International Journal of Ecology
Vol.07 No.02(2018), Article ID:25192,31 pages
10.12677/IJE.2018.72014

The Macroscopic Characteristics of Distribution of Global Terrestrial Biota

—Biogeographical Regionalization Research III

Xiaocheng Shen1,2*, Yingdang Ren1, Qi Shen3, Zhixing You4, Xintao Liu1, Shujie Zhang2,Guanghua Wang1, Linlin Yang1, Chaohong Feng1, Xiaojing Ma1

1Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou Henan

2College of Life Sciences, Zhengzhou University, Zhengzhou Henan

3First Clinical College, Henan University of Traditional Chinese Medicine, Zhengzhou Henan

4Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing

Received: May 10th, 2018; accepted: May 23rd, 2018; published: May 30th, 2018

ABSTRACT

In order to analyze the distributional law of terrestrial organisms, we analyzed the global distribution pattern of animals, plants and microorganisms using multivariate similarity clustering analysis method, and gradually clarified and confirmed several macroscopic features of the biota distribution. The distribution of biological species is likely to be disconnected, but the change of the floristic or faunal composition between regions is continuous; the farther the distance, the greater the difference. The similarity of a geographical area is only highest with adjacent areas, and its clustering object can only be adjacent areas. This restrictive condition brings convenience for geographic regionalization; biological distribution is not balanced. The richer biodiversity areas can play a key role in the clustering analysis. Their cohesion and independence are the inner motive power of biological regional formation. Although a geographic area’s species diversity increases with the deepening of the research, its floristic or faunal composition is relatively stable, to ensure the stability of distributional pattern and measurability of biogeographical regionalization. Though different evolution periods between animals, plants and fungus, life form and manner of metabolism were different, their global distribution patterns were the same. This homogeneity will promote the reveal of biological distributional law and the development of biological geography.

Keywords:Biogeography, Regionalization, Cluster Analysis, Distributional Characteristics

世界生物分布的宏观特征

—生物地理区划研究之III

申效诚1,2*,任应党1,申 琪3,游志兴4,刘新涛1,张书杰2,王光华1,杨琳琳1,冯超红1, 马晓静1

1河南省农业科学院植物保护研究所,河南 郑州

2郑州大学生命科学学院,河南 郑州

3河南中医药大学第一临床医学院,河南 郑州

4中国科学院数学及系统科学研究院,北京

收稿日期:2018年5月10日;录用日期:2018年5月23日;发布日期:2018年5月30日

摘 要

为了解析陆生生物的分布规律,应用我们新提出的多元相似性聚类分析方法,对全球的动物、植物、菌物的分布格局进行分析,逐渐明晰并证实世界生物分布的几项宏观特征:生物物种的分布可能是间断的,但地区间区系组成的变化是连续的,距离愈远,变化愈大;一个地理区域只与相邻地区相似性最高,它的聚类对象只能是相邻地区,这种地域约束性为地理区划带来便利;生物分布的不均衡性使多样性丰富地区在聚类分析中发挥核心作用,它的凝聚力及独立性是生物分布区形成的内在动力;一个地理区域的物种多样性随着调查的深入不断增加,但它的区系构成是相对稳定的,这种稳定性保证了这个地区生物区系性质和地理区划的稳定性与可测性,是生物地理学科产生的基础;动物、植物和菌物虽然进化时期不同,生命形态及新陈代谢方式也不同,但它们在全球的分布格局是相同的,由生态因素对生物分布的这种同质性影响将会促进对生物分布规律的揭示和生物地理学科的发展。

关键词 :生物地理学,地理区划,聚类分析,分布特征

Copyright © 2018 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

世界1.49亿平方千米陆地上,生活着200多万种生物。它们以不同的生命形态遍布世界各个角落。陆块的漂移、山地的隆起、气候的变化、海洋的阻隔等影响着生物的繁衍与扩散,生物也以自身的进化与适应能力构建自己的分布格局。没有任何两种生物的分布区域完全相同,也没有任何两个地理区域的生物种类完全相同。对生物分布规律及形成机制的分析与总结,并进而进行地理分布区的划分是生物地理学的研究范畴。它既是人们保护生物多样性的重要基础学科,又是达到合理有效、永续利用自然资源的有效工具 [1] [2] [3]。

生物地理学由法国博物学家布丰1761年创立以来 [4]。19世纪,英国鸟类学家斯克莱特(P. Sclater)根据鸟类特别是雀形目Passeriformes的分布,英国动物学家华莱士(A. R. Wallace)主要根据哺乳动物的分布,共同奠定了动物地理学的基础,提出6界24亚界的动物地理区划方案 [5] [6]。德国植物学家洪堡(A. von Humboldt)于1805年奠基植物地理学后 [7] ,瑞士学者德康得勒(A. de Candolle)和德国学者恩格勒(A. Engler)根据有花植物的分布构建了植物地理学大厦 [8] [9]。后经人们修改 [10] [11] [12] [13] ,也形成了与动物不同的6界区划系统。他们这些19世纪的阐释为人们普遍接受并持续使用着 [14]。

人们的普遍接受并长期使用,自然说明它的合理内核。但也无须讳言,由定性方法得到的这些结论不可避免地在划分标准及分界线的确定上存在失衡之处。整个20世纪探索生物地理的脚步并未停止。人们一方面讨论早期学者们的历史功绩及存在问题 [15] [16] [17] [18] [19] ,另一方面积极尝试用定量分析的方法装备生物地理学 [20] - [29]。人们逐渐形成共识,数学的介入与支撑应是生物地理学发展的不可回避或逾越的重要途径。否则它是不可能真正成熟的 [30]。

进入21世纪,人们对生物地理区划的关注迅速高涨起来 [31] - [36]。用不同的方法对不同的生物类群分别提出7-14界的形形色色的、各不相同的地理区划方案 [37] - [47]。C.B. Cox提出建议,撤掉植物地理新设的好望角界及南极界,同时将古热带界分成非洲界及印度–太平洋界 [41]。吴征镒提出增设古地中海植物界和东亚植物界 [42]。S. Proches对蝙蝠的分布进行聚类分析,将世界分作10个地理区,并认为适用于动物地理和植物地理 [43]。H. Kreft用Simpson公式及UPGMA法将世界聚为7个界,除新设马达加斯加界以外,其它界的分界线也有所变动 [44]。B.G. Holt等同样用Simpson公式及UPGMA聚类方法对陆生哺乳动物、两栖动物、非海洋鸟类共20,000多个物种进行分析,把全世界分成11个界 [45]。而M. Rueda 同样对这些动物进行分析,认为不必修改华莱士方案 [46]。E.J. Defriez和D.C. Reuman共同论证了世界陆地植被变化的同步性(synchrony) [47]。

与热烈讨论的高等生物地理区划相比,低等生物非常冷清。虽然昆虫学家已有数百篇涉及昆虫地理学文献 [48] [49] [50]。但直至近20年,才陆续对昆虫的个别类群,如毛翅目、蚤目、广腰亚目、隐翅虫科、粉虱科、金龟科、蚁科昆虫进行分析,提出各自的地理区划意见 [51] - [58]。而微生物至今还没有人进行初步的尝试 [59] - [68]。

综观生物地理学两个半世纪的发展历程,① 还基本处于定性分析阶段。尚未与数学有效融合。原因是缺少令生物地理学者满意的数学工具,不能够真正进入定量分析阶段;② 分析对象只注重高等生物,很少顾及低等生物;③ 对分布规律的探讨还处在对个别类群、个别地域的描述、统计阶段,缺少高阶元、广区域的比较、分析,更没有宏观规律的揭示;④ 对分布格局形成机制的认知还比较模糊、零碎,缺乏系统化、整体性的整理。因此,目前生物地理区划研究呈现分散、孤立、机遇的状态,不能够进行有组织的、系统化的协作攻关。以致成为困扰生物地理学发展的幽灵 [69]。

我们在对多种定量分析方法进行尝试与比较后,提出一个新的相似性通用公式(Similarity general formula, SGF) [70] 和与之配套的多元相似性聚类分析法(Multivariate similarity clustering analysis method, MSCA) [71]。经过对不同地理区域、不同生物类别、不同分类阶元、不同生态类群的分析验证,均比传统方法能够得到快捷、准确、合理的分析结果 [72] - [79]。鉴于MSCA法的简便快捷,我们在对全球昆虫进行分析的基础上 [80] ,组织团队力量对世界范围内的陆生生物的分布格局进行分析。本文先行报告在大型分析中所逐渐感悟到的生物分布的几个宏观特征。

2. 材料和方法

2.1. 生物类群

世界生物共7界96门352纲1466目,约280万种 [81]。排除海洋种类、化石种类、藻类、病毒及原生生物,本研究涉及的生物类群包括动物、植物、真菌、细菌共4界33门99纲530目4922科169,153属2,139,974种(表1)。种类分布信息来源于生物分类学家整理的分类学专著或名录 [82] - [187] ,生物专业性网站整理的数据库资料 [188] - [250] ,也随时补充一些新发表的新种、新分布资料 [251] - [301]。本着提高分布资料的利用率及分析结果的清晰度,本研究以属级阶元作为分析的基础生物单元(basic biological units, BBU)。

2.2. 基础地理单元的划分

按照地形、气候等生态条件和生物分布资料的详略程度,本研究把全球陆地(除南极洲)划分为67个基础地理单元(basic geographical unit, BGU) (图1)。作为聚类分析与地理区划的基础。其中以平原为主的BGU有21个,以丘陵为主的BGU有11个,以山地为主的BGU有12个,以高原为主的BGU有11个,以荒漠为主的BGU有5个,岛屿型的BGU有7个。有27个BGU处在热带,有34个BGU地处温带,有6个BGU的地域跨入寒带。

01 北欧Northern Europe,02 西欧Western Europe,03 中欧Central Europe,04 南欧Southern Europe,05 东欧Eastern Europe,06 俄罗斯欧洲地区European Russia,11 中东Middle East,12 沙特阿拉伯Saudi Arabia,13 也门与阿曼Yemen and Oman,14 伊朗高原Plateau of Iran,15 中亚Central Asia,16 西西伯利亚Western Siberia,17 东西伯利亚Eastern Siberia,18 乌苏里地区Ussuri region,19 蒙古Mongolia,20 帕米尔高原Plateau of Pamir,21 中国东北Northeastern region of China,22 中国西北Northwestern region of China,23 中国青藏地区Qinghai-Xizang region of China,24 中国西南地区Southwestern region of China,25 华南地区Southern region of China,26 中国中东部Centre-eastern China,27 中国台湾Taiwan region of China,28 朝鲜半岛Korea Peninsula,29 日本Japan,31 喜马拉雅地区Himalayan region,32 印度与斯里兰卡Indian and Sri Lanka,33 缅甸Myanmar,34 中南半岛Indochina Peninsula,35 菲律宾Philippines,36 印度尼西亚Indonesia,37 新几内亚New Guinea,38 太平洋岛屿Islands of Pacific Ocean,41 北非Northern Africa,42 西非Western Africa,43 中非Central Africa,44 刚果河流域Reaches of Congo river,45 埃塞阿比亚地区Ethiopia region,46 坦桑尼亚地区Tanzania region,47 安哥拉地区Angola region,48 南非South Africa,49 马达加斯加Madagascar,51 西澳大利亚Western Australia,52 澳大利亚北部地区Northern Territory,53 南澳大利亚South Australia,54 昆士兰Queensland,55 新南威尔士New South Wales,56 维多利亚Victoria,57 塔斯马尼亚Tasmania,58 新西兰New Zealand,61 加拿大东部Eastern Canada,62 加拿大西部Western Canada,63 美国东部山地Mts. Eastern US,64 美国中部平原Plain Central US,65 美国中部丘陵Hills Central US,66 美国西部山地Mts. Weatern US,67 墨西哥Mexico,68 中美地区Central America region,69 加勒比海岛屿Caribbean Islands,71 委内瑞拉Venezuela,72 圭亚那高原Plateau Guyana,73 安第斯山脉北段Northern Mt. Andes,74 亚马孙平原Amazon Plain,75 巴西高原Plateau Brazil,76 玻利维亚Bolivia,77 阿根廷Argentina,78 安第斯山脉南段Southern Mt. Andes。

Figure 1. BGUs of the world

图1. 世界基础地理单元的划分

Table 1. Biodiversity of global terrestrial biota

表1. 全球陆生生物多样性

注:各生物类群数据为综合汇总本文所有参考资料种类信息而成。

2.3. 构建生物分布数据库

用微软Access构建数据库,将各个BGU作为各列,将各个BBU作为各行。将一个属内每种生物分布的行政区域记录转化为BGU记录并汇总为该属分布,录入数据库中,有分布记“1”,无分布不记。本文涉及的几类生物在各BGU的属数如表2

2.4. 聚类分析方法

前人提出的数十个相似性系数计算公式 [302] ,但都是只能计算两个地区间的相似性系数,我们提出的相似性通用公式突破了二元比较的束缚。它的定义是:多个地区间的相似性系数是参加分析的各个地区的共有种类的平均数占总种类的比例 [69]。相伴提出的还有相异性公式、相似性贡献率公式、相异性贡献率公式:

相似性通用公式(similarity genera formula, SGF):

S I n = H i / n S n = ( S i T i ) / n S n (1)

相异性通用公式(difference general formula, DGF):

D I n = 1 S I n = [ n T + ( H H i ) ] / n S (2)

相似性贡献率公式(contribution of the similarity, CSI):

C S I i = H i / H i (3)

相异性贡献率公式(contribution of the difference, DSI):

C D I i = ( n T i + H H i ) / ( n S H i ) (4)

式中,SIn是n个地理单元的相似性系数,Si,Hi和Ti分别是i地理单元的种类数、共有种类(common species)数、独有种类(unique species)数,且满足Hi = Si − Ti,Sn是n个地理单元的总种类数。计算时所需各个数值都可以很方便地从数据库的查询页面上获得。无论手工计算或计算机软件分析都非常方便快捷。

与SGF配套使用的多元相似性聚类分析法(MSCA)是任何组群的相似性系数都由参与分析的BGU原始数据直接计算,不受聚类顺序的限制。甚至可以先行计算67个BGU的总相似性系数。最后按相似性系数大小排列聚类图 [70]。总相似性系数、总相异性系数、各个BGU的相似性贡献率、相异性贡献率都是传统分析方法所没有的概念和无法计算的指标。

Table 2. The distribution of several groups biota in BGUs

表2. 几类生物在各BGU分布的属数

注:BGU基础地理单元:basic geographical unit;BGR基础分布记录:basic distributional record;BBU基础生物单元:basic biological unit。各BGU的属数为综合汇总所有参考文献的分布信息而成。

3. 结果与分析

3.1. 区系变化的连续性

生物种或属的分布有连续的,更有间断的。但不同地区间生物区系组成的变化是连续的,不是间断的。地理距离愈远,变化愈大。而不同方向上变化的速率是不同的。也即一个地区的生物区系,只与邻近地区关系密切,距离愈远,关系愈疏远。这种不均衡的连续性变化是开展生物地理研究,划分地理分布区的基础。中国如此,世界也如此。以中国各省区昆虫为例,陕西省昆虫有7934种,各省区与陕西的共有种类如图2

3.2. 地理条件的约束性

由于一个地理区域的生物区系,只与相邻地区关系最密切,地理距离愈远,关系愈疏远。所以一个特定地区只与邻近地区产生聚类关系(图3),而不能够与甚远的地区相聚,形成互不相连的“飞地”。这个特征使生物地理的聚类分析成为一种带约束的聚类(restrictive clustering)或称条件系统聚类(conditional hierarchical clustering),不是人们想象或期望中的“自由聚类”。这种约束性为软件分析带来很大的挑战,但也为手工计算带来便利,不必广泛地寻找、测试聚类伙伴,可以节省80%以上的无效劳动时间。其它实用聚类分析项目也会遇到约束性问题。这些形形色色的限制条件是聚类分析由理论走向实用的将常遇到又必须解决的关键问题之一。

3.3. 核心区域的凝聚力与独立性

受历史条件、自然条件、适应能力、以及人为因素的影响,生物分布不是均匀的。存在着若干个多样性丰富的核心区域。核心区域以其大量的共有类群(common group)凝聚邻近区域形成自己的分布区,又以自己的特有类群(endemic group)或独有类群(unique group)标志与其它分布区的独立性。聚集力量相等的地方是分布区的分界线。这种生物分布的集中性是分布区形成的内在原因。生物地理区划实际上是用聚类分析的定量方法对这些核心区域的凝聚力与独立性进行评估,准确地界定各个分布区域的地理范围。如世界共有昆虫104,344属,有具体分布记录的58,357属在0.300的相似性水平上聚为a~t共20个小单元群(small unit crowd, SUC),在0.200时聚为A~G共7个大单元群(large unit crowd, LUC)。表3是各个BGU的相似性贡献率和相异性贡献率,显然04、26、36、48、54、68、73号BGU是各大单元群的核心区域,对分布区的形成具有关键作用。

注:两个地区间的共有种类数表明关系的亲密程度。新疆、青海、西藏、海南没有四川、甘肃、河南、湖北与陕西关系密切。

Figure 2. The common insect species of every province with Shaanxi

图2. 中国各省区与陕西省(★)共有昆虫种类数

Figure 3. The similarity coefficient of animal genera of some BGUs with southern Europe

图3. 一些BGUs与南欧地理单元(★)的动物属级相似性系数

Table 3. The contribution of similarity and difference of every BGU

表3. 各个BGU的昆虫属级相似性贡献率与相异性贡献率

Note: LUC: large unit crowd; SUC: small unit crowd; BGU: basic geographical unit; CSI: contribution of the similarity; CDI: contribution of the difference.

3.4. 区系构成的稳定性

一个相对独立的地理区域的生物区系是各种环境因素长期作用的结果,其种类是随着调查研究的深入在不断增加的,但区系构成又是相对稳定的。这种稳定性保证了这个地区生物区系性质和地理区划的稳定性与可测性,是生物地理学科产生的基础。不同时期的构成是稳定的,不同生物类群的构成也是稳定的。如中国河南省目前有昆虫8422种,其中中国种类最多,其次是古北种类,再次是东洋种类,广布种类最少。而该省在1993年以前有昆虫3128种,也是中国种类最多,依次是古北种类、东洋种类及广布种类。中国目前的93,661种昆虫与上世纪40年代的20,069种也是如此。目前世界哺乳动物5412种与1876年前华莱士时代已知哺乳动物2034种的分布格局也是相同的,分别在0.120和0.200时聚成7个单元群,各群的组成也相同。只有15、69号BGU在相邻群间移动,不违背地理学原则(表4图4图5)。

3.5. 环境对生物分布影响的同质性、积累性

在生物漫长的进化过程中,地球板块分分合合,气候不断地冷热干湿变化,生物类群的诞生与灭绝,逐渐形成现在的分布格局。虽然它们的出现时间不同,经历的历史变迁不同,但现生生物的属级阶元大都出现在新生代,它们都经受了迄今6700万年的新生代的环境影响,决定了它们的总体分布格局应该是相同的,也就表明环境对各类生物影响的同质性。这种同质性是我们创建世界生物地理区划体系的理论基础,可以使研究不同生物类群的学者不再单打独斗,可以联合起来共同谱写生物地理的新篇章。图6~9是脊索动物门、节肢动物门、双子叶植物门、子囊菌门四类主要生物的聚类结果。而更高或更低的分类阶元的分析结果也表现出同样明显的同质性特征(表5)。

但由于各类生物出现的历史时期不同,早分化的类群比晚分化的类群要多留下些生存信息于后代,主要体现在总相似性系数(general similarity coefficient, GSC)和平均分布域(average distributional territory, ADT)的差异,微生物出现最早,分布最广,GSC最高,为0.125,ADT最广,为4.80;植物次之,GSC为0.112,ADT为4.63;动物最晚,GSC为0.061,ADT为2.50。这是历史环境影响的积累性(表5)。

4. 结论与讨论

1) 本研究应用MSCA法成功地分析了世界的动物、植物和微生物,不仅得到层次清晰、结构合理、符合学科要求的聚类结果,还能获得传统方法无法计算的多项指标,如总相似性系数、总相异性系数、相似性贡献率、相异性贡献率等。再次证明MSCA的数据挖掘能力明显优于传统聚类方法。

Figure 4. Clustering tree of species of mammal

图4. 哺乳动物聚类图

Figure 5. Clustering tree of mammal before 1876

图5. 1876年前哺乳动物聚类图

Figure 6. Dendrogram of chordata

图6. 脊索动物聚类图

Figure 7. Dendrogram of arthropoda

图7. 节肢动物聚类图

Figure 8. Dendrogram of magnoliophyta

图8. 双子叶植物聚类图

Figure 9. Dendrogram of ascomycota

图9. 子囊菌聚类图

Table 4. The distribution of mammal in every BGU

表4. 不同历史时期哺乳动物在各个BGU的分布

Table 5. Clustering results of every biota groups

表5. 各生物类群的聚类分析结果

Note: BBU: basic biological unit; GSC: general similarity coefficient: ADT: average distributional territory; LUC: large unit crowd; SUC: small unit crowd.

2) 本研究所提出的几项生物分布特征从宏观角度解析了生物分布区形成的基础、原因以及进行地理区划应遵循的原则,为进一步总结生物分布规律、阐释形成机制提供了探讨途径和事实依据,丰富了生物地理学的理论内容。

3) 虽然人们对动、植物分布格局的一致性早有预期,但一直无从证实。本研究首次从多维度证明生态条件对生物分布格局影响的同质性将促进生物地理学科的发展,使生物地理区划这一游走在象牙塔里的幽灵变为人们得心应手的实用工具。

致谢

我们感谢世界各地学者,如英国伦敦国王学院C. Barry Cox教授,德国格丁根大学Holger Kreft教授, 美国克莱姆森大学John C. Morse教授,美国犹他大学Daniel R. Gustafsson教授,斯洛伐克科学院地理研究所Peter Vrsansky教授,法国医学院Jean-Claude Beaucournu教授,英国牛津大学Robert J. Whittaker教授,捷克兽医及制药大学Tomas Najer教授,法国巴黎大学Maram Caesar 教授,巴西圣保罗大学Michel P. Valim教授,美国加利福尼亚州州立大学Miklos D.F. Udvardy教授,德国格赖夫斯瓦尔德大学Nikki H.A. Dagamac教授,爱沙尼亚塔尔图大学Leho Tedersoo教授,美国新墨西哥大学Jennifer A. Rudgers 教授,德国约翰古登堡大学Janine Fröhlich-Nowoisky教授,美国加利福尼亚州立大学欧文分校Kathleen K. Treseder教授,瑞士洛桑大学Antoine Guisan教授,澳大利亚维多利亚博物馆Kevin C. Rowe教授,老挝国立大学Daosavanh Sanamxay教授,泰国宋卡王子大学Pipat Soisook教授,巴西戈亚斯联邦大学M.V. Cianciaruso教授,匈牙利自然历史博物馆Gabor Csorba教授,巴西帕拉伊巴联邦大学Anderson Feijo教授,墨西哥国立大学Tania Escalante博士,巴西国立癌症研究所Cibele R. Bonvicino教授,智利康塞普西翁大学Daniel González-Acuñad教授等,或赠送文献,或修饰文稿,或深入讨论,或提出建议。

基金项目

河南省重点实验室建设专项(112300413221);河南省基础与前沿研究计划项目(082300430370)。

文章引用

申效诚,任应党,申 琪,游志兴,刘新涛,张书杰,王光华,杨琳琳,冯超红,马晓静. 世界生物分布的宏观特征—生物地理区划研究之III
The Macroscopic Characteristics of Distribution of Global Terrestrial Biota—Biogeographical Regionalization Research III[J]. 世界生态学, 2018, 07(02): 98-128. https://doi.org/10.12677/IJE.2018.72014

参考文献

  1. 1. Crisp, M.D., et al. (2009) Phylogenetic Biome Conservatism on a Global Scale. Nature, 458, 754-756. https://doi.org/10.1038/nature07764

  2. 2. Ladle, R.J. and Whittaker, R.J. (2011) Conservation Biogeography. Wiley-Blackwell, Chichester. https://doi.org/10.1002/9781444390001

  3. 3. Lomolino, M.V., Riddle, B.R., Whittaker, R.J. and Brown, J.H. (2010) Biogeography. Fourth Edition, Sinauer Associates, Sunderland.

  4. 4. Buffon, G. (1761) Histoire Natyrelle. Academic Francaise, Paris.

  5. 5. Sclater, P.L. (1858) On the General Geographical Distribution of the Members of the Class Aves. Journal of the Proceedings of the Linnean Society, 2, 130-145. https://doi.org/10.1111/j.1096-3642.1858.tb02549.x

  6. 6. Wallace, A.R. (1876) The Geographical Distribution of Animals. Cambridge Univ. Press, Cambridge.

  7. 7. Humboldt, A.V. and Bonplad, A. (1805) Essai sur la Geographie des Plantes. Levrault, Schoell, Paris.

  8. 8. De Candolle, A. (1820) Essai elementaire de geographie botanique. Dictionnaire des Sciences Naturelles, Vol. 18, Levrault, Strasbourg.

  9. 9. Engler, A. (1879) Versuch einer Entwicklungsgeschichte der Pflanzenwelt. Engelmann, Leipzig.

  10. 10. Diels, L. (1908) Pflanzengeographie. Leipzig.

  11. 11. Good, R. (1947) The Geography of the Flowering Plants. Longman, London.

  12. 12. Drude, O. (1902). Der Hercynische Florenbezirk: Grundzuge der Pflenzenverbreitung. In: Engler, A. and Drude, O., Eds., Die Vegetation der Erde, Engelmann, Leipzig, 6.

  13. 13. Takhtajan, A. (1978) Floristic Regions of the World. University of California Press, Oakland.

  14. 14. Cox, C.B. and Moore, P.D. (2005) Biogeography: An Ecological and Evolutionary Approach. Seventh Edition, Blackwell Publishing Ltd., Hoboken.

  15. 15. Weber, M. (1902) Der Indo-Australische Archipel und die Geschichte Seiner Tierwelt. Gustav Fischer Verlag, Jena.

  16. 16. Mayr, E. (1944) Wallace’s Line in the Light of Recent Zoogeographic Studies. The Quarterly Review of Biology, 19, 1-14. https://doi.org/10.1086/394684

  17. 17. Paulian, R. (1961) Le zoogeographie de Madagascar et des iles voisines. Faune de Madagascar, XIII. Inst. Rech. Sci. Tananarive-Tsimbazaza.

  18. 18. Holloway, J.D. and Jardine, N. (1968) Two Approaches to Zoogeography: A Study Based on the Distributions of Butterflies, Birds and Bats in the Indo-Australian Area. Proceedings of the Linnean Society of London, 179, 153-188. https://doi.org/10.1111/j.1095-8312.1968.tb00975.x

  19. 19. Simpson, G.G. (1977) Too Many Lines: The Limits of the Oriental and Australian Zoogeographic Regions. Proceedings of the American Philosophical Society, 121, 107-120.

  20. 20. Jaccard, P. (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547-579.

  21. 21. Czekanowski, J. (1913) Zarys method statystycznych w zastosowaniu do antropologii. Towarzystwo Naukowe Warszawskie, Warszawa.

  22. 22. Szymkiewicz, D. (1934) Une contribution statistique a la geigraphie floristique. Acta Societatis Botanicorum Poloniae, 11, 3.

  23. 23. Simpson, G.G. (1943) Mammals and the Nature Continents. American Journal of Science, 241, 1-31. https://doi.org/10.2475/ajs.241.1.1

  24. 24. Sørensen, T. (1948) A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Centent and Its Application to Analysis of the Vegetation on Danish Commons. D Kgl Danske Vidensk Selsk Biol Skr, 5, 1-34.

  25. 25. Socal, R.R. and Michener, C.D. (1958) A Statistical Method for Evaluating Systematic Relationship. The University of Kansas Science Bulletin, 38, 1409-1438.

  26. 26. Ward, J.H. (1963) Heirarchical Grouping to Optimise an Objective Function. Journal of the American Statistical Association, 58, 236-244. https://doi.org/10.1080/01621459.1963.10500845

  27. 27. Kruskal, J.B. (1964) Nonmetric Multidimensional Scaling: A Numerical Method. Psychometrika, 29, 115-129. https://doi.org/10.1007/BF02289694

  28. 28. Mantel, N. (1967) The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27, 209.

  29. 29. Udvardy, M.D.F. (1975) A Classification of the Biogeographical Provinces of the World. IUCN Occasional Paper No. 18, 1-48.

  30. 30. Committee on Mathematical Sciences Research for DOE’s Computational Biology, et al. (2005) Mathematics and 21st Century Biology. National Academies Press, Washington DC.

  31. 31. Morrone, J.J. (2002) Biogeographical Regions under Track and Cladistic Scrutiny. Journal of Biogeography, 29, 49-152. https://doi.org/10.1046/j.1365-2699.2002.00662.x

  32. 32. Brown, J.H., Lomolino, M.V. and Sax, D. (2004) Foundations of Biogeography. Chicago University Press, Chicago.

  33. 33. Mackey, B.G., Berry, S.L. and Brown, T. (2008) Reconciling Approaches to Biogeographical Regionalization: A Systematic and Generic Framework Examined with a Case Study of the Australian Continent. Journal of Biogeography, 35, 213-229. https://doi.org/10.1111/j.1365-2699.2007.01822.x

  34. 34. Smith, C.H. and Beccaloni, G. (2011) Natural Selection and Beyond: The Intellectual Legacy of Alfred Russel Wallace. Oxford University Press, Oxford.

  35. 35. Carstensen, D.W., Dalsgaard, B., Svenning J.-C., et al. (2012) Biogeographical Modules and Island Roles: A Comparison of Wallacea and the West Indies. Journal of Biogeography, 39, 739-749. https://doi.org/10.1111/j.1365-2699.2011.02628.x

  36. 36. Whittaker, R.J., Riddle, B.R., Hawkins, B.A. and Ladle, R.J. (2013) The Geographical Distribution of Life and the Problem of Regionalization: 100 Years after Alfred Russel Wallace. Journal of Biogrography, 40, 2209-2214. https://doi.org/10.1111/jbi.12235

  37. 37. Olson, D.M., et al. (2001) Terrestrial Ecoregions of the Worlds: A New Map of Life on Earth. Bioscience, 51, 933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

  38. 38. Balian, E.V., Leveque, C., Segers, H. and Martens, K. (2008) Freshwater Animal Diversity Assessment. Hydrobiologia, 595, 1-637. https://doi.org/10.1007/978-1-4020-8259-7

  39. 39. Procheş, Ş. and Ramdhani, S. (2012) The World’s Zoogeographical Regions Confirmed by Cross-Taxon Analyses. Bioscience, 62, 260-270. https://doi.org/10.1525/bio.2012.62.3.7

  40. 40. Escalante, T. (2017) A Natural Regionalization of the World Based on Primary Biogeographic Homology of Terrestrial Mammals. Biological Journal of the Linnean Society, 120, 349-362.

  41. 41. Cox, C.B. (2001) The Biogeographic Regions Reconsidered. Journal of Biogeography, 28, 511-523. https://doi.org/10.1046/j.1365-2699.2001.00566.x

  42. 42. 吴征镒, 等. 中国种子植物区系地理[M]. 北京: 科学出版社, 2011.

  43. 43. Procheş, Ş. (2005) The World’s Biogeographical Regions: Cluster Analyses Based on Bat Distributions. Journal of Biogeography, 32, 607-614. https://doi.org/10.1111/j.1365-2699.2004.01186.x

  44. 44. Kreft, H. and Jetz, W. (2010) A Framework for Delineating Biogeographical Regions Based on Species Distributions. Journal Biogeography, 37, 2029-2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x

  45. 45. Holt, B.G., et al. (2013) An Update of Wallace’s Zoogeographic Regions of the World. Science, 339, 74-78. https://doi.org/10.1126/science.1228282

  46. 46. Rueda, M., Rodríguez, M.Á. and Hawkins, B.A. (2013) Identifying Global Zoogeographical Regions: Lessons from Wallace. Journal of Biogeography, 40, 2215-2225. https://doi.org/10.1111/jbi.12214

  47. 47. Defriez, E.J. and Reuman, D.C. (2017) A Global Geography of Synchrony for Terrestrial Vegetation. Global Ecology and Biogeography, 26, 878-888. https://doi.org/10.1111/geb.12595

  48. 48. Gressitt, J.L. (1958) Zoogeography of Insects. Annual Review of Entomology, 3, 207-230. https://doi.org/10.1146/annurev.en.03.010158.001231

  49. 49. Gressitt, J.L. (1974) Insect Geography. Annual Review of Entomology, 19, 293-321. https://doi.org/10.1146/annurev.en.19.010174.001453

  50. 50. Munroe, E. (1965) Zoogeography of Insect and Allied Groups. Annual Review of Entomology, 10, 325-344. https://doi.org/10.1146/annurev.en.10.010165.001545

  51. 51. Bolton, B. (1995) A Taxonomic and Zoogeographical Census of the Extant Ant Taxa (Hymenoptera: Formicidae). Journal of Natural History, 29, 1037-1056. https://doi.org/10.1080/00222939500770411

  52. 52. Herman, L.H. and Ales, S. (2001) Catalog of the Staphylinidae (Insecta: Coleoptera), 1758 to the End of the Second Millennium. Vol. I-Vll. Bulletin of the American Museum of Natural History, No. 264, 1-82. https://doi.org/10.1206/0003-0090(2001)264<0003:NCITSI>2.0.CO;2

  53. 53. Davis, A.L.V., Scholtz, C.H. and Philips, T.K. (2002) Historical Biogeography of Scarabaeine Dung Beetles. Journal of Biogeography, 29, 1217-1256. https://doi.org/10.1046/j.1365-2699.2002.00776.x

  54. 54. Evans, G.A. (2007) The Whiteflies (Hemiptera: Aleyrodidae) of the World and Their Host Plants and Natural Enemies. 1-708. http://keys.lucidcentral.org/keys/v3/whitefly/PDF_PwP%20ETC/world-whitefly-catalog-Evans.pdf

  55. 55. De Moor, F.C. and Ivannov, V.D. (2008) Global Diversity of Caddisflies (Trichoptera: Insecta) in Freshwater. Hydrobiologia, 595, 393-407. https://doi.org/10.1007/s10750-007-9113-2

  56. 56. Taeger, A., Blank, S.M. and Liston, A.D. (2010) World Catalog of Symphyta (Hymenoptera). Zootaxa, 2580, 1-1064.

  57. 57. Morse, J.C., Barnard, P.C., Holzenthal, K.W., et al. (2011) Trichoptera World Checklist. http://entweb.sites.clemson.edu/database/trichopt/

  58. 58. Vashchonok, V. and Medvedev, S. (2013) Fleas (Siphonaptera). http://www.zin.ru/Animalia/Siphonaptera

  59. 59. Dagamac, N.H.A., Novozhilov, Y.K., Stephenson, S.L., et al. (2017) Biogeographical Assessment of Myxomycete Assemblages from Neotropical and Asian Palaeotropical Forests. Journal of Biogeography, 44, 1524-1536. https://doi.org/10.1111/jbi.12985

  60. 60. Fröhlich-Nowoisky, J., Burrows, S.M., Xie, Z. and Engling, G. (2012) Biogeography in the Air: Fungal Diversity over Land and Oceans. Biogeosciences, 9, 1125-1136. https://doi.org/10.5194/bg-9-1125-2012

  61. 61. Jumpponen, A., Herrera, J., Porras-Alfaro, A. and Rudgers, J. (2017) Biogeography of Root-Associated Fungal Endophytes. In: Tedersoo, L., Ed., Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis), Vol. 230, Springer, Cham, 195-222. https://doi.org/10.1007/978-3-319-56363-3_10

  62. 62. Kivlin, S.N., Lynn, J.S., Kazenel, M.R., Beals, K.K. and Rudgers, J.A. (2017) Biogeography of Plant-Associated Fungal Symbionts in Mountain Ecosystems: A Meta-Analysis. Diversity and Distributions, 23, 1067-1077. https://doi.org/10.1111/ddi.12595

  63. 63. Lumbsch, H.T., Buchananb, P.K., May, T.W. and Mueller, G.M. (2008) Phylogeography and Biogeography of Fungi. Mycological Research, 112, 423-424. https://doi.org/10.1016/j.mycres.2008.02.002

  64. 64. Peay, K.G., Bidartondo, M.I. and Arnold, A.E. (2010) Not Every Fungus Is Everywhere: Scaling to the Biogeography of Fungal-Plant Interactions across Roots, Shoots and Ecosystems. New Phytologist, 185, 878-882. https://doi.org/10.1111/j.1469-8137.2009.03158.x

  65. 65. Peay, K.G., Kennedy, P.G. and Talbot, J.M. (2016) Dimensions of Biodiversity in the Earth Mycobiome. Nature Reviews Microbiology, 14, 434-447. https://doi.org/10.1038/nrmicro.2016.59

  66. 66. Sánchez-Ramírez, S., Wilson, A.W. and Ryberg, M. (2017) Overview of Phylogenetic Approaches to Mycorrhizal Biogeography, Diversity and Evolution. In: Tedersoo, L., Ed., Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis), Vol. 230, Springer, Cham, 1-37. https://doi.org/10.1007/978-3-319-56363-3_1

  67. 67. Tedersoo, L., Bahram, M., Põlme, S., et al. (2014) Global Diversity and Geography of Soil Fungi. Science, 346, Article ID: 1256688. https://doi.org/10.1126/science.1256688

  68. 68. Treseder, K.K., Maltz, M.R., Hawkins, B.A., et al. (2014) Evolutionary Histories of Soil Fungi Are Reflected in Their Large-Scale Biogeography. Ecology Letters, 17, 1086-1093. https://doi.org/10.1111/ele.12311

  69. 69. Morrone, J.J. (2018) The Spectre of Biogeographical Regionalization. Journal of Biogeography, 45, 282-288. https://doi.org/10.1111/jbi.13135

  70. 70. 申效诚, 王爱萍. 昆虫区系多元相似性的简便计算方法及其贡献率[J]. 河南农业科学, 2008(7): 67-69.

  71. 71. 申效诚, 孙浩, 赵华东. 昆虫区系多元相似性分析方法[J]. 生态学报, 2008, 28: 849-854.

  72. 72. 申琪. 中国医学昆虫的多元相似性聚类分析[J]. 寄生虫与医学昆虫学报, 2014, 21: 165-171.

  73. 73. 申效诚, 孙浩, 马晓静. 中国40000种昆虫蜘蛛区系的多元相似性聚类分析[J]. 生命科学杂志, 2010, 4(2): 35-40.

  74. 74. 申效诚, 任应党, 王爱萍, 等. 河南昆虫、蜘蛛、蜱螨地理分布的多元相似性聚类分析[J]. 生态学报, 2010, 30: 4416-4426.

  75. 75. 申效诚, 刘新涛, 任应党, 申琪, 刘晓光, 张书杰. 中国昆虫区系的多元相似性分析及地理区划[J]. 昆虫学报, 2010, 56: 896-906.

  76. 76. 申效诚, 张抱石, 张峰, 刘新涛. 世界蜘蛛的分布及多元相似性分析[J]. 生态学报, 2013, 33: 6795-6802.

  77. 77. 申效诚, 任应党, 牛瑶. 河南昆虫志区系及分布[M]. 北京: 科学出版社, 2014.

  78. 78. 申效诚, 等. 中国昆虫地理[M]. 郑州: 河南科学技术出版社, 2015.

  79. 79. 刘新涛, 刘晓光, 申琪, 等. 合并与不合并——相似性聚类分析方法的比较[J]. 生态学报, 2013, 33: 3480-3487.

  80. 80. 申效诚, 等. 世界昆虫地理[M]. 郑州: 河南科学技术出版社, 2018.

  81. 81. Ruggiero, M.A., Gordon, D.P., Orrell, T.M., et al. (2015) A Higher Level Classification of All Living Organisms. PLoS ONE, 10, e0119248. https://doi.org/10.1371/journal.pone.0119248

  82. 82. Borrow, N. and Demey, R. (2004) Field Guide to the Birds of Western Africa. Christopher Helm, London, 510.

  83. 83. Cannon, P.F. and Kirk, P.M. (2007) Fungal Families of the World. CABI Bioscience, Wallingford. https://doi.org/10.1079/9780851998275.0000

  84. 84. Cleere, N. (2010) Nightjars, Potoos, Frogmouths, Oilbird and Owlet-Nightjars of the World. WildGuides Ltd., Hampshire, 464.

  85. 85. Creuwels, J., Pieterse, S. and Kleukers, R. (2016) Checklist Dutch Species Register—Nederlands Soortenregister. Naturalis Biodiversity Center.

  86. 86. Dai, D.Q., Phookamsak, R., Wijayawardene, N.N., et al. (2017) Bambusicolous Fungi. Fungal Diversity, 82, 1-105. https://doi.org/10.1007/s13225-016-0367-8

  87. 87. Dämmrich, F. (2016) Taxon List of Fungi and Fungal-Like Organisms from Germany Compiled by the DGfM. Staatliche Naturwissenschaftliche Sammlungen Bayerns.

  88. 88. Del Hoyo, J., Elliot, A., Sargatal, J. and Christie, D.A. (1992-2009) Handbook of the Birds of the World. Vol. 1-14, Lynx Edicions, Barcelona, 10783.

  89. 89. Durden, L.A. and Musser, G.G. (1994) The Sucking Lice (Insecta: Anoplura) of the World: A Taxonomic Checklist with Records of Mammalian Host and Geographical Distributions. American Museum of Natural History.

  90. 90. Eriksson, O., Baral, H.-O., Currah, R.S., et al. (2001) Outline of Ascomycota. Myconet, 7, 1-88.

  91. 91. Estrada, T.D., Rebollo, C. and Estrada, T.D. (2015) Occurrences in SinBIOTA. Programa BIOTA/FAPESP, The Virtual Institute of Biodiversity.

  92. 92. Evenhuis, N.L. (2002) Catalog of the Mythicomyiidae of the World (Insect: Diptera). Bishop Museum Press, Honolulu.

  93. 93. Foottit, R.G. and Adler, P.H. (2009) Insect Biodiversity. Blackwell Publishing Ltd., Hoboken. https://doi.org/10.1002/9781444308211

  94. 94. Fritz, S.A. and Rahbek, C. (2012) Global Patterns of Amphibian Phylogenetic Diversity. Journal of Biogeography, 39, 1373-1382. https://doi.org/10.1111/j.1365-2699.2012.02757.x

  95. 95. Gaimari, S.D. and Mathis, W.N. (2011) World Catalog and Conspectus on the Family Odiniidae (Diptera: Schizophora). MYIA, 12, 291-339.

  96. 96. Ginns, J. and Lefebvre, M.N.L. (1993) Lignicolous Corticioid Fungi (Basidiomycota) of North America. Systematics, Distribution, and Ecology. Mycological Society of America, Mycologia Memoir, No. 19.

  97. 97. Halling, R.E. and Mueller, G.M. (2005) Common Mushrooms of the Talamanca Mountains, Costa Rica. Memoirs of the New York Botanical Garden, Vol. 90, New York Botanical Garden, New York, 1-195.

  98. 98. Heraty, J.M. (2002) A Revision of the Genera of Eucharitidae (Hymenoptera: Chalcidoidea) of the World. American Entomological Institute, Gainesville.

  99. 99. Higgins, P.J., et al. (1996-2006) Handbook of Australian, New Zealand & Antarctic Birds. Volume 3-7, Snipe to Pigeons. Oxford University Press, Melbourne, 6754.

  100. 100. Hilty, S.L. (2003) Birds of Venezuela. Christopher Helm, London, 878.

  101. 101. Hyde, K.D., Hongsanan, S., Jeewon, R., et al. (2016) Fungal Diversity Notes 367-490: Taxonomic and Phylogenetic Contributions to Fungal Taxa. Fungal Diversity, 80, 1-270. https://doi.org/10.1007/s13225-016-0373-x

  102. 102. Hyde, K.D., Jones, E.B.G., Liu, J.K., Ariyawansa, H., et al. (2013) Families of Dothideomycetes. Fungal Diversity, 63, 1-313. https://doi.org/10.1007/s13225-013-0263-4

  103. 103. Jayasiri, S.C., Hyde, K.D., Abd-Elsalam, K.A., et al. (2015) The Faces of Fungi Database: Fungal Names Linked with Morphology, Molecular and Human Attributes. Fungal Diversity, 74, 18-357. https://doi.org/10.1007/s13225-015-0351-8

  104. 104. Kirk, P.M. (2017) Fungal Records Database of Britain and Ireland. British Mycological Society, London.

  105. 105. Klazenga, N. (2014) Australia’s Virtual Herbarium. Council of Heads of Australasian Herbaria, Canberra.

  106. 106. Kociecki, D. (2007) IBB Bacterial Database. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw.

  107. 107. Krishna, K., Grimaldi, D.A., Krishna, V., et al. (2013) Treatise on the Isoptera of the World. Vol. 1-7, American Mu-seum of Natural History, New York.

  108. 108. Læssøe, T., Clausen, J.H., Petersen, J.H., Frøslev, T. and Jeppesen, T.S. (2007) Danish Mycological Society Fungal Records Database. Danish Mycological Society.

  109. 109. Lee, O. (2012) University of British Columbia Herbarium (UBC)—Fungi Collection. University of British Columbia, Vancouver.

  110. 110. Lee, H.B., Mun, H.Y., Nguyen, T.T.T., Kim, J.C. and Stone, J.K. (2016) Abieticola koreana gen. et sp. nov., a Griseofulvin-Producing Endophytic Xylariaceous Ascomycete from Korea. Mycotaxon, 131, 749-764. https://doi.org/10.5248/131.749

  111. 111. Lienhard, C. and Smithers, C.N. (2002) Psocoptera (Insecta)—World Catalogue and Bib-liography. Natural History Museum of the City of Geneva, Geneva.

  112. 112. Liu, J.K., Hyde, K.D., Jones, E.B.G., et al. (2015) Fungal Diversity Notes 1-110: Taxonomic and Phylogenetic Contributions to Fungal Species. Fungal Diversity, 72, 1-197. https://doi.org/10.1007/s13225-015-0324-y

  113. 113. Lumbsch, H.T. and Huhndorf, S.M. (2010) Myconet Volume 14 Part One. Outline of Ascomycota-2009. Fieldiana Life and Earth Sciences, 1, 1-64. https://doi.org/10.3158/1557.1

  114. 114. Maddison, D. and Remsen, D. (2011) Tree of Life Web Project Classification. The Tree of Life Web Project.

  115. 115. Maharachchikumbura, S.S.N., Hyde, K.D., Jones, E.B.G., et al. (2016) Families of Sordariomycetes. Fungal Diversity, 79, 1-317. https://doi.org/10.1007/s13225-016-0369-6

  116. 116. Melechin, A. and Davydov, D. (2016) Specimens of Cyanoprocaryotes Herba-rium KPABG. Polar-Alpine Botanical Garden-Institute of N.A. Avrorin KSC RAS.

  117. 117. Myers, S. (2009) Birds of Borneo. Brunei, Sabah, Sarawak, and Kalimantan. Princeton University Press, Princeton, 271.

  118. 118. Ohkuma, M. (2012) Japan Collection of Micro-organisms. RIKEN BioResource Center, National Institute of Genetics, ROIS, Mishima-shi.

  119. 119. Pando, F. (2011) Vernacular Names of Iberian Fungi in Spain. GBIF-Spain.

  120. 120. Poole, R.W. (1989) Lepidopterorum Catalogus. Fascicle 118 Noctuidae. Flora & Fauna Publications, New York.

  121. 121. Price, R.D., Hellenthal, R.A., Palma, R.L., Johnson, K.P. and Clayton, D.H. (2003) The Chewing Lice. World Checklist and Biological Overview. Illinois Natural History Survey, Special Publication 24, 501.

  122. 122. Prins, W.D. Prins, J.D. (2005) World Catalogue of Insects. Volume 6 Gracillariidae (Lepidoptera), Apollo Books, Stenstrup.

  123. 123. Reeder, D.M., Helgen, K.M. and Wilson, D.E. (2007) Global Trends and Biases in New Mammal Species Discoveries. Occasional Papers, Museum of Texas Tech University, Lubbock, No. 269, 1-35.

  124. 124. Ridgely, R.S. and Tudor, G. (2009) Birds of South America. Passerines. Christopher Helm, London, 750.

  125. 125. Saux, M.L. and Briand, M. (2014) Collection Francaise de Bacteries Phytopathogenes. Institut National de la Recherche Agronomique.

  126. 126. Schulenberg, T.S., Stotz, D.F., Lane, D.F., O’Neill, J.P. and Parker, T.A.I. (2007) Field Guide to the Birds of Peru. Christopher Helm, London, 656.

  127. 127. Simkin, J. (2017) BLS Lichen Database: Scotland 1700-2016. British Lichen Society, London.

  128. 128. Simpson, K. and Day, N. (2004) Birds of Australia. Princeton University Press, Princeton and Oxford, 382.

  129. 129. Sinclair, I. and Ryan, P. (2003) A Comprehensive Illustrated Field Guide. Birds of Africa South of the Sahara. Struik Publishers, Cape Town, 759.

  130. 130. Sotelo, H., Castañeda-Alvarez, N.P. and Endresen, D. (2016) A Global Database for the Distributions of Crop Wild Relatives. Centro Internacional de Agricultura Tropical, Valle del Cauca.

  131. 131. 戴芳澜. 中国真菌总汇[M]. 北京: 科学出版社, 1979.

  132. 132. Takaoka, H., Sofian-Azirun, M., Ya’cob, Z., et al. (2017) The Black Flies (Diptera: Simuliidae) of Vietnam. Zootaxa, 4261, 1-165. https://doi.org/10.11646/zootaxa.4261.1.1

  133. 133. Walker, C. (2008) Christopher Walker Collection of Glomeromycotan Fungi. Botanic Garden and Botanical Museum, Berlin-Dahlem.

  134. 134. Watling, D. (2004) A Guide to the Birds of Fiji & Western Polynesia. Environmental Consultants, Suva, 272.

  135. 135. Wilson, D.E. and Reeder, D.M. (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd Edition, John Hopkins University Press, Baltimore, 2142.

  136. 136. Wilton, A. and McKenzie, E. (2010) New Zealand Fungal and Plant Disease Collection (PDD). Landcare Research, Lincoln.

  137. 137. Wilton, A. and Weir, B. (2010) International Collection of Microorganisms from Plants. Landcare Research, Lincoln.

  138. 138. Yang, D., Zhang, K.Y., Yao, G., et al. (2007) World catalog oh Empididae (Insecta: Diptera). China Agricultural University Press, Beijing.

  139. 139. Yang, D., Zhu, Y.J., Wang, M.Q., et al. (2006) World Catalog of Dolichopodidae (Insecta: Diptera). China Agricultural University Press, Beijing.

  140. 140. Yankelevich, S.N., Rivera, P.R. and Olvera, S.A.C. (2016) Proyecto para compatibilizar el inventario de biota edáfica BGBD con el Sistema Nacional de Información sobre Biodiversidad. Comisión nacional para el conocimiento y uso de la biodiversidad.

  141. 141. 藏穆. 中国真菌志44卷, 牛肝菌科(II) [M]. 北京: 科学出版社, 2013.

  142. 142. 郑光美. 中国鸟类分类与分布名录[M]. 北京: 科学出版社, 2005.

  143. 143. Ahlström, P. and Mild, K. (2003) Pipits & Wagtails of Europe, Asia and North America. Identification and Systematics. Christopher Helm, London, 496.

  144. 144. Alonso-Zarazaga, M.A. and Lyal, C.H.C. (1999) A World Catalogue of Families and Genera of Curculionoidea (Insecta: Coleoptera). Entomopraxis, S.C.P., Barcelona.

  145. 145. Alroy, J. (2007) Paleobiology Database. Marine Science Institute, UCSB, Isla Vista.

  146. 146. Aptroot, A., Lücking, R., Sipman, H.J.M., Umaña, L. and Chaves, J.L. (2008) Pyrenocarpous Lichens with Bitunicate Asci: A First Assessment of the Lichen Biodiversity Inventory in Costa Rica. Bibliotheca Lichenologica Band 97, 1-162.

  147. 147. Arild, H.S. (2012) Norwegian Species Observation Service. The Norwegian Biodiversity Information Centre, Trondheim.

  148. 148. Ariyawansa, H.A., Hyde, K.D., Jayasiri, S.C., et al. (2015) Fungal Diversity Notes 111-252—Taxonomic and Phylogenetic Contributions to Fungal Taxa. Fungal Diversity, 75, 27-274. https://doi.org/10.1007/s13225-015-0346-5

  149. 149. Arlott, N. (2009) Birds of Europe, Russia, China and Japan. Non-Passerines: Loons to Woodpeckers. Princeton University Press, Princeton, 240.

  150. 150. Ash, J. and Atkins, J. (2009) Birds of Ethiopia and Eritrea an Atlas of Distribution. Christopher Helm, London, 463.

  151. 151. Bolton, B. (1995) A New General Catalogue of the Ants of the World. Harvard University Press, Cambridge.

  152. 152. Borges, P. (2016) A List of the Terrestrial Fungi, Flora and Fauna of Madeira and Sel-vagens Archipelagos. Universidade dos Açores, Angra do Heroísmo.

  153. 153. Borges, P., Vieira, P. and Vieira, V. (2016) A List of the Terrestrial and Marine Biota from the Azores. Universidade dos Açores, Angra do Heroísmo.

  154. 154. Brooks, S.E. and Cumming, J.M. (2017) Revision of the Nearctic Parathalassius Mik (Diptera: Dolichopodidae: Parathalassiinae), with a Review of the World Fauna. Zootaxa, 4314, 1-64. https://doi.org/10.11646/zootaxa.4314.1.1

  155. 155. Brown, J.W. (2005) World Catalogue of Insects. Volume 5 Tortricidae (Lepidoptera). Apollo Books, Stenstrup.

  156. 156. Chaudhary, V.B., Lau, M.K. and Johnson, N.C. (2008) Macroecology of Microbes—Biogeography of the Glomeromycota. In: Varma, A., Ed., Mycorrhiza, Springer, Berlin, Heidelberg, 529-563. https://doi.org/10.1007/978-3-540-78826-3_26

  157. 157. Creuwels, J. and Schollaardt, C. (2015) Botany. Naturalis Biodiversity Center, Leiden.

  158. 158. Dousti, A.F. and Hayat, R. (2006) A Catalogue of the Syrphidae (Insect: Diptera) of Iran. Journal of the Entomological Research Society, 8, 5-38.

  159. 159. Fasbender, A. and Courtney, G.W. (2017) A Revision of Bittacomorphinae with a Review of the Monophyly of Extant Subfamilies of Ptychopteridae (Diptera). Zootaxa, 4309, 1-69. https://doi.org/10.11646/zootaxa.4309.1.1

  160. 160. Greuter, W., McNeill, J., Barrie, F., et al. (2000) International Code of Botanical Nomenclature (Saint Louis Code). Regnum Vegetabile, 138, 1-474.

  161. 161. Guala, G. and Döring, M. (2011) Integrated Taxonomic Information System (ITIS). National Museum of Natural History, Smithsonian Institution, Washington DC.

  162. 162. Gustafsson, D.R. and Bush, S.E. (2017) Morphological Revision of the Hyperdiverse Brueelia-Complex (Insecta: Phthiraptera: Ischnocera: Philopteridae) with New Taxa, Checklists and Generic Key. Zootaxa, 4313, 1-443. https://doi.org/10.11646/zootaxa.4313.1.1

  163. 163. Hava, J. and Lobl, I. (2002) A World Catalogue of the Family Jacobsoniidae (Coleoptera). Studies and Reports of District Museum Prague-East Taxonomical Series, 1, 89-94.

  164. 164. Hubbard, M.D. (1990) A Catalog of the Order Zoraptera (Insecta). Insecta Mundi, 4, 49-66.

  165. 165. Iwan, D. (2002) Catalogue of the World Platynotini (Co-leoptera: Tenebrionidae). Genus, 13, 219-323.

  166. 166. Jahantigh, F., et al. (2017) Catalogue of Ampulicidae, Crabronidae and Sphecidae of Iran (Hymenoptera, Apoidea). Zootaxa, 4307, 1-96. https://doi.org/10.11646/zootaxa.4307.1.1

  167. 167. Kitching, I.J. and Cadiou, J.M. (2000) Hawkmoths of the World. Lodon & Cornell University Press, Ithaca.

  168. 168. Knight, K.L. and Stone, A. (1977) A Catalog of the Mosquitoes of the World (Diptera: Culicidae). Entomological Society of America, Annapolis, 621.

  169. 169. Krombein, K.V., Hurd, P.D., Smith, D.R., et al. (1979) Catalog of the Hymenoptera in America north of Mexico. Vol. 1-3, Smithsonian Institution Press, Washington DC, 2735.

  170. 170. Latta, S., Rimmer, C., Keith, A., et al. (2006) Field Guide to the Birds of the Dominican Republic & Haiti. Princeton University Press, London, 258.

  171. 171. Li, G.J., Hyde, K.D., Zhao, R.N., et al. (2016) Fungal Divers Notes 253-366: Taxonomic and Phylogenetic Contributions to Fungal Taxa. Fungal Diversity, 78, 1-237. https://doi.org/10.1007/s13225-016-0366-9

  172. 172. Liston, A.D., et al. (2017) North European Gall-Inducing Euura Sawflies (Hymenoptera, Tenthredinidae, Nematinae). Zootaxa, 4302, 1-115. https://doi.org/10.11646/zootaxa.4302.1.1

  173. 173. Mackerras, I.M. (1962) Speciation in Australia Tabanidae. In: Evolution of Living Organisms, Roy. Soc. Vict. Contr., Melbourne, 328-358.

  174. 174. Magill, B., Solomon, J. and Stimmel, H. (2007) Tropicos Specimen Data. Missouri Botanical Garden, St. Louis.

  175. 175. Mathis, W.N. and Barraclough, D.A. (2011) World Catalog and Conspectus on the Family Diastatidae (Diptera: Schi-zophora). MYIA, 12, 235-266.

  176. 176. Munari, L. and Mathis, W.H. (2010) World Catalog of the Family Canacidae (Including Tethinidae) (Diptera). Zootaxa, 2471, 1-81.

  177. 177. Munguía, M., Rahbek, C., Rangel, T.F., et al. (2012) Equilibrium of Global Amphibian Species Distributions with Climate. PLoS ONE, 7, e34420. https://doi.org/10.1371/journal.pone.0034420

  178. 178. Pellissier, L., Niculita-Hirzel, H., Dubuis, A., et al. (2014) Soil Fungal Communities of Grasslands Are Environmentally Structured at a Regional Scale in the Alps. Molecular Ecology, 23, 4274-4290. https://doi.org/10.1111/mec.12854

  179. 179. Rohacek, J., Marshall, S.A., Norrbom, A.L., et al. (2001) World Catalog of Sphaeroce-ridae (Diptera). Slezsk Zemsk Muzeum, Opava.

  180. 180. Schlita, P.Z. (1973) Insecta: Plecoptera. Walter de Gruyter, Berlin.

  181. 181. Sequeira, M. (2014) Checklist da Flora de Portugal (Continental, Açores e Madeira). GBIF, Lisbon.

  182. 182. Smit, F.G.A.M. (1957) Handbooks for the Identification of British Insects. Vol. 1 Part 16 Siphonaptera. Royal Entomological Society of London, Londom.

  183. 183. Sobczyk, T. (2011) World Catalogue of Insects 10. Psychidae (Lepidoptera). Apollo Books, Stenstrup.

  184. 184. Thévenot, M., Vernon, R. and Bergier, P. (2003) The Birds of Morocco. An Annotated Checklist. BOU Checklist No. 20. British Ornithologists’ Union & British Ornithologists’ Club, Tring, 594.

  185. 185. Usinger, R.L. (1966) Monograph of Cimicidae Vol. VII. Entomological Society of America, Annapolis.

  186. 186. Volpi, L.N. and Coscaron, M.D.C. (2010) Catalog of Nabidae (Hemiptera: Heteroptera) of the Naotroppical Region. Zootaxa, 2513, 50.

  187. 187. Yin, X.C. Shi, J.P. and Yin, Z. (1996) A Synonymic Catalogue of Grasshoppers and Their Allies of the World (Orthoptera: Caelifera). China Forestry Publishing House, Beijing.

  188. 188. Oswald, J.D. (2014) Neuropterid Species of the World. http://lacewing.tamu.edu/SpeciesCatalog/Main

  189. 189. Otte, D., Spearman, L., Stiewe, M.B.D., et al. (2014) Mantodea Species File. Version 5.0/5.0. http://mantodea.speciesFile.org

  190. 190. Peixoto, M. and Pereira, S.A. (2017) Brazilian Plants. http://brazilplants.com

  191. 191. Pelham, J.P. (2012) A Catalogue of the Butterflies of the United States and Canada. http://butterfliesofamerica.com

  192. 192. Penny, N.D. (2011) World Checklist of Extant Mecoptera Species. http://researcharchive.calacademy.org/research/entomology

  193. 193. Pickering, J. (2014) Discover Life: Mallophaga. http://discoverlife.org/mp

  194. 194. Roguet, J.P. (2014) Lamioires du Monde. http://lamiinae.org

  195. 195. Schorn, M. and Paulson, D. (2013) World Odonata List. http://pugetsound.edu

  196. 196. Schun, R.T. (2013) On-Line Syatematic Catalog of Plant Bugs (Insecta: Heteroptera: Miridae). http://research.amnh.org/pbi/catalog/

  197. 197. Martins, A.B. and Almeda, F. (2017) A Monograph of the Brazilian Endemic Genus Lavoisiera (Melastomataceae: Microlicieae). Phytotaxa, 315, 1-194. http://dx.doi.org/10.11646/phytotaxa.315.1

  198. 198. Seccombe, A.K., Ready, P.D. and Huddleston, L.M. (1993) A Catalogue of Old World Phlebotomine Sandflies (Diptera: Psychodidae, Phlebotominae). Occasional Papers on Systematic Entomology, 8, 1-57.

  199. 199. Staines, C.L. (2012) Catalog of the Hispines of the World (Coleoptera: Chrysomelidae: Cassidinae). http://entomology.si.edu

  200. 200. The Plant List (2010) The Plant List, Version 1. http://theplantlist.org/

  201. 201. Triebel, D. (2017) Phy-topathogenic Fungi Observed by Hans and Hanna Doppelbaur. http://bsm4.snsb.info/BSM-Mycology/Collections/Observations/Doppelbaur/About.html

  202. 202. USDA (2017) Plant Database. https://plants.usda.gov/java/

  203. 203. Webb, M., Livermore, L., Lemaitre, V., et al. (2014) Coreoidea Species File. Version 5.0/5.0. http://coreoidea.speciesFile.org

  204. 204. Wikipedia (2016) Category: Flora of Russia. https://en.wikipedia.org/wiki

  205. 205. Borkent, A. (2014) World Species of Biting Midges (Diptera: Ceratopogonidae). http://wwx.inhs.illinois.edu/files/9913/9144/3328/CeratopogonidaeCatalog.pdf

  206. 206. Adler, P.H. and Crossker, R.W. (2014) World Blackflies (Diptera: Simuliidae). http://clemson.edu

  207. 207. Ascher, J. and Pickering, J. (2014) Bee Species and Checklist (Hymenoptera: Apoidea). http://discoverlife.org

  208. 208. Barber-James, H., Sartor, M., Gattolliat, J.L., et al. (2013) World Checklist of Freshwater Ephemeroptera Species. http://fada.biodiversity.be/group/show/35

  209. 209. Beccdloni, G. (2014) Cockroach Species File. Version 5.0/5.0. http://blattodea.speciesFile.org

  210. 210. Benny, G.L. (2006) Zygomycota. http://zygomycetes.org

  211. 211. Bezark, L.G. and Monné, M.A. (2013) Checklist of the Oxypeltidae, Vesperidae, Disteniidae and Cerambycidae, (Coleoptera) of the Western Hemisphere. https://plant.cdfa.ca.gov/byciddb/checklists/WestHemiCerambycidae2013.pdf

  212. 212. Brock, P.B., Eades, D.C., Otte, D., et al. (2014) Phasmida Species File. Version 5.0/5.0. http://phasmida.speciesFile.org

  213. 213. Deem, L.S. (2014) Germaptera Species File. Version 5.0/5.0. http://dermaptera.speciesFile.org

  214. 214. Eades, D.C. (2014) Polyneoptera Species File. Version 5.0/5.0. https://polyneoptera.speciesfile.org/HomePage/Polyneoptera/HomePage.aspx

  215. 215. Eades, D.C., Otte, D., Cigliano, M.M., et al. (2014) Orthoptera Species File. Version 5.0/5.0. http://orthoptera.speciesFile.org

  216. 216. Evenhuis, N.L., Ed. (1989) Catalog of the Diptera of the Australasian and Oceanian Regions. Bishop Museum Press, Honolulu & E.J. Brill, Leiden.

  217. 217. Evenhuis, N.L. and Greathead, D.J. (1999) World Catalog of Bee Flies (Diptera: Bombyliidae). Backhuys Publishers, Leiden, 532.

  218. 218. Frost, D.R. (2009) Amphibian Species of the World: An Online Reference. Version 5.3. http://research.amnh.org/herpetology/amphibia/index.php

  219. 219. Gagne, R.J. (2010) Update for A Catalog of the Cecidomyiidae (Diptera) of the World. http://ars.usda.gov/sp2

  220. 220. GBIF (2014) Achaeognatha. http://gbif.org/species/1187

  221. 221. GBIF (2014) Coleoptera. http://gbif.org/species/1470

  222. 222. GBIF (2014) Diptera. http://gbif.org/species/811

  223. 223. GBIF (2014) Hemiptera. http://gbif.org/species/809

  224. 224. GBIF (2014) Hymenoptera. http://gbif.org/species/1457

  225. 225. GBIF (2014) Lepidoptera. http://gbif.org/species/797

  226. 226. GBIF (2014) Orthoptera. http://gbif.org/species/1458

  227. 227. GBIF (2014) Zygentoma. http://gbif.org/species/1004

  228. 228. GBIF (2016) Bacteria. https://gbif.org/species/3

  229. 229. GBIF (2016) Fungi. https://gbif.org/species/5

  230. 230. GBIF (2017) Acanthocephala. http://gbif.org/species/67

  231. 231. GBIF (2017) Annelida. http://gbif.org/species/42

  232. 232. GBIF (2017) Mollusca. http://gbif.org/species/52

  233. 233. GBIF (2017) Nematoda. http://gbif.org/species/5967481

  234. 234. GBIF (2017) Nematomorpha. http://gbif.org/species/64

  235. 235. GBIF (2017) Onychophora. http://gbif.org/species/62

  236. 236. GBIF (2017) Plantae. http://gbif.org/species/6

  237. 237. GBIF (2017) Platyheloniathes. http://gbif.org/species/108

  238. 238. Gill, F., Wright, M. and Donsker, D. (2009) IOC World Bird Names, Version 2.2. http://worldbirdnames.org

  239. 239. Hwang, C.C. and Sautter, G. (2014) Annotated Type Catalogue of Land Snails Collected from Taiwan in the Natural History Museum, London. ZooKeys, 428, 1-28. http://doi.org/10.3897/zookeys.428.8061

  240. 240. Index Fun-gorum (2016) Index Fungorum. http://indexfungorum.org/Names/Names.asp

  241. 241. Institute of Botany, Chinese Academy of Sciences (2017) E-flora. http://www.eflora.cn

  242. 242. Johnson, K.P. and Smith V.S. (2014) Psocodea Species File Online. Version 5.0/5.0. http://psocodea.speciesfile.org/HomePage/Psocodea/HomePage.aspx

  243. 243. Kathirithamby, J. (2003) Partial List of Atrepsiptera Species. http://tolweb.org/notes

  244. 244. Lehtinen, I. and Mound, L. (2014) Thripswiki. http://thrips.info/wiki

  245. 245. Maddison, D.R. (2009) Hemiptera. http://tolweb.org/Hemiptera/8239

  246. 246. Maehr, M.D. and Eades, D.C. (2014) Embioptera Species File. Version 5.0/5.0. http://embioptera.speciesFile.org

  247. 247. McKamey, S.H. (2001-2010) Checklist of Leafhopper Species 1758-1955 (Hemiptera: Membracoidea: Cicadellidae and Myssserslopiidae). http://www.sel.barc.usda.gov/selhome/leafhoppers/mckpaper.htm

  248. 248. Nilsson, A.N. (2013) A World Catalogue of the Family Dytiscidae of the Diving Beetles (Coleoptera, Adephaga). Version 1.1. https://www2.emg.umu.se/projects/biginst/andersn/WCD_20130101.pdf

  249. 249. Noort, S. and Rasplus, J.Y. (2014) Classification of Fig Wasps. https://figweb.org/Fig_wasps/Classification/index.htm

  250. 250. O’Hara, J.E. (2016) World Genera of the Tachinidae (Diptera) and Their Regional Occurrence. Version 9.0. PDF document, 93 p. http://www.nadsdiptera.org/Tach/WorldTachs/Genera/Gentach_ver9.pdf

  251. 251. Boonmee, S., Rossman, A.Y., Lui, J.K., et al. (2014) Tubeufiales, ord. nov., Integrating Sexual and Asexual Generic Names. Fungal Diversity, 68, 239-298. https://doi.org/10.1007/s13225-014-0304-7

  252. 252. Boonmee, S., D’souza, M.J., Luo, Z., et al. (2016) Dictyosporiaceae fam. nov. Fungal Diversity, 80, 457-482. https://doi.org/10.1007/s13225-016-0363-z

  253. 253. Ralph, T.M.C., Richards, L.R., Taylor, P.J., et al. (2015) Revision of Afro-Malagasy Otomops (Chiroptera: Molossidae) with the Description of a New Afro-Arabian Species. Zootaxa, 4057, 1-49. https://doi.org/10.11646/zootaxa.4057.1.1

  254. 254. Chahari, H., Moulet, P. and Ostovan, H. (2016) An Annotaded Catalog of the Iranian Cimicidae and Largidae (Hemiptera: Heteroptera) and in Memorium Call Walter Schaefer (1934-2015). Zootaxa, 4111, 194-200. https://doi.org/10.11646/zootaxa.4111.2.8

  255. 255. Chethana, T., Liu, M., Ariyawansa, H.A., et al. (2015) Splanchnonema-Like Species in Pleosporales: Introducing Pseudosplanchnonema gen. nov. in Massarinaceae. Phytotaxa, 231, 133-144. https://doi.org/10.11646/phytotaxa.231.2.2

  256. 256. Feijo, A., Rocha, P.A.D. and Althoff, S.L. (2015) New Species of Histiotus (Chiroptera: Vespertilionidae) from Northeastern Brazil. Zootaxa, 4048, 412-427. https://doi.org/10.11646/zootaxa.4048.3.4

  257. 257. Costa, P.M.O., Barbosa, M.A., Malosso, E. and Castañeda-Ruiz, R.F. (2016) Anaverticicladus uncinatus gen. & sp. nov. from Decaying Leaves from Brazil. Mycotaxon, 131, 687-691. https://doi.org/10.5248/131.687

  258. 258. Carleton, M.D., Banasiak, R.A. and Stanley, W.T. (2015) A New Species of the Rodent Genus Hylomyscus from Angola, with a Distributional Summary of the H. anselli Species Group (Muridae: Murinae: Praomyini). Zootaxa, 4040, 101-128. https://doi.org/10.11646/zootaxa.4040.2.1

  259. 259. Das, K., Verbeken, A. and Nuytinck, J. (2015) Morphology and Phylogeny of Four New Lactarius Species from Himalayan India. Mycotaxon, 130, 105-130. https://doi.org/10.5248/130.105

  260. 260. Goodman, S.M., Ramasindrazana, B., Naughton, K.M. and Appleton, B. (2015) Description of a New Species of the Miniopterus aelleni Group (Chiroptera: Miniopteridae) from Upland Areas of Central and Northern Madagascar. Zootaxa, 3936, 538-558. https://doi.org/10.11646/zootaxa.3936.4.4

  261. 261. Furtado, A.N.M., Daniëls, P.P., et al. (2016) New Species and New Records of Clavariaceae (Agaricales) from Brazil. Phytotaxa, 253, 1-26. https://doi.org/10.11646/phytotaxa.253.1.1

  262. 262. Soisook, P., Prajakjitr, A., Karapan, S., Francia, C.M. and Bates, P.J.J. (2015) A New Genus and Species of False Vampire (Chiroptera: Megadermatidae) from Peninsular Thailand. Zootaxa, 3931, 528-550. https://doi.org/10.11646/zootaxa.3931.4.4

  263. 263. Gusmão, L.F.P., Monteiro, J.S. and Castañeda-Ruiz, R.F. (2017) Tretoheliocephala compacta gen. & sp. nov. from the Brazilian Semi-Arid Region. Mycotaxon, 132, 453-458. https://doi.org/10.5248/132.453

  264. 264. Huerta, H. and Grogan, W.L. Jr. (2017) New Species and New Records of Predaceous Midges in the Genera, Schizonyxhelea Clastrier and Stilobezzia Kieffer from Mexico (Diptera: Ceratopogonidae). Zootaxa, 4294, 401-418. https://doi.org/10.11646/zootaxa.4294.4.1

  265. 265. Hongsanan, S., Bahkali, A.H., Chomnunti, P., Liu, J.K., Yang, J.B. and Hyde, K.D. (2016) Discopycnothyrium palmae gen. & sp. nov. (Asterinaceae). Mycotaxon, 131, 859-869. https://doi.org/10.5248/131.859

  266. 266. Hüseyin, E., Selçuk, F., et al. (2016) Acrodictys, Corynespora, Karstenula, Oncopodium and Sporocadus: New Genera for Turkey. Mycotaxon, 131, 331-335. https://doi.org/10.5248/131.331

  267. 267. Ronderos, M.M., Spinelli, G.R. and Grogan, W.L. Jr. (2017) The Neotropical Species of the Predaceous Midge Genus Austrohelea Wirth & Grogan (Diptera: Ceratopogonidae). Zootaxa, 4276, 255-269. https://doi.org/10.11646/zootaxa.4276.2.7

  268. 268. De Mello-Patiu, C.A. and Salazar-Souza, M. (2016) Retrocitomyia Lopes, 1982 (Diptera: Sarcophagidae): New Species, New Records, Key to Males, and an Updated Catalog. Zootaxa, 4171, 534-548. https://doi.org/10.11646/zootaxa.4171.3.8

  269. 269. Li, Y.C., Li, F., Zeng, N.K., et al. (2014) A New Genus Pseudoaustroboletus (Boletaceae, Boletales) from Asia as Inferred from Molecular and Morphological Data. Mycological Progress, 13, 1207-1216. https://doi.org/10.1007/s11557-014-1011-1

  270. 270. Liu, J.K., Phookamsak, R., Dai, D.Q. and Hyde, K.H. (2014) Roussoellaceae, a New Pleosporalean Family to Accommodate the Genera Roussoella and Roussoellopsis. Phytotaxa, 181, 1-33. https://doi.org/10.11646/phytotaxa.181.1.1

  271. 271. Monteiro, J.S., Conceição, L.B., Marques, M.F.O., et al. (2016) Dictyoaquaphila appendiculata gen. & sp. nov. from Submerged Wood from Brazil. Mycotaxon, 131, 177-183. https://doi.org/10.5248/131.177

  272. 272. Monteiro, J.S., Gusmão, L.F.P. and Castañeda-Ruiz, R.F. (2016) Anacoronospora diversiseptata gen. & sp. nov. from Brazil. Mycotaxon, 131, 185-192. https://doi.org/10.5248/131.185

  273. 273. Tantawi, T.I., Whitworth, T.L. and Sinclair, B.J. (2017) Revision of the Nearctic Calliphora Robineau-Desvoidy (Diptera: Calliphoridae). Zootaxa, 4226, 301-347. https://doi.org/10.11646/zootaxa.4226.3.1

  274. 274. Qi, H., Luo, X.S., Dai, J., Peng, F., et al. (2016) Cesiribacter roseus sp. nov., a Pink-Pigmented Bacterium Isolated from Desert Sand. Journal of Systematic and Evolutionary Microbiology, 62, 96-99.

  275. 275. Sautter, G. (2015) Erysipelothrix inopinata sp. nov., Isolated in the Course of Sterile Filtration of Vegetable Peptone Broth, and Description of Erysipelotrichaceae fam. nov. Journal of Systematic and Evolutionary Microbiology, 54, 221-225.

  276. 276. Sautter, G. (2016) Caloramator australicus sp. nov., a Thermophilic, Anaerobic Bacterium from the Great Artesian Basin of Australia. Journal of Systematic and Evolutionary Microbiology, 59, 95-101.

  277. 277. Silva, S.S.D., Gusmão, L.F.P. and Castañeda-Ruiz, R.F. (2016) Arthromoniliphora araucariae gen. & sp. nov. from Brazilian Pine. Mycotaxon, 131, 821-826. https://doi.org/10.5248/131.821

  278. 278. Szelag, E.A., Filho, J.D.A., Rosa, J.R., et al. (2016) Argentinian phlebotomine fauna, New Records of Phlebotominae (Diptera: Psychodidae) for the Country and the Province of Chaco. Zootaxa, 4139, 427-430. https://doi.org/10.11646/zootaxa.4139.3.8

  279. 279. Su, H., Hyde, K.D., Maharachchikumbura, S.S.N., et al. (2016) The Families Distoseptisporaceae fam. nov. Kirschsteiniotheliaceae, Sporormiaceae and Torulaceae, with New Species from Freshwater in Yunnan Province, China. Fungal Diversity, 80, 375-409. https://doi.org/10.1007/s13225-016-0362-0

  280. 280. Thambugala, K.M., Hyde, K.D., Tanaka, K., et al. (2015) Towards a Natural Classification and Backbone Tree for Lophiostomataceae, Floricolaceae, and Amorosiaceae fam. nov. Fungal Diversity, 74, 199-266. https://doi.org/10.1007/s13225-015-0348-3

  281. 281. Vasilyeva, L.N., Morozova, T.I. and Stephenson, S.L. (2017) Ascomycetous fungi of Siberia. 3. Elytroderma baikalense sp. nov. Mycotaxon, 132, 251-255. https://doi.org/10.5248/132.251

  282. 282. Zhang, H., Dong, W., Hyde, K.D., Maharachchikumbura, S.S.N., Hongsanan, S., Bhat, D.J., Al-Sadi, A.M. and Zhang, D. (2017) Towards a Natural Classification of Annulatascaceae-Like Taxa: Introducing Atractosporales ord. nov. and Six New Families. Fungal Diversity, 85, 75-110. https://doi.org/10.1007/s13225-017-0387-z

  283. 283. Zeng, N.K., Wu, G., Li, Y.C., Liang, Z.Q. and Yang, Z.L. (2014) Crocinoboletus, a New Genus of Boletaceae (Boletales) with Unusual Polyene Pigments Boletocrocins. Phytotaxa, 175, 133-140. https://doi.org/10.11646/phytotaxa.175.3.2

  284. 284. Wang, J.Y., Yang, C.L., Xia, J.W., et al. (2016) Capsicispora mycophila gen. & sp. nov. from Southern China. Mycotaxon, 131, 559-563. https://doi.org/10.5248/131.559

  285. 285. Csorba, G., Gorfol, T., Wiantoro, S., et al. (2015) Thumb-Pads up—A New Species of Thick-Thumbed Bat from Sumatra (Chiroptera: Vespertilionidae: Glischropus). Zootaxa, 3980, 267-278. https://doi.org/10.11646/zootaxa.3980.2.7

  286. 286. Wu, G., Zhao, K., Li, Y.C., et al. (2016) Four New Genera of the Fungal Family Boletaceae. Fungal Diversity, 81, 1-24. https://doi.org/10.1007/s13225-015-0322-0

  287. 287. Xia, J.W., Ma, Y.R., Gao, J.M., Li, Z. and Zhang, X.G. (2016) Sympodiosynnema, a New Genus of Dematiaceous Hyphomycetes from Southern China. Mycotaxon, 131, 45-48. https://doi.org/10.5248/131.45

  288. 288. Yang, T., Adams, J.M., Shi, Y., He, J.S., et al. (2017) Soil Fungal Diversity in Natural Grasslands of the Tibetan Plateau: Associations with Plant Diversity and Productivity. New Phytologist, 215, 756-765. https://doi.org/10.1111/nph.14606

  289. 289. Natarajan, R., Rajavel, A.R. and Jambulingam, P. (2017) Descriptions of Three New Species of Uranotaenia (Pseudoficalbia, Diptera: Culicidae) from India. Zootaxa, 4227, 251-265. https://doi.org/10.11646/zootaxa.4227.2.6

  290. 290. Fuenzalida, A.D. and Quintana, M.G. (2017) Description of Pintomyia salomoni sp. n., a New Phlebotomine Species from Northwest Argentina. Medical and Veterinary Entomology, 31, 214-219. https://doi.org/10.1111/mve.12233

  291. 291. Smit, H. (2017) Notoaturine Water Mites from New Zealand (Acari: Hydrachnidia: Notoaturinae) with the Description of Five New Species. Zootaxa, 4247, 16-30. https://doi.org/10.11646/zootaxa.4247.1.2

  292. 292. Jałoszyński, P. (2017) Bellendenker gen. nov., a New Australian Genus of Glandulariini (Coleoptera: Staphylinidae: Scydmaeninae). Zootaxa, 4247, 165-473. https://doi.org/10.11646/zootaxa.4247.2.8

  293. 293. Sobral, M. and De Souza, M.A.D. (2017) Four New Myrtaceae from Amazonian Brazil. Phytotaxa, 307, 55-64. https://doi.org/10.11646/phytotaxa.307.1.5

  294. 294. Schmidt, M., Zizka, A., Traoré, S., et al. (2017) Diversity, Distribution and Preliminary Conservation Status of the Flora of Burkina Faso. Phytotaxa, 304, 1-215. https://doi.org/10.11646/phytotaxa.304.1.1

  295. 295. Oliveira, A.R., Argolo, P.S., de Moraes, G.J., et al. (2017) A Checklist of the Oribatid Mite Species (Acari: Oribatida) of Brazil. Zootaxa, 4245, 1-89. https://doi.org/10.11646/zootaxa.4245.1.1

  296. 296. Fonseca, L.H.M., Cabral, S.M., Agra, M.D.F. and Lohmann, L.G. (2017) Taxonomic Revision of Dolichandra (Bignonieae, Bignoniaceae). Phytotaxa, 301, 1-70. https://doi.org/10.11646/phytotaxa.301.1.1

  297. 297. Silva, R.D.S.D., Cavichioli, R.R., Takiya, D.M. and Mejdalani, G. (2017) Descriptions of Eight New Acrogonia Species from the Amazon Region, Including Peculiar Features of the Female Genitalia (Hemiptera: Cicadellidae: Cicadellinae: Proconiini). Zootaxa, 4244, 515-534. https://doi.org/10.11646/zootaxa.4244.4.4

  298. 298. Santamaria, S., Enghoff, H., Gruber, J. and Reboleira, A.S. (2017) First Laboulbeniales from Harvestmen: The New Genus Opilionomyces. Phytotaxa, 305, 285-292. https://doi.org/10.11646/phytotaxa.305.4.4

  299. 299. De Souza, W.R.M. and Santos, A.P.M. (2017) Taxonomic Study of the Genus Oxyethira Eaton 1873 (Trichoptera: Hydroptilidae) from Northeast Brazil: Eleven New Species and Distributional Records. Zootaxa, 4236, 484-506. https://doi.org/10.11646/zootaxa.4236.3.4

  300. 300. DU, Z., Hyde, K.D., Yang, Q., Liang, Y.-M. and Tian, C.-M. (2017) Melansporellaceae: A Novel Family of Diaporthales (Ascomycota). Phytotaxa, 305, 191-200. https://doi.org/10.11646/phytotaxa.305.3.6

  301. 301. Crisp, M.D., Cayzer, L., Chandler, G.T. and Cook, L.G. (2017) A Monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae). Phytotaxa, 300, 1-308. https://doi.org/10.11646/phytotaxa.300.1.1

  302. 302. 张镱锂. 植物区系地理研究中的重要参数——相似性系数[J]. 地理研究, 1996, 17(4): 429-434.

NOTES

*通讯作者。

期刊菜单