Advances in Clinical Medicine
Vol. 12  No. 04 ( 2022 ), Article ID: 50492 , 10 pages
10.12677/ACM.2022.124430

胰高血糖素样肽-1受体激动剂生物及 临床研究进展

李鑫1,江彤2*

1青海大学研究生院,青海 西宁

2青海大学附属医院,青海 西宁

收稿日期:2022年3月18日;录用日期:2022年4月12日;发布日期:2022年4月21日

摘 要

糖尿病的患病率居高不下,现代人们久坐不动的生活方式也导致了超重和肥胖人群的增多。虽然我们对血糖升高继发的各种并发症已经有了更深入的认识,但药物种类的繁多以及患者长期治疗依从性的下降也给临床治疗增添了几分难度。胰高血糖素样肽-1受体激动剂的问世似乎给体型肥胖的2型糖尿病患者带来了曙光。作为一款降糖药,它不仅可以有效避免低血糖的发生,还可以降低体质指数。近年来,人们还发现了GLP-1受体激动剂的一些非降糖作用,如保护患者的肝脏、肾脏和心血管等系统,降低或延缓相应并发症的发生及发展,甚至可以用于治疗帕金森病和阿尔茨海默症等疾病。本文通过GLP-1受体激动剂在生物及临床研究中的进展展开讨论,探讨其在临床使用中的价值。

关键词

胰高血糖素样肽-1,2型糖尿病,肥胖,并发症

Advances in Biological and Clinical Research of GLP-1 Receptor Agonists

Xin Li1, Tong Jiang2*

1Graduate School of Qinghai University, Xining Qinghai

2Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Mar. 18th, 2022; accepted: Apr. 12th, 2022; published: Apr. 21st, 2022

ABSTRACT

The prevalence rate of diabetes is high, and the change of modern people’s lifestyle has also led to an increase in overweight and obese people. Although we have a deeper understanding of various complications secondary to elevated blood glucose, the wide variety of drugs and the decline of patients’ long-term treatment compliance also add some difficulties to clinical treatment. The advent of glucagon like peptide-1 receptor agonist seems to bring dawn to obese patients with type 2 diabetes. As a hypoglycemic drug, it can not only effectively avoid hypoglycemia, but also reduce body mass index. In recent years, some non-hypoglycemic effects of GLP-1 receptor agonists have also been found, such as protecting patients’ liver, kidney and cardiovascular systems, reducing or delaying the occurrence and development of corresponding complications, and even can be used to treat diseases such as Parkinson’s disease and Alzheimer’s disease. This paper discusses the progress of GLP-1 receptor agonist in biological and clinical research, and discusses its value in clinical use.

Keywords:GLP-1, Type 2 Diabetes, Obesity, Complications

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

我国成人的糖尿病患病率已经达到了12.8% [1],总糖尿病患病人数占全球首位。居民营养与慢性病状况报告显示 [2],我国居民的超重率和肥胖率正呈现不断上升的趋势。肥胖症已被证实是2型糖尿病发生的重要危险因素,两者具有复杂的病理生理学关联,其特征是胰岛素分泌异常,肝葡萄糖产生过多以及肝脏和外周靶组织中的胰岛素抵抗。随着2型糖尿病的进展,实现和维持血糖控制变得越来越具有挑战性,心血管合并症的风险也随之增加。当体重指数(BMI)为30.0至34.9 kg/m2时,患糖尿病的风险增加了20.1倍,当BMI为35 kg/m2或更高时,患糖尿病的风险则增加了38倍 [2]。肥胖可以增加2型糖尿病患者的胰岛素抵抗和葡萄糖耐量 [3],还会加剧高胰岛素血症、血糖升高和血脂异常等代谢异常 [4]。值得一提的是,如果脂肪在腹部堆积,即使BMI是正常的,动脉粥样硬化和死亡的风险也会增加 [5]。因此,肥胖使2型糖尿病的治疗变得复杂化,并使药物治疗更加困难。另一个重要因素是,用于治疗2型糖尿病的几种药物,如胰岛素、磺脲类和噻唑烷二酮类会促进体重的增加 [6]。不过,近年来随着胰高血糖素样肽-1 (GLP-1)受体激动剂的问世,使得糖尿病患者降糖的同时改善或延缓心血管、肾脏等并发症,并减少体质指数成为可能。

2. GLP-1的分泌

GLP-1是由特定的肠上皮细胞(称为L细胞)中的胰高血糖素原裂解而来的,主要以氨基化的30个氨基酸的多肽GLP-1(7-36)NH2 [7] 的形式分泌,也有报道认为在整个小肠中都存在合成GLP-1的混合细胞群 [8]。GLP-1在葡萄糖的协同作用下调控胰岛β细胞中胰岛素基因的转录,进而促进胰岛的β细胞葡萄糖依赖性的胰岛素分泌,产生量可达到胰岛素总分泌量的50%以上;并抑制胰岛的α细胞分泌胰高血糖素。GLP-1在体内通过二肽基肽酶4 (DPP-4)的酶促裂解迅速失活,只有完整形式的GLP-1才能在人体中保留生物学效应 [9]。这些完整的形式以及灭活的GLP-1代谢物也通过肾脏从循环中迅速清除。GLP-1具有促进肝脏糖原合成、延缓胃排空、增加饱腹感以及保护肾脏及心血管系统等重要作用。GLP-1受体(GLP-1R)广泛分布于人体各种细胞的表面,胰腺、肾脏、心脏、胃等重要器官皆有该受体存在 [10]。但是肝细胞上是否存在GLP-1R尚有争议 [11],有学者监测到,GLP-1在门静脉中达到其最高静脉浓度 [12]。GLP-1R活性也极易受到胃酸、胃肠激素等多种化学物质的影响 [10]。

3. GLP-1受体激动剂的分类

GLP-1受体激动剂(GLP-1RA)激活细胞膜上的GLP-1受体,并通过多种途径实现其生理学效应。根据其药效持续时间的长短,分为每日注射一至两次的短效制剂和每周注射一次的长效制剂。GLP-1RA的使用方法大多和胰岛素类似,在皮下注射。口服型药物索马鲁肽(semaglutide)目前已处于三期临床试验阶段,获批后将成为全球首款口服GLP-1RA。根据其分子结构特点,GLP-1RA可分为两类,一类是基于人源的GLP-1结构进行改造,另一类是基于希拉毒蜥的唾液中分离出的天然GLP-1类似物Exendin-4结构进行改造 [10]。目前临床上常用的短效GLP-1RA类药物主要包括:艾塞那肽、利司那肽、利西拉来等;长效GLP-1RA类药物主要包括:利拉鲁肽(日制剂)、阿必鲁肽、度拉糖肽、艾塞那肽微球、索马鲁肽等。

4. GLP-1的生理作用

由于GLP-1RA有促胰岛素分泌、抑制胰高血糖素分泌并可以有效减轻体重等作用,故目前临床主要用于治疗2型糖尿病(T2DM)。但GLP-1的作用远不至此,它还具备促进肝脏糖原合成、延缓胃排空、增加饱腹感以及减少尿蛋白排出、保护心血管系统等重要作用。这为GLP-1RA在临床中开辟其他的适应症提供了基础,接下来我们会详细描述GLP-1RA的生物效应以及临床应用。

4.1. GLP-1对胰岛功能的影响

GLP-1增强葡萄糖依赖性胰岛素的分泌和抑制胰岛α细胞分泌胰高血糖素,同时最大限度地减少低血糖。目前已开发多种结构上不同的GLP-1R激动剂用于治疗2型糖尿病 [13]。值得注意的是,GLP-1的促胰岛素特性在对磺脲类药物治疗无反应的T2DM人类受试者中得以保留 [14]。

β细胞分泌的多种产物可以抑制胰高血糖素分泌,包括胰岛素、锌和γ-氨基丁酸,理论上可能有助于GLP-1R依赖性抑制α细胞的分泌活性 [15]。GLP-1还抑制胰岛β细胞死亡,诱导β细胞增殖,并促进糖尿病实验模型中β细胞数量的扩增 [16]。

在使用GLP-1R激动剂治疗T2DM期间,通常可以改善β细胞的功能;然而,大多数临床试验的持续时间为3~24个月,只有有限的证据支持这些试验停止后的疾病缓解作用。尽管目前对人类受试者的β细胞群成像存在局限性,但现有数据并未证明使用GLP-1R激动剂治疗将通过β细胞群的持久变化产生人类β细胞功能持续改善的假设。

GLP-1R激动剂还可以在自身免疫性糖尿病的NOD (非肥胖糖尿病)小鼠模型中减少胰岛炎症并延迟或预防实验性β细胞衰竭的发展,从而促进探索GLP-1R激动剂在T1DM治疗中的潜力。GLP-1R激动剂可提高离体或移植到动物体内的人类胰岛的存活率 [16]。然而,它们作为辅助治疗在接受胰岛移植的T1DM人类受试者中保存β细胞功能的有效性仍未得到证实。同样令人失望的是给TIDM患者加用度拉糖肽后,虽然受试者的体重发生了减轻和减少了一定的胰岛素剂量,但胃肠道不良事件的发生率以及酮症酸中毒和症状性低血糖的发生却有明显升高 [17] [18]。因此,GLP-1治疗T1DM的人类受试者存在潜在影响,但从保留内源性β细胞功能,到移植胰岛功能的持续改善,再到胰岛素的辅助治疗,尚未实现。

4.2. 外周组织中的GLP-1和胰岛素敏感性

GLP-1受体激动后产生的体重减轻可改善动物和人类的胰岛素敏感性。然而,Campbell和Drucker等人使用RNA-seq、原位杂交或经过验证的GLP-1R抗血清的研究未检测到典型GLP-1R在肝细胞、骨骼肌细胞或脂肪细胞中的表达 [16] [19]。也就意味着GLP-1R的激动不会直接影响肝脏、肌肉或脂肪组织中的胰岛素信号传导或葡萄糖摄取。中枢神经系统的GLP-1Rs控制动物的胰岛素敏感性,外周神经或血管内GLP1-Rs的激活可增加组织血流,间接调节胰岛素作用。有研究发现GLP-1输注可增加人体骨骼肌中的微血管募集,而不依赖于胰岛素,这可能会起到增强局部胰岛素敏感性的作用 [20]。

4.3. GLP-1对胃肠道的影响

GLP-1的胃肠道作用包括抑制胃肠道的分泌和运动。实验者们首先观察到GLP-1抑制胃泌素诱导的胃酸分泌 [21],随后证明GLP-1也抑制进餐诱导的胃酸分泌以及胃排空和胰腺分泌 [22]。GLP-1对胃酸分泌的抑制作用可以通过血浆中GLP-1的浓度升高而引起,并且显着地增加了胃肠激素肽YY (PYY)的抑制作用,PYY与GLP-1同时从L细胞释放 [23]。这两种肽的作用下,几乎消除了胃泌素刺激的胃酸分泌,表明这两种肽可能是“回肠制动效应”的介质,即回肠中存在未吸收的营养物质,从而引起上消化道功能的内分泌抑制。GLP-1可以完全消除人类纯迷走神经刺激引起的胃酸分泌,并且在已经接受过迷走神经切断术的人中这种抑制作用将不复存在 [24]。这表明GLP-1对胃功能的所有作用都是通过迷走神经通路介导的。GLP-1通过抑制胃排空来改善餐后血糖水平,降低葡萄糖被吸收到循环中的速率 [25]。实验者们还发现GLP-1类似物经外周给药通过抑制食物的摄入来减轻体重 [26],在小鼠和大鼠中,GLP-1R激动剂诱导的对食物摄入的短期抑制是剂量依赖性的 [27]。这些都为临床上使用GLP-1RA治疗肥胖症打下了基础。

4.4. GLP-1对心血管系统的影响

糖尿病患者的主要死亡原因之一就是血糖升高继发的心血管疾病 [28]。GLP-1与心脏上的相应受体结合后可以使心肌摄取、利用葡萄糖的效能提高,左心室射血分数提高,舒张血管,并可以通过减少心肌缺血–再灌注损伤等方式来保护心血管。GLP-1保护心血管的方式多种多样 [29]:

4.4.1. 抑制炎症反应

GLP-1通过抑制单核细胞趋化因子、TNF-α等多种炎症因子减轻心血管系统遭受炎症反应的侵害,阻碍粥样斑块的形成。

4.4.2. 保护血管平滑肌和内皮细胞

GLP-1改善血管局部缺血表现,建立有效的侧枝循环,并减轻血管平滑肌细胞增生,当血管损伤后,可以有效降低新生血管导致的内膜增厚,进而防止血管出现狭窄。

4.4.3. 降血压作用

目前认为GLP-1的降压作用主要是通过抑制肾小管钠离子的吸收,促进尿钠排泄实现的。并且GLP-1可以保护血管内皮细胞,并通过抗氧化应激、抑制炎症反应,使血管舒张,这些机制综合在一起使血压降低。

4.4.4. 调控心肌代谢能力

GLP-1通过增加心肌葡萄糖转运蛋白膜位数量,提高心肌对葡萄糖的敏感性,进而提高心肌对葡萄糖的利用率。目前的研究只在心脏血管平滑肌和心房肌细胞中发现了GLP-1受体的存在,而心室肌细胞却无发现 [30]。GLP-1可以在一定程度上抑制心功能不全或心衰患者的心肌细胞凋亡 [29]。得益于这些效果,临床中使用GLP-1RA的患者可以大幅降低3P-MACE (心血管死亡或非致死性心肌梗死或非致死性卒中复合事件)及非致死性卒中的风险 [31]。

4.5. GLP-1对肾脏的影响

T2DM是慢性肾脏疾病(CKD)和终末期肾病(ESRD)的主要原因,占全球所有开始肾脏替代治疗(RRT)的患者的近50% [32]。研究人员在肾脏近端肾小管细胞和肾小球前血管平滑肌细胞中发现了GLP-1R的存在 [33]。最近的一项研究表明GLP-1R激动剂对肾脏的潜在保护作用与其降糖作用无关,其可能在抑制糖尿病肾病(DKD)的发生和发展中发挥作用 [34]。因此,GLP-1R激动剂对T2DM的肾脏危险因素产生积极的影响 [35],并可能会超越其控制血糖的作用有更好的临床结果。

上述我们提到GLP-1可以诱导尿钠的增加,并具有利尿的作用,以此来降低血压。在健康人体中急性应用GLP-1R激动剂可能会增加肾有效血浆流量和肾小球滤过率(GFR) [36],这是由血压的短暂升高决定的,而血压的增加反过来又导致心率和心输出量的增加。在实验研究中,GLP-1和GLP-1R激动剂已经被证明可以降低肾脏RAAS系统激活的标志物,包括肾小球中血管紧张素II水平及其有害影响,这可能代表了DKD的其他潜在的肾脏保护机制 [37]。然而,尚没有确凿的数据证实急性或长期使用GLP-1R激动剂对RAAS成分的影响。环磷酸腺苷–蛋白激酶A (cAMP-PKA)途径的激活可减少糖尿病肾脏ROS (活性氧)的产生。GLP-1R的激活可刺激cAMP-PKA通路,具有抗氧化作用。因此,GLP-1可能具有保护肾脏免受氧化损伤的作用。GLP-1R激动剂的利钠作用以及这些药物对糖尿病肾病的传统危险因素(如高血糖、高血压和肥胖)的影响可能是其减少蛋白尿作用的最相关机制 [38]。

4.6. GLP-1对血脂代谢的影响

GLP-1R激动剂治疗可以小幅降低低密度脂蛋白(LDL)胆固醇、总胆固醇和甘油三酯水平,但不能改善高密度脂蛋白(HDL)胆固醇 [39]。GLP-1R激动剂改善血脂异常的机制目前还不完全清楚。GLP-1R激动剂已经证明可以减少肠道乳糜粒的产生和分泌,从而有助于降低甘油三酯的吸收和循环水平 [40]。棕色脂肪组织通过燃烧甘油三酯产生热量,对啮齿类动物模型的研究显示,GLP-1R激动剂似乎通过激活棕色脂肪组织来帮助清除循环中的脂质 [41]。

4.7. GLP-1对非酒精性脂肪性肝病的影响

非酒精性脂肪性肝病(NAFLD)是欧美国家慢性肝病的最常见病因。它的特征是在没有继发原因的情况下,脂肪分子在肝细胞中过度沉积和积累 [42]。肝脏组织中脂肪分子的大量存在与代谢综合征(MS),肥胖和胰岛素抵抗的危险因素高度相关。虽然NAFLD和NASH (非酒精性脂肪性肝炎)与酒精相关性脂肪肝疾病(ALD)具有相似的病理途径,但NAFLD和NASH被认为是代谢紊乱,主要特征是甘油三酯在肝细胞中的沉积 [43]。

基于人类肝细胞和动物模型的实验证据表明 [44] [45],GLP-1 RA能够通过减少新生脂肪发生、增强脂肪酸氧化和改善胰岛素信号通路的多种元素来改善肝脂肪变性。在健康人体中急性使用艾塞那肽可减少肝葡萄糖的产生,并降低肝脏组织的新生脂肪生成,此外还可以减少从脂肪分解中释放的游离脂肪酸并降低甘油三酯衍生的有毒代谢物 [46]。在脂肪肝疾病中,炎症环境和炎症的炎症信号主要来自M1巨噬细胞(促炎形式)。研究发现GLP-1会影响免疫反应,并通过STAT3激活信号传导诱导M2巨噬细胞极化。M2巨噬细胞通过产生抗炎生物标志物在炎症性肝脏环境中创造平衡。此外,GLP-1增加了M2巨噬细胞相关分子IL-10和CD204的产生。此外,GLP-1可以调节肝纤维化并减少NAFLD向NASH进展 [47] [48]。虽然目前治疗NAFLD或NASH的药物尚无一例被批准,但改善脂肪肝的策略往往是针对这些相关疾病。由于胰岛素抵抗在NAFLD和NASH的发病机制中起着至关重要的作用,因此GLP-1及其类似物给这些疾病的治疗带来了一丝曙光。

4.8. GLP-1和帕金森病

帕金森病(PA)是一种进行性神经退行性疾病。动物模型的研究表明 [49] [50],激活大脑中的GLP-1受体(GLP-1Rs)可以改善神经炎症,神经发生和突触可塑性。GLP-1促进的神经营养和神经保护可能解释了神经元活动的改善和神经退行性通路的干扰,这意味着GLP-1可以预防阿尔茨海默氏症和帕金森氏症等疾病。GLP-1分子与位于中脑多巴胺能神经元膜上的GLP-1Rs结合,并激活这些细胞对抗帕金森病的典型病理途径 [51]。在帕金森病中,这些中脑神经元退化主要是因为线粒体功能障碍导致多巴胺传递减少和a-突触核蛋白沉积,此外还存在氧化应激增加。a-突触核蛋白的沉积,活性氧(ROS)的积累以及垂死的神经元细胞的存在触发了中脑组织中的炎症环境 [49]。T2DM受试者存在脑细胞的胰岛素抵抗,这可能加速帕金森病的进展,而细胞增殖恢复胰岛素信号传导并改善神经元功能。恢复这些神经元中的胰岛素信号传导对应于GLP-1在糖尿病个体神经变性中的神经保护作用 [52]。可惜的是,目前关于GLP-1RA对帕金森病的人类临床试验相对较少,大部分仍处于实验室阶段。

4.9. GLP-1和阿尔茨海默症

阿尔茨海默病(AD)是全球痴呆症最常见的神经退行性疾病,目前尚无治疗方法。AD中的认知障碍很可能始于大脑中的突触传递受损和突触丧失 [53]。T2DM、肥胖和高脂血症/血脂异常引起的胰岛素抵抗都会增加患AD的风险 [54]。

利拉鲁肽可防止Aβ神经毒性并减少体外细胞凋亡,减少皮质和海马淀粉样斑块负荷,减轻脑胰岛素抵抗、神经胶质激活和ER应激,并改善APPswePS1ΔE9小鼠的记忆力 [55]。利拉鲁肽还可进一步降低AD转基因小鼠模型中的tau蛋白过度磷酸化并减少海马神经元的损失 [56]。在培养的海马神经元中,利拉鲁肽降低了AβO (人β-淀粉样蛋白寡聚体)诱导的突触毒性,这是一种由蛋白激酶A (PKA)激活介导的作用。利拉鲁肽可预防大脑胰岛素受体的丧失并逆转AβO诱导的小鼠记忆障碍 [57]。

在AD中,GLP-1减少神经元凋亡,神经炎症和典型的胶质病。GLP-1还可以在减少内质网应激,氧化应激,Aβ沉积,tau蛋白高磷酸化,细胞毒性和突触损失方面显示出有益效果。此外,GLP-1可以放大脑细胞中的胰岛素信号传导,导致神经元中的胰岛素敏感性增加。此外,加强Aβ沉积和tau蛋白高磷酸化的胰岛素抵抗可引起大脑中的微血管损伤和白质损伤。此外,还观察到葡萄糖神经毒性和晚期糖基化终产物在大脑中的积累。用GLP-1治疗可以有效预防这些事件 [58] [59] [60]。

4.10. GLP-1与多囊卵巢综合症

多囊卵巢综合征(PCOS)是不孕的主要原因之一,是育龄妇女中最常见的内分泌紊乱。高胰岛素血症在PCOS的发病机制中起着重要作用,其特征是月经稀发和高雄激素血症。伴随的肥胖进一步增加了胰岛素抵抗并加剧了PCOS的症状 [61]。另一方面,PCOS中雄激素产量的增加导致内脏脂肪沉积,这反过来又加剧了胰岛素抵抗和高胰岛素血症,进一步加剧了这种恶性循环 [62]。

在PCOS女性中,体重减轻已被证明可以改善高雄激素血症、生殖功能和代谢参数,如高脂血症、血糖控制以及高血压 [63]。GLP-1RA提供了一个独特的机会,可以同时解决体重过重和高血糖问题。一项试验探讨了利拉鲁肽对异位脂肪的影响,该试验涉及72名PCOS女性。与安慰剂相比,利拉鲁肽治疗26周显著减轻体重5.2公斤,肝脂肪含量、内脏脂肪含量、非酒精性脂肪性肝病患病率均显著降低 [64]。

在一项涉及176名患有PCOS的超重或肥胖妇女的临床试验中研究了自然妊娠率 [65],她们被随机分配接受艾塞那肽10 μg,每日两次,或二甲双胍1000 mg,每日两次,为期12周。然后,所有患者再进行为期12周的单独用二甲双胍治疗。在第二个12周内,艾塞那肽治疗患者的自然妊娠率显着高于二甲双胍治疗的患者(43.60%对18.70%;P < 0.05)。以上试验结果显示GLP-1RA的减肥效果为扩大PCOS患者可用的治疗方案提供了独特的机会。

5. 总结

2型糖尿病发病率愈发升高,并且考虑到现代社会中预期寿命的增加和常见的久坐不动的生活方式行为导致超重和肥胖人群的比例增加,GLP-1RA预防多种疾病的发生和发展具有重要影响,我们需要让GLP-1RA这样多靶点受益的药物更多地为患者所使用。2020年中国CDS糖尿病指南 [66] 中也指出,合并ASCVD或心血管风险高危的T2DM患者以及合并CKD或心力衰竭的T2DM患者,不管其糖化血红蛋白水平如何,在没有禁忌症的情况下都应在二甲双胍的基础上加用GLP-1RA或SGLT2i (钠–葡萄糖协同转运蛋白2抑制剂)。

目前GLP-1RA对于帕金森病、阿尔茨海默症及多囊卵巢综合症等疾病的作用还需要进一步的研究。文献中关于GLP-1类似物的非常规使用的研究仍然很少,并且主要是在动物模型上进行。未来我们应当对人类进行更多的研究、记录更详细的药物剂量、可能的给药途径以及其他益处和副作用的问题。当然,我们很期待第一款口服GLP-1RA的上市,在临床使用中为患者提供更多的选择。

文章引用

李 鑫,江 彤. 胰高血糖素样肽-1受体激动剂生物及临床研究进展
Advances in Biological and Clinical Research of GLP-1 Receptor Agonists[J]. 临床医学进展, 2022, 12(04): 2979-2988. https://doi.org/10.12677/ACM.2022.124430

参考文献

  1. 1. Li, Y., Teng, D., Shi, X., Qin, G., Qin, Y., Quan, H., Shi, B., Sun, H., Ba, J., Chen, B., Du, J., He, L., Lai, X., Li, Y., Chi, H., Liao, E., Liu, C., Liu, L., Tang, X., Tong, N., Wang, G., Zhang, J.A., Wang, Y., Xue, Y., Yan, L., Yang, J., Yang, L., Yao, Y., Ye, Z., Zhang, Q., Zhang, L., Zhu, J., Zhu, M., Ning, G., Mu, Y., Zhao, J., Teng, W. and Shan, Z. (2020) Prevalence of Diabetes Recorded in Mainland China Using 2018 Diagnostic Criteria from the American Diabetes Association: National Cross Sectional Study. British Medical Journal, 369, m997. https://doi.org/10.1136/bmj.m997

  2. 2. Hu, F.B., Manson, J.E., Stampfer, M.J., Colditz, G., Liu, S., Solomon, C.G. and Willett, W.C. (2001) Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. The New England Journal of Medicine, 345, 790-797. https://doi.org/10.1056/NEJMoa010492

  3. 3. Olefsky, J.M., Kolterman, O.G. and Scarlett, J.A. (1982) Insulin Action and Resistance in Obesity and Noninsulin-Dependent Type II Diabetes Mellitus. American Journal of Physiology-Endocrinology and Metabolism, 243, E15-E30. https://doi.org/10.1152/ajpendo.1982.243.1.E15

  4. 4. Albu, J. and Pi-Sunyer, F.X. (1998) Obesity and Diabetes. In: Bray, G.A., Bouchard, C. and James, W.P.T., Eds., Handbook of Obesity, Marcel Dekker, New York, 697-707.

  5. 5. Toplak, H., Hoppichler, F., Wascher, T.C., Schindler, K. and Ludvik, B. (2016) Adipositas und Type 2 Diabetes [Obesity and Type 2 Diabetes]. Wiener klinische Wochenschrift, 128, 196-200. https://doi.org/10.1007/s00508-016-0986-9

  6. 6. Albu, J. and Raja-Khan, N. (2003) The Management of the Obese Diabetic Patient. Primary Care: Clinics in Office Practice, 30, 465-491. https://doi.org/10.1016/S0095-4543(03)00043-5

  7. 7. Kieffer, T.J. and Habener, J.F. (1999) The Glucagon-Like Peptides. Endocrine Reviews, 20, 876-913. https://doi.org/10.1210/edrv.20.6.0385

  8. 8. Theodorakis, M.J., Carlson, O., Michopoulos, S., Doyle, M.E., Juhaszova, M., Petraki, K. and Egan, J.M. (2006) Human Duodenal Enteroendocrine Cells: Source of Both Incretin Peptides, GLP-1 and GIP. American Journal of Physiology-Endocrinology and Metabolism, 290, E550-E559. https://doi.org/10.1152/ajpendo.00326.2004

  9. 9. Holst, J.J. (2007) The Physiology of Glucagon-Like Peptide 1. Physiological Reviews, 87, 1409-1439. https://doi.org/10.1152/physrev.00034.2006

  10. 10. 张凯悦, 吴倜珺. GLP-1受体激动剂类药物(GLP-1RA)在2型糖尿病治疗中的研究进展[J]. 医学分子生物学杂志, 2021, 18(4): 321-324. https://doi.org/10.3870/j.issn.1672-8009.2021.04.013

  11. 11. Hazlehurst, J.M., Woods, C., Marjot, T., Cobbold, J.F. and Tomlinson, J.W. (2016) Non-Alcoholic Fatty Liver Disease and Diabetes. Metabolism, 65, 1096-1108. https://doi.org/10.1016/j.metabol.2016.01.001

  12. 12. Cantini, G., Mannucci, E. and Luconi, M. (2016) Perspectives in GLP-1 Research: New Targets, New Receptors. Trends in Endocrinology & Metabolism, 27, 427-438. https://doi.org/10.1016/j.tem.2016.03.017

  13. 13. Drucker, D.J., Habener, J.F. and Holst, J.J. (2017) Discovery, Characterization, and Clinical Development of the Glucagon-Like Peptides. Journal of Clinical Investigation, 127, 4217-4227.

  14. 14. Nauck, M.A., Sauerwald, A., Ritzel, R., Holst, J.J. and Schmiegel, W. (1998) Influence of Glucagon-Like Peptide 1 on Fasting Glycemia in Type 2 Diabetic Patients Treated with Insulin after Sulfonylurea Secondary Failure. Diabetes Care, 21, 1925-1931. https://doi.org/10.2337/diacare.21.11.1925

  15. 15. Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756. https://doi.org/10.1016/j.cmet.2018.03.001

  16. 16. Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837. https://doi.org/10.1016/j.cmet.2013.04.008

  17. 17. Ahrén, B., Hirsch, I.B., Pieber, T.R., Mathieu, C., Gómez-Peralta, F., Hansen, T.K., Philotheou, A., Birch, S., Christiansen, E., Jensen, T.J. and Buse, J.B. (ADJUNCT TWO Investigators) (2016) Efficacy and Safety of Liraglutide Added to Capped Insulin Treatment in Subjects with Type 1 Diabetes: The ADJUNCT TWO Randomized Trial. Diabetes Care, 39, 1693-1701. https://doi.org/10.2337/dc16-0690

  18. 18. Mathieu, C., Zinman, B., Hemmingsson, J.U., Woo, V., Colman, P., Christiansen, E., Linder, M. and Bode, B. (ADJUNCT ONE Investigators) (2016) Efficacy and Safety of Liraglutide Added to Insulin Treatment in Type 1 Diabetes: The ADJUNCT ONE Treat-to-Target Randomized Trial. Diabetes Care, 39, 1702-1710. https://doi.org/10.2337/dc16-0691

  19. 19. Panjwani, N., Mulvihill, E.E., Longuet, C., Yusta, B., Campbell, J.E., Brown, T.J., Streutker, C., Holland, D., Cao, X., Baggio, L.L. and Drucker, D.J. (2013) GLP-1 Receptor Activation Indirectly Reduces Hepatic Lipid Accumulation but Does Not Attenuate Development of Atherosclerosis in Diabetic Male ApoE-/- Mice. Endocrinology, 154, 127-139. https://doi.org/10.1210/en.2012-1937

  20. 20. Sjøberg, K.A., Holst, J.J., Rattigan, S., Richter, E.A. and Kiens, B. (2014) GLP-1 Increases Microvascular Recruitment but Not Glucose Uptake in Human and Rat Skeletal Muscle. American Journal of Physiology-Endocrinology and Metabolism, 306, E355-E362. https://doi.org/10.1152/ajpendo.00283.2013

  21. 21. Schjoldager, B.T., Mortensen, P.E., Christiansen, J., Orskov, C. and Holst, J.J. (1989) GLP-1 (Glucagon-Like Peptide 1) and Truncated GLP-1, Fragments of Human Proglucagon, Inhibit Gastric Acid Secretion in Humans. Digestive Diseases and Sciences, 34, 703-708. https://doi.org/10.1007/BF01540341

  22. 22. Wettergren, A., Schjoldager, B., Mortensen, P.E., Myhre, J., Christiansen, J. and Holst, J.J. (1993) Truncated GLP-1 (Proglucagon 78-107-Amide) Inhibits Gastric and Pancreatic Functions in Man. Digestive Diseases and Sciences, 38, 665-673. https://doi.org/10.1007/BF01316798

  23. 23. Wettergren, A., Maina, P., Boesby, S. and Holst, J.J. (1997) Glucagon-Likepeptide-1 7-36 Amide and Peptide YY Have Additive Inhibitory Effect on Gastric Acid Secretion in Man. Scandinavian Journal of Gastroenterology, 32, 552-555. https://doi.org/10.3109/00365529709025098

  24. 24. Wettergren, A., Petersen, H., Orskov, C., Christiansen, J., Sheikh, S.P. and Holst, J.J. (1994) Glucagon-Like Peptide-1 7-36 Amide and Peptide YY from the L-Cell of the Ileal Mucosa Are Potent Inhibitors of Vagally Induced Gastric Acid Secretion in Man. Scandinavian Journal of Gastroenterology, 29, 501-505. https://doi.org/10.3109/00365529409092462

  25. 25. Linnebjerg, H., Park, S., Kothare, P.A., Trautmann, M.E., Mace, K., Fineman, M., Wilding, I., Nauck, M. and Horowitz, M. (2008) Effect of Exenatide on Gastric Emptying and Relationship to Postprandial Glycemia in Type 2 Diabetes. Regulatory Peptides, 151, 123-129. https://doi.org/10.1016/j.regpep.2008.07.003

  26. 26. Henderson, S.J., Konkar, A., Hornigold, D.C., Trevaskis, J.L., Jackson, R., Fritsch Fredin, M., Jansson-Löfmark, R., Naylor, J., Rossi, A., Bednarek, M.A., Bhagroo, N., Salari, H., Will, S., Oldham, S., Hansen, G., Feigh, M., Klein, T., Grimsby, J., Maguire, S., Jermutus, L., Rondinone, C.M. and Coghlan, M.P. (2016) Robust Anti-Obesity and Metabolic Effects of a Dual GLP-1/Glucagon Receptor Peptide Agonist in Rodents and Non-Human Primates. Diabetes, Obesity and Metabolism, 18, 1176-1190. https://doi.org/10.1111/dom.12735

  27. 27. Turton, M.D., O’Shea, D., Gunn, I., Beak, S.A., Edwards, C.M., Meeran, K., Choi, S.J., Taylor, G.M., Heath, M.M., Lambert, P.D., Wilding, J.P., Smith, D.M., Ghatei, M.A., Herbert, J. and Bloom, S.R. (1996) A Role for Glucagon-Like Peptide-1 in the Central Regulation of Feeding. Nature, 379, 69-72. https://doi.org/10.1038/379069a0

  28. 28. 纪立农, 邹大进, 洪天配, 等. GLP-1受体激动剂临床应用专家指导意见[J]. 中国糖尿病杂志, 2018, 26(5): 353-361. https://doi.org/10.3969/j.issn.1006-6187.2018.05.001

  29. 29. 赵立峰, 刘英, 刘冠英. GLP-1受体激动剂对心血管的保护机制研究进展[J]. 海峡药学, 2021, 33(3): 143-145.

  30. 30. 戴亚伟, 周景昕, 韩旭, 等. GLP-1抑制主动脉瓣膜间质细胞钙化[J]. 南京医科大学学报(自然科学版), 2019(5): 664-667.

  31. 31. Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. The Lancet, 394, 121-130. https://doi.org/10.1016/S0140-6736(19)31149-3

  32. 32. Koye, D.N., Shaw, J.E., Reid, C.M., Atkins, R.C., Reutens, A.T. and Magliano, D.J. (2017) Incidence of Chronic Kidney Disease among People with Diabetes: A Systematic Review of Observational Studies. Diabetic Medicine, 34, 887-901. https://doi.org/10.1111/dme.13324

  33. 33. Pyke, C., Heller, R.S., Kirk, R.K., Ørskov, C., Reedtz-Runge, S., Kaastrup, P., Hvelplund, A., Bardram, L., Calatayud, D. and Knudsen, L.B. (2014) GLP-1 Receptor Localization in Monkey and Human Tissue: Novel Distribution Revealed with Extensively Validated Monoclonal Antibody. Endocrinology, 155, 1280-1290. https://doi.org/10.1210/en.2013-1934

  34. 34. Thomas, M.C. (2017) The Potential and Pitfalls of GLP-1 Receptor Agonists for Renal Protection in Type 2 Diabetes. Diabetes & Metabolism, 43, 2S20-2S27. https://doi.org/10.1016/S1262-3636(17)30069-1

  35. 35. Rowlands, J., Heng, J., Newsholme, P. and Carlessi, R. (2018) Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Frontiers in Endocrinology, 9, Article No. 672. https://doi.org/10.3389/fendo.2018.00672

  36. 36. Smits, M.M., Tonneijck, L., Muskiet, M.H., Hoekstra, T., Kramer, M.H., Pieters, I.C., Cahen, D.L., Diamant, M. and van Raalte, D.H. (2015) Cardiovascular, Renal and Gastrointestinal Effects of Incretin-Based Therapies: An Acute and 12-Week Randomised, Double-Blind, Placebo-Controlled, Mechanistic Intervention Trial in Type 2 Diabetes. BMJ Open, 5, e009579. https://doi.org/10.1136/bmjopen-2015-009579

  37. 37. Roscioni, S.S., Heerspink, H.J. and de Zeeuw, D. (2014) The Effect of RAAS Blockade on the Progression of Diabetic Nephropathy. Nature Reviews Nephrology, 10, 77-87. https://doi.org/10.1038/nrneph.2013.251

  38. 38. Greco, E.V., Russo, G., Giandalia, A., Viazzi, F., Pontremoli, R. and De Cosmo, S. (2019) GLP-1 Receptor Agonists and Kidney Protection. Medicina, 55, Article No. 233. https://doi.org/10.3390/medicina55060233

  39. 39. Sun, F., Wu, S., Wang, J., Guo, S., Chai, S., Yang, Z., Li, L., Zhang, Y., Ji, L. and Zhan, S. (2015) Effect of Glucagon-Like Peptide-1 Receptor Agonists on Lipid Profiles among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Clinical Therapeutics, 37, 225-241.E8. https://doi.org/10.1016/j.clinthera.2014.11.008

  40. 40. Farr, S., Taher, J. and Adeli, K. (2014) Glucagon-Like Peptide-1 as a Key Regulator of Lipid and Lipoprotein Metabolism in Fasting and Postprandial States. Cardiovascular & Hematological Disorders-Drug Targets, 14, 126-136. https://doi.org/10.2174/1871529X14666140505125300

  41. 41. Kooijman, S., Wang, Y., Parlevliet, E.T., Boon, M.R., Edelschaap, D., Snaterse, G., Pijl, H., Romijn, J.A. and Rensen, P.C. (2015) Central GLP-1 Receptor Signalling Accelerates Plasma Clearance of Triacylglycerol and Glucose by Activating Brown Adipose Tissue in Mice. Diabetologia, 58, 2637-2646. https://doi.org/10.1007/s00125-015-3727-0

  42. 42. Laurindo, L.F., Barbalho, S.M., Guiguer, E.L., da Silva Soares de Souza, M., de Souza, G.A., Fidalgo, T.M., Araújo, A.C., de Souza Gonzaga, H.F., de Bortoli Teixeira, D., de Oliveira Silva Ullmann, T., Sloan, K.P. and Sloan, L.A. (2022) GLP-1a: Going beyond Traditional Use. International Journal of Molecular Sciences, 23, Article No. 739. https://doi.org/10.3390/ijms23020739

  43. 43. Brunner, K.T., Henneberg, C.J., Wilechansky, R.M. and Long, M.T. (2019) Nonalcoholic Fatty Liver Disease and Obesity Treatment. Current Obesity Reports, 8, 220-228. https://doi.org/10.1007/s13679-019-00345-1

  44. 44. Gupta, N.A., Mells, J., Dunham, R.M., Grakoui, A., Handy, J., Saxena, N.K. and Anania, F.A. (2010) Glucagon-Like Peptide-1 Receptor Is Present on Human Hepatocytes and Has a Direct Role in Decreasing Hepatic Steatosis in Vitro by Modulating Elements of the Insulin Signaling Pathway. Hepatology, 51, 1584-1592. https://doi.org/10.1002/hep.23569

  45. 45. Trevaskis, J.L., Griffin, P.S., Wittmer, C., Neuschwander-Tetri, B.A., Brunt, E.M., Dolman, C.S., Erickson, M.R., Napora, J., Parkes, D.G. and Roth, J.D. (2012) Glucagon-Like Peptide-1 Receptor Agonism Improves Metabolic, Biochemical, and Histopathological Indices of Nonalcoholic Steatohepatitis in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 302, G762-G772. https://doi.org/10.1152/ajpgi.00476.2011

  46. 46. Seghieri, M., Christensen, A.S., Andersen, A., Solini, A., Knop, F.K. and Vilsbøll, T. (2018) Future Perspectives on GLP-1 Receptor Agonists and GLP-1/Glucagon Receptor Co-Agonists in the Treatment of NAFLD. Frontiers in Endocrinology, 9, Article No. 649. https://doi.org/10.3389/fendo.2018.00649

  47. 47. Bifari, F., Manfrini, R., Dei Cas, M., Berra, C., Siano, M., Zuin, M., Paroni, R. and Folli, F. (2018) Multiple Target Tissue Effects of GLP-1 Analogues on Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH). Pharmacological Research, 137, 219-229. https://doi.org/10.1016/j.phrs.2018.09.025

  48. 48. Kazankov, K., Jørgensen, S.M.D., Thomsen, K.L., Møller, H.J., Vilstrup, H., George, J., Schuppan, D. and Grønbæk, H. (2019) The Role of Macrophages in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Nature Reviews Gastroenterology & Hepatology, 16, 145-159. https://doi.org/10.1038/s41575-018-0082-x

  49. 49. Athauda, D. and Foltynie, T. (2016) The Glucagon-Like Peptide 1 (GLP) Receptor as a Therapeutic Target in Parkinson’s Disease: Mechanisms of Action. Drug Discovery Today, 21, 802-818. https://doi.org/10.1016/j.drudis.2016.01.013

  50. 50. Kim, D.S., Choi, H.I., Wang, Y., Luo, Y., Hoffer, B.J. and Greig, N.H. (2017) A New Treatment Strategy for Parkinson’s Disease through the Gut-Brain Axis: The Glucagon-Like Peptide-1 Receptor Pathway. Cell Transplantation, 26, 1560-1571. https://doi.org/10.1177/0963689717721234

  51. 51. Athauda, D., Maclagan, K., Skene, S.S., Bajwa-Joseph, M., Letchford, D., Chowdhury, K., Hibbert, S., Budnik, N., Zampedri, L., Dickson, J., Li, Y., Aviles-Olmos, I., Warner, T.T., Limousin, P., Lees, A.J., Greig, N.H., Tebbs, S. and Foltynie, T. (2017) Exenatide Once Weekly versus Placebo in Parkinson’s Disease: A Randomised, Double-Blind, Placebo-Controlled Trial. The Lancet, 390, 1664-1675. https://doi.org/10.1016/S0140-6736(17)31585-4

  52. 52. Mulvaney, C.A., Duarte, G.S., Handley, J., Evans, D.J., Menon, S., Wyse, R. and Emsley, H.C. (2020) GLP-1 Receptor Agonists for Parkinson’s Disease. Cochrane Database of Systematic Reviews, 7, CD012990.

  53. 53. Selkoe, D.J. (2002) Alzheimer’s Disease Is a Synaptic Failure. Science, 298, 789-791. https://doi.org/10.1126/science.1074069

  54. 54. Craft, S. (2009) The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia: Two Roads Converged. Archives of Neurology, 66, 300-305. https://doi.org/10.1001/archneurol.2009.27

  55. 55. McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67. https://doi.org/10.1016/j.neuropharm.2013.08.005

  56. 56. Qi, L., Chen, Z., Wang, Y., Liu, X., Liu, X., Ke, L., Zheng, Z., Lin, X., Zhou, Y., Wu, L. and Liu, L. (2017) Subcutaneous Liraglutide Ameliorates Methylglyoxal-Induced Alzheimer-Like Tau Pathology and Cognitive Impairment by Modulating Tau Hyperphosphorylation and Glycogen Synthase Kinase-3β. American Journal of Translational Research, 9, 247-260.

  57. 57. Batista, A.F., Forny-Germano, L., Clarke, J.R., Lyra, E., Silva, N.M., Brito-Moreira, J., Boehnke, S.E., Winterborn, A., Coe, B.C., Lablans, A., Vital, J.F., Marques, S.A., Martinez, A.M., Gralle, M., Holscher, C., Klein, W.L., Houzel, J.C., Ferreira, S.T., Munoz, D.P. and De Felice, F.G. (2018) The Diabetes Drug Liraglutide Reverses Cognitive Impairment in Mice and Attenuates Insulin Receptor and Synaptic Pathology in a Non-Human Primate Model of Alzheimer’s Disease. The Journal of Pathology, 245, 85-100. https://doi.org/10.1002/path.5056

  58. 58. Batista, A.F., Bodart-Santos, V., De Felice, F.G. and Ferreira, S.T. (2019) Neuroprotective Actions of Glucagon-Like Peptide-1 (GLP-1) Analogues in Alzheimer’s and Parkinson’s Diseases. CNS Drugs, 33, 209-223. https://doi.org/10.1007/s40263-018-0593-6

  59. 59. Soria Lopez, J.A., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255. https://doi.org/10.1016/B978-0-12-804766-8.00013-3

  60. 60. Kellar, D. and Craft, S. (2020) Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. The Lancet Neurology, 19, 758-766. https://doi.org/10.1016/S1474-4422(20)30231-3

  61. 61. Moran, L.J., Norman, R.J. and Teede, H.J. (2015) Metabolic Risk in PCOS: Phenotype and Adiposity Impact. Trends in Endocrinology & Metabolism, 26, 136-143. https://doi.org/10.1016/j.tem.2014.12.003

  62. 62. Broughton, D.E. and Moley, K.H. (2017) Obesity and Female Infertility: Potential Mediators of Obesity’s Impact. Fertility and Sterility, 107, 840-847. https://doi.org/10.1016/j.fertnstert.2017.01.017

  63. 63. Lim, S.S., Hutchison, S.K., Van Ryswyk, E., Norman, R.J., Teede, H.J. and Moran, L.J. (2019) Lifestyle Changes in Women with Polycystic Ovary Syndrome. Cochrane Database of Systematic Reviews, 3, CD007506.

  64. 64. Frøssing, S., Nylander, M., Chabanova, E., Frystyk, J., Holst, J.J., Kistorp, C., Skouby, S.O. and Faber, J. (2018) Effect of Liraglutide on Ectopic Fat in Polycystic Ovary Syndrome: A Randomized Clinical Trial. Diabetes, Obesity and Metabolism, 20, 215-218. https://doi.org/10.1111/dom.13053

  65. 65. Liu, X., Zhang, Y., Zheng, S.Y., Lin, R., Xie, Y.J., Chen, H., Zheng, Y.X., Liu, E., Chen, L., Yan, J.H., Xu, W., Mai, T.T. and Gong, Y. (2017) Efficacy of Exenatide on Weight Loss, Metabolic Parameters and Pregnancy in Overweight/Obese Polycystic Ovary Syndrome. Clinical Endocrinology, 87, 767-774. https://doi.org/10.1111/cen.13454

  66. 66. 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.

  67. NOTES

    *通讯作者。

期刊菜单