. (2007) Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. Molecular Cell, 26, 745-752.
    https://doi.org/10.1016/j.molcel.2007.05.010

  20. 20. Tarasov, V., Jung, P., Verdoodt, B., et al. (2007) Differential Regulation of Micro-RNAs by p53 Revealed by Massively Parallel Sequencing: Mir-34a Is a p53 Target That Induces Apoptosis and G1-Arrest. Cell Cycle, 6, 1586-1593.
    https://doi.org/10.4161/cc.6.13.4436

  21. 21. Donzelli, S., Fontemaggi, G., Fazi, F., et al. (2012) MicroRNA-128-2 Targets the Transcriptional Repressor E2F5 Enhancing Mutant p53 Gain of Function. Cell Death & Differentiation, 19, 1038-1048.
    https://doi.org/10.1038/cdd.2011.190

  22. 22. Masciarelli, S., Fontemaggi, G., Di Agostino, S., et al. (2014) Gain-of-Function Mutant p53 Downregulates miR-223 Contributing to Chemoresistance of Cultured Tumor Cells. Oncogene, 33, 1601-1608.
    https://doi.org/10.1038/onc.2013.106

  23. 23. Dong, P., Karaayvaz, M., Jia, N., et al. (2013) Mutant p53 Gain-of-Function Induces Epithelial-Mesenchymal Transition through Modulation of the miR-130b-ZEB1 Axis. Oncogene, 32, 3286-3295.
    https://doi.org/10.1038/onc.2012.334

  24. 24. Wang, W., Cheng, B., Miao, L., et al. (2013) Mutant p53-R273H Gains New Function in Sustained Activation of EGFR Signaling via Suppressing miR-27a Expression. Cell Death & Disease, 4, e574.
    https://doi.org/10.1038/cddis.2013.97

  25. 25. Neilsen, P.M., Noll, J.E., Mattiske, S., et al. (2013) Mutant p53 Drives Invasion in Breast Tumors through Up-Regulation of miR-155. Oncogene, 32, 2992-3000.
    https://doi.org/10.1038/onc.2012.305

  26. 26. Siegel, R., Naishadham, D. and Jemal, A. (2013) Cancer Sstatistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11-30.
    https://doi.org/10.3322/caac.21166

  27. 27. Davidson, M.R., Gazdar, A.F. and Clarke, B.E. (2013) The Pivotal Role of Pathology in the Management of Lung Cancer. Journal of Thoracic Disease, 5, S463-S478.

  28. 28. VanderLaan, P.A., Rangachari, D., Mockus, S.M., et al. (2017) Mutations in TP53, PIK3CA, PTEN and Other Genes in EGFR Mutated Lung Cancers: Correlation with Clinical Outcomes. Lung Cancer, 106, 17-21.
    https://doi.org/10.1016/j.lungcan.2017.01.011

  29. 29. Molina-Vila, M.A., Bertran-Alamillo, J., Gasco, A., et al. (2014) Nondisruptive p53 Mutations Are Associated with Shorter Survival in Patients with Advanced Non-Small Cell Lung Cancer. Clinical Cancer Research, 20, 4647-4659.
    https://doi.org/10.1158/1078-0432.CCR-13-2391

  30. 30. Yu, H., Suzawa, K., Jordan, E.J., et al. (2018) Concurrent Alterations in EGFR-Mutant Lung Cancers Associated with Resistance to EGFR Kinase Inhibitors and Characterization of MTOR as a Mediator of Resistance. Clinical Cancer Research, 24, 3108-3118.
    https://doi.org/10.1158/1078-0432.CCR-17-2961

  31. 31. Xu, Y., Tong, X., Yan, J., et al. (2018) Short-Term Responders of Non-Small Cell Lung Cancer Patients to EGFR Tyrosine Kinase Inhibitors Display High Prevalence of TP53 Mutations and Primary Resistance Mechanisms. Translational Oncology, 11, 1364-1369.
    https://doi.org/10.1016/j.tranon.2018.08.010

  32. 32. Labbé, C., Cabanero, M., Korpanty, G.J., et al. (2017) Prognostic and Predictive Effects of TP53 Co-Mutation in Patients with EGFR-Mutated Non-Small Cell Lung Cancer (NSCLC). Lung Cancer, 111, 23-29.
    https://doi.org/10.1016/j.lungcan.2017.06.014

  33. 33. Jiao, X., Qin, B., You, P., et al. (2018) The Prognostic Value of TP53 and Its Correlation with EGFR Mutation in Advanced Non-Small Cell Lung Cancer, an Analysis Based on cBioPortal Data Base. Lung Cancer, 123, 70-75.
    https://doi.org/10.1016/j.lungcan.2018.07.003

  34. 34. Jin, K.R., Yun, J.C., Ryoo, B.Y., et al. (2007) p53 Enhances Gefitinib-Induced Growth Inhibition and Apoptosis by Regulation of FAS in Non-Small Cell Lung Cancer. Cancer Research, 67, 1163-1169.
    https://doi.org/10.1158/0008-5472.CAN-06-2037

  35. 35. Kim, G., Ouzounova, M., Quraishi, A.A., et al. (2015) SOCS3-Mediated Regulation of Inflammatory Cytokines in PTEN and p53 Inactivated Triple Negative Breast Cancer Model. Oncogene, 34, 671-680.
    https://doi.org/10.1038/onc.2014.4

  36. 36. Lee, J.K., Lee, J., Kim, S., et al. (2017) Clonal History and Genetic Predictors of Transformation into Small-Cell Carcinomas from Lung Adenocarcinomas. Journal of Clinical Oncology, 35, 3065-3074.
    https://doi.org/10.1200/JCO.2016.71.9096

  37. 37. Zitvogel, L. and Kroemer, G. (2015) Cancer. A p53-Regulated Immune Checkpoint Relevant to Cancer. Science, 349, 476-477.
    https://doi.org/10.1126/science.aac8475

  38. 38. Jiang, Z., Liu, Z., Li, M., et al. (2018) Immunogenomics Analysis Reveals That TP53 Mutations Inhibit Tumor Immunity in Gastric Cancer. Translational Oncology, 11, 1171-1187.
    https://doi.org/10.1016/j.tranon.2018.07.012

  39. 39. Xiao, W., Du, N., Huang, T., et al. (2018) TP53 Mutation as Potential Negative Predictor for Response of anti-CTLA-4 Therapy in Metastatic Melanoma. EBio Medicine, 32, 119-124.
    https://doi.org/10.1016/j.ebiom.2018.05.019

  40. 40. Dong, Z.Y., Zhong, W.Z., Zhang, X.C., et al. (2017) Potential Predictive Value of TP53 and KRAS Mutation Status for Response to PD-1 Blockade Immunotherapy in Lung Adenocar-Cinoma. Clinical Cancer Research, 23, 3012-3024.
    https://doi.org/10.1158/1078-0432.CCR-16-2554

  41. 41. Liu, Z., Jiang, Z., Gao, Y., et al. (2019) TP53 Mutations Promote Immunogenic Activity in Breast Cancer. Journal of Oncology, 2, 1-19.
    https://doi.org/10.1155/2019/5952836

  42. 42. Li, L., Li, M. and Wang, X. (2020) Cancer Type-Dependent Correlations between TP53 Mutations and Antitumor Immunity. DNA Repair, 24, 88.
    https://doi.org/10.1016/j.dnarep.2020.102785

  43. 43. Cortez, M.A., Ivan, C., Valdecanas, D., et al. (2016) PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 108, djv303.
    https://doi.org/10.1093/jnci/djv303

  44. 44. Ku, B.M., Bae, Y.H., Koh, J., et al. (2017) Mutational Status of TP53 Defines the Efficacy of Wee1 Inhibitor AZD1775 in KRAS-Mutant Non-Small Cell Lung Cancer. Oncotarget, 8, 67526-67537.
    https://doi.org/10.18632/oncotarget.18728

  45. 45. Lambert, J.M., Gorzov, P., Veprintsev, D.B., et al. (2009) PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain. Cancer Cell, 15, 376-388.
    https://doi.org/10.1016/j.ccr.2009.03.003

  46. 46. Peng, X., et al. (2013) APR-246/PRIMA-1MET Inhibits Thioredoxin Reductase 1 and Converts the Enzyme to a Dedicated NADPH Oxidase. Cell Death & Disease, 24, e881.
    https://doi.org/10.1038/cddis.2013.417

  47. 47. Ali, D., Mohammad, D.K., Mujahed, H., et al. (2016) Anti-Leukaemic Effects Induced by APR-246 Are Dependent on Induction of Oxidative Stress and the NFE2L2/HMOX1 Axis That Can Be Targeted by PI3K and mTOR Inhibitors in Acute Myeloid Leukaemia Cells. British Journal of Haematology, 174, 117-126.
    https://doi.org/10.1111/bjh.14036

  48. 48. Salim, K.Y., Maleki Vareki, S., Danter, W.R. and Koropatnick, J. (2016) COTI-2, a Novel Small Molecule That Is Active against Multiple Human Cancer Cell Lines in Vitro and in Vivo. Oncotarget, 7, 41363-41379.
    https://doi.org/10.18632/oncotarget.9133

  49. 49. Lindemann, A., Patel, A.A., Silver, N.L., et al. (2019) COTI-2, A Novel Thiosemicarbazone Derivative, Exhibits Antitumor Activity in HNSCC through p53-Dependent and Independent Mechanisms. Clinical Cancer Research, 25, 5650-566.
    https://doi.org/10.1158/1078-0432.CCR-19-0096

期刊菜单