﻿ 基于大数据技术的政府财政收入预测—以贵州省为例 Government Revenue Forecast Based on Big Data Technology—Taking Guizhou Province as an Example

Statistics and Application
Vol.05 No.04(2016), Article ID:19335,7 pages
10.12677/SA.2016.54040

Government Revenue Forecast Based on Big Data Technology

—Taking Guizhou Province as an Example

Man Luo, Qun Wang, Yiling Yang, Junlei Mei

Guizhou Education University, Guiyang Guizhou

Received: Nov. 29th, 2016; accepted: Dec. 12th, 2016; published: Dec. 23rd, 2016

ABSTRACT

In this paper, combined with the content and the structure characteristics of fiscal revenue in Guizhou, using the R software, the data were collected and analyzed. The key factors affecting the local fiscal revenue were found out. Also, using traditional time series analysis and multiple regression analysis method, we established a more complete local fiscal revenue forecast model to forecast the fiscal revenue of Guizhou province in 2015-2016.

Keywords:Multiple Regression Analysis, Holt Exponential Smoothing Prediction, Prediction Model

—以贵州省为例

1. 研究目的

2. 数据整理

2.1. 数据预处理

2.1.1. 缺失值处理

2.1.2. 数据标准化处理

3. 模型的建立与求解

3.1. 回归模型的建立

Table 1. Partial missing values of the original data

Table 2. Predicted value of missing value (100 million yuan)

(1)

(2)

(2)式中维变量的观测向量(响应变量)，是一个阶设计矩阵，其形式为

3.2. 回归模型的求解与分析

Figure 1. Scatter diagram

3.3. 回归模型的拟合优度和显著性检验

Figure 2. The results of regression analysis

Table 3. The main influencing factors of the total fiscal revenue in Guizhou Province

3.4. 模型诊断

3.5. 结果分析

Figure 3. Residual diagnostic chart

Figure 4. Normal diagnosis

Table 4. Total fiscal revenue of Guizhou Province in 2015-2016 (100 million yuan)

4. 模型的作用

5. 总结

2015年省级大学生创新培育项目(项目编号：201514223035)。

Government Revenue Forecast Based on Big Data Technology—Taking Guizhou Province as an Example[J]. 统计学与应用, 2016, 05(04): 373-379. http://dx.doi.org/10.12677/SA.2016.54040

1. 1. 王燕. 时间序列分析——基于R [M]. 北京: 中国人民出版社, 2015.

2. 2. 王国丽, 陈晓飞, 刘刊, 姜国勇. 回归分析在水科学中的应用综述[J]. 中国农村水利水电, 2004(11): 40-44.

3. 3. 韩仁月. 我国财政支出规模的影响因素研究[D]: [硕士学位论文]. 济南: 山东大学, 2008.