﻿ 基于有限元模型的钢管混凝土抗扭机理及梁桥地震扭转反应 Mechanism of Concrete Filled Steel Tube Subjected to Torsion and Multi-Scale Finite Element Model

Hans Journal of Civil Engineering
Vol.07 No.01(2018), Article ID:23534,6 pages
10.12677/HJCE.2018.71008

Mechanism of Concrete Filled Steel Tube Subjected to Torsion and Multi-Scale Finite Element Model

Yuanyuan Peng

Infrastructure Planning and Construction Department, Chongqing University, Chongqing

Received: Jan. 5th, 2018; accepted: Jan. 18th, 2018; published: Jan. 25th, 2018

ABSTRACT

In order to make further study on the torsion mechanism of concrete filled steel tube columns, based on the “shell-solid” finite element model in the general finite element program ABAQUS, the analytical results were comprehensively discussed, including the distribution and development trend of the principal stress, principal strain of the steel tube and in-filled concrete of concrete filled steel tube columns subjected to compression-bending-torsion combined load. Using the multi-scale finite element modeling method, the multi-scale model of curved steel-concrete composite girder bridge was built, and the elasto-plastic time-history analysis was made, compared with the fiber beam-column model. The results showed that the global torsion behavior of curved girder bridge could be predicted effectively by the multi-scale finite element model.

Keywords:Concrete Filled Steel Tube, Torsion, Nonlinear, Multi-Scale Finite Element Model

Copyright © 2018 by author and Hans Publishers Inc.

1. 引言

2. 纯扭荷载下的应力–应变状态

Figure 1. Multi-scale finite element model of girder bridge

(a) 混凝土(b) 钢管

Figure 2. Principle stress and strain state of CFST under pure torsion

3. 压扭荷载下的应力–应变状态

4. 弯扭荷载下的应力–应变状态

(a) 混凝土(b) 钢管

Figure 3. Principle stress and strain state of CFST under compression-torsion

(a) 混凝土(b) 钢管

Figure 4. Principle stress and strain state of CFST under bending-torsion

5. 曲线组合梁桥体系时程分析

(a) 纤维梁杆系有限元模型 (b) 多尺度有限元模型

Figure 5. Finite element model of curved composite girder bridges

Figure 6. Time history curve of El centro wave

Figure 7. Rotation angle time history results of bridge deck

6. 结论

1) 钢管混凝土柱在纯扭荷载作用下，受力状态虽然为“纯扭”状态，但由于核心混凝土开裂后为正交异性材料，导致截面存在轴向拉应变，因此钢管混凝土柱的变形状态为“拉–扭”状态。

2) 钢管混凝土柱在压扭荷载作用下，随着截面扭转角的增大，由钢管承担的轴力逐渐降低，而由混凝土承担的轴力逐渐增大，但两者之和始终与外轴力相等，能够保证截面的轴力平衡。轴压力越大，混凝土所承担的轴力越大而承担的扭矩越小，钢管承担的轴力越小而承担的扭矩越大。

3) 钢管混凝土柱在弯扭荷载作用下，弯矩较小的截面应力应变分布规律与纯扭荷载作用时相近，弯矩较大的截面应力应变分布规律与纯弯荷载作用时接近，证明了钢管混凝土柱在弯矩和扭矩复合受力状态下，截面的受力特性与弯扭比密切相关。

4) 当地震波作用沿纵桥向输入时，采用纤维梁杆系模型计算曲线组合梁桥的桥面系扭转角时预测结果偏小，将低估曲线组合梁桥的扭转效应。采用多尺度有限元模型进行结构整体的变形计算时能够获得较为合理的结果。

Mechanism of Concrete Filled Steel Tube Subjected to Torsion and Multi-Scale Finite Element Model[J]. 土木工程, 2018, 07(01): 56-61. http://dx.doi.org/10.12677/HJCE.2018.71008

1. 1. 蔡绍怀. 我国钢管混凝土结构技术的最新进展[J]. 土木工程学报, 1999, 32(4): 16-26.

2. 2. 林旭川, 陆新征, 叶列平. 钢–混凝土混合框架结构多尺度分析及其建模方法[J]. 计算力学学报, 2010, 27(3): 469-475.

3. 3. 陆新征, 林旭川, 叶列平. 多尺度有限元建模方法及其应用[J]. 华中科技大学学报(城市科学版), 2008, 25(4): 76-80.

4. 4. 张政华, 毕丹, 李兆霞. 基于结构多尺度模拟和分析的大跨斜拉桥应变监测传感器优化布置研究[J]. 工程力学, 2009, 26(1): 142-148.

5. 5. 孙正华, 李兆霞, 陈鸿天. 大跨斜拉桥结构行为一致多尺度有限元模拟[J]. 中国公路学报, 2009, 22(5): 68-74.

6. 6. Wang, Y.H., Nie, J.G. and Fan, J.S. (2014) Fiber Beam-Column Element for Circular Concrete Filled Steel Tube under Axial-Flexure-Torsion Combined Load. Journal of Constructional Steel Research, 95, 10-21. https://doi.org/10.1016/j.jcsr.2013.11.014

7. 7. Wang, Y.H., Nie, J.G. and Fan, J.S. (2013) Theoretical Model and Investigation of Concrete Filled Steel Tube Columns under Axial Force-Torsion Combined Action. Thin-Walled Structures, 69, 1-9. https://doi.org/10.1016/j.tws.2013.03.005

8. 8. Nie, J.G., Wang, Y.H. and Fan, J.S. (2013) Experimental Research on Concrete Filled Steel Tube Columns under Combined Compression-Bending-Torsion Cyclic Load. Thin-Walled Structures, 67, 1-14. https://doi.org/10.1016/j.tws.2013.01.013

9. 9. Nie, J.G., Wang, Y.H. and Fan, J.S. (2012) Experimental Study on Seismic Behavior of Concrete Filled Steel Tube Columns under Pure Torsion and Compression-Torsion Cyclic Load. Journal of Constructional Steel Research, 79, 115-126. https://doi.org/10.1016/j.jcsr.2012.07.029

10. 10. Han, L.H., Yao, G.H. and Tao, Z. (2007) Performance of Concrete Filled Thin-Walled Steel Tubes under Pure Torsion. Thin-Walled Structures, 45, 24-36. https://doi.org/10.1016/j.tws.2007.01.008

11. 11. Han, L.H., Yao, G.H. and Tao, Z. (2007) Behaviors of Concrete Filled Steel Tubular Members Subjected to Combined Loading. Thin-Walled Structures, 45, 600-619. https://doi.org/10.1016/j.tws.2007.04.008

12. 12. Lee, E.-T., Yun, B.H., Shim, H.J., Chang, K.H. and Lee, G.C. (2009) Torsional Behavior of Concrete-Filled Circular Steel Tube Columns. Journal of Structural Engineering, 135. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:10(1250)

13. 13. 聂建国, 王宇航. 基于ABAQUS的钢–混凝土组合结构纤维梁模型的开发及应用[J]. 工程力学, 2012, 29(1): 70-80.