﻿ CAP1400一体化堆顶组件冷却系统通风数值研究 Numerical Research of CAP1400 IHP Cooling System

Nuclear Science and Technology
Vol.05 No.03(2017), Article ID:21512,6 pages
10.12677/NST.2017.53021

Numerical Research of CAP1400 IHP Cooling System

Xingliang Zhang, Hao Yu, Wei Zhang, Yinbiao He

Received: Jul. 7th, 2017; accepted: Jul. 23rd, 2017; published: Jul. 26th, 2017

ABSTRACT

One of the main functions of the Integrated Head Package (IHP) in the reactor is to provide cooling for the Control Rod Drive Mechanism (CRDM) magnetic coils. This is realized by the four axial fans connected to the ventilation tubes of the CRDM cooling shroud. Under normal operation condition, only two of the four fans work. It is required that the IHP cooling system should keep the magnetic coil temperature below 200˚C in the design specification. This is achieved by ensuring that the average flow velocity around the CRDM coil assembly is above 15 m/s and that the minimum flow velocity at any location on the outer surface of the coil assembly is not less than 9 m/s. The main purpose of this paper is to study the flow characteristics of the IHP cooling system under various operating conditions. The CFD method is used to obtain the flow field and temperature field in the IHP and to support the rationality of the IHP design.

Keywords:The Integrated Head Package, Control Rod Drive Mechanism, CFD

CAP1400一体化堆顶组件冷却系统通风 数值研究

1. 引言

2. 计算模型

Figure 1. IHP cooling system schematic

IHP整体模型以及简化流道模型如图2所示，为了便于进行网格划分，计算模型中简化了对流场影响较小的螺栓等结构，经过网格无关性分析，计算模型采用的网格单元数为1300万。

3. 计算结果

3.1. IHP整体模型的计算结果

Figure 2.The overall IHP model and the simplified CRDM model

Figure 3. IHP fan position configuration

3.2. 不同风机全压的计算结果

3.3. 磁轭区传热计算结果

Table 1. Velocity results for various fan conditions

Figure 4. Flow streamlines of the air flow field inside the IHP

Figure 5. Operating total pressure and flow velocity of CRDM coil area

Figure 6. Temperature contour on the surface of the coil assembly

4. 总结

· 在所有风机组合中，当风机运行全压设定为设计全压1.5 kPa时，CRDM线圈组件周围的平均流速明显高于15 m/s。最小流速略低于平均流速，但仍明显高于9 m/s。

· 当风机运行全压从0.50 kPa到2.50 kPa之间变化时，空气流速也相应增大。为了提供足够的冷却风速，风机运行全压应至少大于1 kPa。

· 空气冷却后，CRDM线圈组件外壁的平均壁温约为147℃，远远低于磁轭线圈的温度限值200℃。但壁温在CRDM区域的顶部和底部可达到局部最大值191℃，这在设计过程中可能需要特别注意。

Numerical Research of CAP1400 IHP Cooling System[J]. 核科学与技术, 2017, 05(03): 164-169. http://dx.doi.org/10.12677/NST.2017.53021

1. 1. 孙汉虹, 等. 第三代核电技术AP1000[M]. 北京: 中国电力出版社, 2010.

2. 2. 闵鹏, 等. 一体化堆顶组件设计规范书[R]. 上海: 上海核工程研究设计院, 2011: 25-28.

3. 3. 于浩, 翁羽, 冯少东, 等. CAP1000一体化堆顶组件风冷系统流场分析[J]. 核技术, 2013, 36(4): 040624.

4. 4. 郑茂溪, 李跃忠, 冉小兵, 等. 控制棒驱动机构通风散热数值分析[J]. 核动力工程, 2014, 35(3): 69-72.

5. 5. Ansys Inc. (2011) ANSYS 14.0 FLUENT User’s Guide. Pennsylvania USA, Vol. 10, 725-726.