Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67169 , 7 pages
10.12677/ACM.2023.1361316

RDW、MPV与OSAHS-COPD重叠综合征相关性的研究进展

侯枚珠1,华毛2*

1青海大学临床医学院,青海 西宁

2青海大学附属医院呼吸科,青海 西宁

收稿日期:2023年5月13日;录用日期:2023年6月7日;发布日期:2023年6月16日

摘要

慢性阻塞性肺疾病(COPD)合并阻塞性睡眠呼吸暂停低通气综合征(OSAHS)称为重叠综合征(OS)。OS其病理生理学变化更复杂,两种疾病共同作用,互相影响,使得疾病发展更迅速。对OS患者的严重程度进行早期且准确评估对于有效的疾病管理和预防患者死亡具有重要意义。红细胞分布宽度(RDW)、平均血小板体积(MPV)是血常规的组成部分,检测简单、方便且价廉。本文对RDW、MPV与OS患者疾病严重程度进行综述。RDW、MPV可以作为综合评估慢性阻塞性肺疾病的新指标。

关键词

重叠综合征,慢性阻塞性肺疾病,阻塞性睡眠呼吸暂停低通气综合征,红细胞分布宽度,血小板平均体积

Research Progress on the Relationship between Red Cell Distribution Width, Mean Platelet Volume and OSAHS-COPD Overlap Syndrome

Meizhu Hou1, Mao Hua2*

1Clinical School of Medicine, Qinghai University, Xining Qinghai

2Department of Respiratory Medicine, Qinghai University Affiliated Hospital, Xining Qinghai

Received: May 13th, 2023; accepted: Jun. 7th, 2023; published: Jun. 16th, 2023

ABSTRACT

Chronic obstructive pulmonary disease (COPD) combined with obstructive sleep apnea hypopnea syndrome (OSAHS) is overlap syndrome (OS). The pathophysiology of OS is more complex, and the two diseases act together and influence each other, making the disease develop more rapidly. Early and accurate assessment of the severity of OS patients is important for effective disease management and prevention of patient death. Red blood cell distribution width (RDW) and mean platelet volume (MPV) are components of blood routine, which are simple, convenient and inexpensive to detect. This paper reviews disease severity in RDW, MPV, and OS patients. RDW and MPV can be used as new indexes for comprehensive evaluation of chronic obstructive pulmonary disease.

Keywords:Overlap Syndrome, Chronic Obstructive Pulmonary Disease, Obstructive Sleep Apnea Hypopnea Syndrome, Red Blood Cell Distribution Width, Mean Platelet Volume

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. OSAHS-COPD重叠综合征(OS)的概述

阻塞性睡眠呼吸暂停低通气综合征(Obstructive sleep apnea hypopnea syndrome, OSAHS)是临床上常见的一种呼吸系统疾病,是以睡眠过程中周期性的出现上呼吸道塌陷,导致气流明显减少(低呼吸)或完全中断(呼吸暂停),反复出现呼吸暂停,间歇性低氧血症和白天嗜睡 [1] 。OSAS的严重程度由每小时睡眠中呼吸暂停/低通气发作的次数来估计,并用呼吸暂停–低通气指数(Apnea hypopnea index, AHI)来表示。根据AHI可分为轻度(AHI 5~15)、中度(AHI 15~30)和重度(AHI > 30) [2] 。OSAHS的患病率也很高。在30~60岁年龄段中,约4%的男性和2%的女性患有这种疾病 [3] 。

慢性阻塞性肺疾病(Chronic obstructive pulmonary diseases, COPD)是呼吸系统疾病中最常见的疾病之一,以慢性咳嗽、咳痰、气短或呼吸困难(COPD标志性症状)为典型症,是一种常见且可预防和治疗的疾病,其特征是持续存在的肺气道阻塞和不完全可逆的气流减少,气流限制通常是进行性的,与肺部对有害颗粒或气体的异常炎症反应有关,主要由吸烟引起 [4] 。慢性阻塞性肺病是一种主要的全球性流行病,影响工业化国家5%~15%的成年人 [5] ,通常出现在50岁以后。发病率随着年龄的增长而增加,例如65岁以上的吸烟者中有50%受到影响 [6] 。Linberg及其同事使用各种指南报告了COPD患病率在7.6%至12.2%之间 [7] 。

OSAHS和COPD在我国均为高发性呼吸道疾病,其发病及致死率均较高,当两种疾病并存时,其症状明显加重,这种改变被Flenly称为重叠综合征(Overlap syndrome, OS) [8] 。而慢性阻塞性肺疾病诊治指南(2021年修订版)再次提出COPD合并症OSAHS,当二者并存时称为重叠综合征。有研究表明,需要长期家庭氧疗的COPD患者合并中到重度OSAHS患者占16% [9] 。重叠综合征在轻度COPD患者中的患病率为14% [10] ,在OSAS患者中的患病率为11% [11] 。国外曾报道OS患病率约为11%~28.5% [12] 。

2. OSAHS-COPD重叠综合征(OS)发病机制

OSAHS的发病机制十分复杂,目前国内外学者们仍在研究探讨中,但随着深入研究有些机制已被认可。包括上呼吸道狭窄和梗阻,并伴有呼吸中枢神经调节的中断。例如存在于上呼吸道狭窄的解剖学结构异常,及上呼吸道扩张肌肉(咽扩张肌)的活动被认为是OSA的发病关键,而这些均被认为与遗传有关 [13] 。而非解剖性因素如气道发生狭窄时可导致胸内压的巨大变化、间歇性低氧血症和睡眠觉醒在OSAHS发病过程中也起到一定作用,所产生的影响随着病人的疾病严重程度的不同而变化 [14] 。此外,OSAHS所导致的低氧血症通过增加外周化学感受器的敏感性连续激活交感神经系统,而其在使通气及循环适应间歇性低氧中起关键作用 [15] 。而交感神经活性的增高、氧化应激、炎症过程导致了心血管、神经、代谢等系统的改变 [16] 。由于大多数发生与肥胖患者,常伴有舌体肥厚、脖子短小以及颌面结构异常等情况,在睡眠状态下因上呼吸道狭窄等解剖异常而引起的气道阻塞,进而出现反复呼吸暂停和觉醒现象 [17] 。长期的睡眠呼吸暂停和低通气可导致患者出现夜间持续低氧血症及高碳酸血症。

COPD通常是气道、肺泡和微血管的进行性炎症性疾病。气道上皮细胞损伤导致肺不同部位的中性粒细胞、巨噬细胞和T-淋巴细胞(CD8+ T细胞为主)等炎症细胞数量增加,进一步诱发炎症反应。而活化的炎症细胞通过释放内源性细胞因子或危险相关分子模式引发非特异性炎症反应。例如上皮细胞上的toll样受体(Toll-like receptors) 4和2,并导致细胞因子的释放,如肿瘤坏死因子-α (tumor necrosis factor, TNF-α)、和白细胞介素-1 (interleukin, IL-1)、白细胞介素-8 (interleukin-8, IL-8),以及白三烯B4 (leukotriene B4, LTB4)等,导致肺组织结构破坏,并持续刺激中性粒细胞,引起呼吸道炎症。而蛋白水解酶和活性氧对组织损伤有破坏性作用,特别是在抗蛋白酶不足、水解蛋白酶增多或抗氧化因子存在的情况下,均能导致肺组织结果的破坏 [18] 。最终产生两种重要病变包括小气道腔室的重塑和实质的肺气肿性破坏所导致的弹性回缩力的降低,共同造成持续气流受限。

OSAHS和COPD均可引起低氧血症以及高碳酸血症,而OS患者同时合并OSAHS和COPD其病理生理学变化更加复杂,两种疾病共同作用及相互影响,使得疾病进展速度更快。

3. RDW、MPV概述

红细胞分布宽度(Red blood cell distribution width, RDW)是常规血液学实验室检测中标准全血细胞计数的一个组成部分,是循环红细胞大小分化的测量和其异质性的指标。在贫血的鉴别诊断中,通常报告为全血细胞计数的组成部分。红细胞的标准尺寸约6~8 μm,红细胞的正常参考范围为11%~15%。无效的红细胞生成或增加破坏红细胞相关的疾病导致红细胞体积异质性升高,从而导致RDW显著增加 [19] [20] 。

血小板是由巨核细胞产生,血小板平均体积(Mean platelet volume, MPV)是全血细胞分析中反映血小板大小的一个参数,是血小板活性的指标,MPV可根据所使用的仪器而变化,每个实验室具有唯一的参考范围,其正常范围在7.5~11.5 fL [21] 。MPV主要反映骨髓中巨核细胞的增殖、分化、代谢及血小板活化与功能 [22] 。

4. RDW、MPV与OSAHS-COPD重叠综合征(OS)

4.1. RDW与OSAHS-COPD重叠综合征(OS)关系的机制

RDW是循环红细胞大小分化的测量和其异质性的指标,但与全身炎症、红细胞生成功能低下、营养缺乏、骨髓功能障碍或破坏增加相关的疾病会导致RDW升高 [19] 。

OSAHS的主要表现为呼吸暂停和低通气,同时存在过度的氧化应激,这是OSAHS慢性炎症的简单机制。OSAHS诱导的炎症反应是全身性的,炎症因子可以抑制红细胞的分化,进而抑制骨髓红细胞的成熟,从而增加RDW。炎症因子IL-6、TNF-a、C反应蛋白、IL-8与RDW升高显著相关。此外,IL-10的降低也与RDW的增加相关 [23] [24] [25] 。可能是高水平的炎症细胞因子激活中性粒细胞或淋巴细胞,以及其他侵袭性细胞,导致红细胞膜损伤和脆弱性增加。这会导致红细胞的病理性溶解和促红细胞生成素(EPO)基因的激活,从而增加骨髓中的红细胞产量。然而,过度的炎症抑制了红细胞在各个成熟阶段的分化,导致RDW显著增加 [26] 。EPO促进干细胞增殖、分化和成熟进来增加红细胞数量。一些研究表明,严重OSAHS患者的EPO水平在夜间明显高于其他任何时间 [27] 。此外,EPO增加导致大量不成熟红细胞的生成。这些细胞释放到血液循环中改变了层流,加速了红细胞在血管壁上的沉积,导致管腔狭窄或堵塞因此产生大量的活性氧(ROS),这一过程会导致过度的氧化应激。而过度的氧化应激可导致红细胞的损伤进而使RDW进一步升高 [28] 。León Subías [29] 等人则认为 OSAHS患者的RDW增加与严重程度直接相关。

COPD患者呼吸系统长期处于低血氧、过度氧化应激及炎症状态,而炎症细胞因子的释放可能影响骨髓功能,从而抑制促红细胞生成素诱导的红细胞成熟,导致RDW值升高。有研究表明,较高RDW水平可能是由于慢性炎症引起的红细胞生成功能低下所致。炎性细胞因子可抑制红细胞成熟,使幼红细胞进入循环,导致RDW升高 [30] 。在COPD患者中,低氧血症、氧化应激也被认为是导致RDW的原因 [31] 。而COPD与慢性炎性状态和炎性细胞因子水平升高有关 [32] [33] 。

4.2. MPV与OSAHS-COPD重叠综合征(OS)关系的机制

MPV是全血细胞分析中反映血小板大小的一个参数,是血小板活化的标志 [34] [35] 。10,11 MPV升高可预测心血管疾病,包括外周、脑血管和冠状动脉疾病,并与肥胖、糖尿病和代谢综合征有关 [36] [37] 。

在OS患者中,有以下几种机制与血小板活化有关。事实上,交感神经激活的增加是OSAS的一个基本特征,增加了循环儿茶酚胺,而儿茶酚胺又以剂量依赖性的方式激活血小板 [38] 。此外,急慢性间歇性缺氧,伴随呼吸暂停,这一特征也存在于COPD患者中,直接触发血小板活化,进而导致MPV值增高 [39] 。在COPD患者中,肺血管的局部血小板活化、凝血级联和纤维蛋白溶解系统的局部活化也可能对血小板功能障碍的全身性影响起重要作用 [40] [41] 。吸烟是慢性阻塞性肺病的主要原因,已被证明可以直接影响血小板的大小,导致MPV值比不吸烟者增加 [42] 。此外,肺功能下降与持续的炎症状态有关,这会导致内皮功能受损,暴露内皮下胶原,使得血小板活化,从而导致MPV升高 [40] [41] 。慢性炎症和缺氧可诱导血小板活化 [43] 。OSAS和COPD现在都被认为会增加全身性炎症 [44] [45] [46] 。33~35这两种情况的共同点可能是促使炎细胞因子(如白细胞介素-6)的分泌增加,或在血小板活化中起重要作用的粘附分子的过度表达,使得MPV水平发生高表达 [44] [47] [48] 。由于OSAHS和COPD分别引起上、下气道阻塞,因此OS患者低氧血症和高碳酸血症会加重,进而导致OS的系统性炎症反应。而RDW及MPV的升高与炎症反应相关。故而提示外周血RDW、MPV与重叠综合征的严重程度关系密切。

5. 展望

OS的早期诊断和预测是治疗的关键,生物学标志物检测是OS严重程度预测的重要手段,而RDW、MPV是各级医疗机构常规检查项目,具有简单、经济、快捷、可反复操作等优点,能够为临床早期评估OS患者疾病严重程度提供帮助,从而进行早期干预,积极治疗,改善患者预后。但该指标较为粗略,对于RDW、MPV升高的OS患者需完善进一步的检查。

文章引用

侯枚珠,华 毛. RDW、MPV与OSAHS-COPD重叠综合征相关性的研究进展
Research Progress on the Relationship between Red Cell Distribution Width, Mean Platelet Volume and OSAHS-COPD Overlap Syndrome[J]. 临床医学进展, 2023, 13(06): 9403-9409. https://doi.org/10.12677/ACM.2023.1361316

参考文献

  1. 1. Bednarek, M., Plywaczewski, R., Jonczak, L. and Zielinski, J. (2005) There Is No Relationship between Chronic Ob-structive Pulmonary Disease and Obstructive Sleep Apnea Syndrome: A Population Study. Respiration, 72, 142-149. https://doi.org/10.1159/000084044

  2. 2. Kapur, V.K., et al. (2017) Clinical Practice Guideline for Diagnostic Test-ing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. Journal of Clinical Sleep Medicine, 13, 479-504. https://doi.org/10.5664/jcsm.6506

  3. 3. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S. and Badr, S. (1993) The Occurrence of Sleep-Disordered Breathing among Middle-Aged Adults. The New England Journal of Medi-cine, 328, 1230-1235. https://doi.org/10.1056/NEJM199304293281704

  4. 4. Celli, B.R. and MacNee, W. (2004) Standards for the Diag-nosis and Treatment of Patients with COPD: A Summary of the ATS/ERS Position Paper. The European Respiratory Journal, 23, 932-946. https://doi.org/10.1183/09031936.04.00014304

  5. 5. Pauwels, R.A., Buist, A.S., Ma, P., Jenkins, C.R. and Hurd, S.S. (2001) Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: National Heart, Lung, and Blood Institute and World Health Organization Global Initiative for Chronic Obstructive Lung Disease (GOLD): Executive Summary. Respiratory Care, 46, 798-825.

  6. 6. Louw, S.J., Goldin, J.G. and Joubert, G. (1996) Spirometry of Healthy Adult South African Men. Part I. Normative Values. South African Medical Journal, 86, 814-819.

  7. 7. Lindberg, A., Jonsson, A.C., Rönmark, E., Lundgren, R., Larsson, L.G. and Lundbäck, B. (2005) Preva-lence of Chronic Obstructive Pulmonary Disease According to BTS, ERS, GOLD and ATS Criteria in Relation to Doc-tor’s Diagnosis, Symptoms, Age, Gender, and Smoking Habits. Respiration, 72, 471-479. https://doi.org/10.1159/000087670

  8. 8. Flenley, D.C. (1985) Sleep in Chronic Obstructive Lung Disease. Clinics in Chest Medicine, 6, 651-661. https://doi.org/10.1016/S0272-5231(21)00402-0

  9. 9. Machado, M., Vollmer, W.M., Togeiro, S.M., et al. (2010) CPAP and Survival in Moderate-to-Severe Obstructive Sleep Apnoea Syndrome and Hypoxaemic COPD. European Respiratory Journal, 35, 132-137. https://doi.org/10.1183/09031936.00192008

  10. 10. Chaouat, A., Weitzenblum, E., Krieger, J., Ifoundza, T., Oswald, M. and Kessler, R. (1995) Association of Chronic Obstructive Pulmonary Disease and Sleep Apnea Syndrome. Ameri-can Journal of Respiratory and Critical Care Medicine, 151, 82-86. https://doi.org/10.1164/ajrccm.151.1.7812577

  11. 11. Sanders, M.H., Newman, A.B., Haggerty, C.L., et al. (2003) Sleep and Sleep-Disordered Breathing in Adults with Predominantly Mild Obstructive Airway Disease. American Jour-nal of Respiratory and Critical Care Medicine, 167, 7-14. https://doi.org/10.1164/rccm.2203046

  12. 12. Zamarron, C. (2008) Association of Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnea Consequences. Internation-al Journal of Chronic Obstructive Pulmonary Disease, 3, 671-682. https://doi.org/10.2147/COPD.S4950

  13. 13. Chi, L., Comyn, F.L., Keenan, B.T., et al. (2014) Heritability of Cranio-facial Structures in Normal Subjects and Patients with Sleep Apnea. Sleep, 37, 1689-1698. https://doi.org/10.5665/sleep.4082

  14. 14. Eckert, D.J., White, D.P., Jordan, A.S., Malhotra, A. and Wellman, A. (2013) Defining Phenotypic Causes of Obstructive Sleep Apnea. Identification of Novel Therapeutic Targets. American Journal of Respiratory & Critical Care Medicine, 188, 996-1004. https://doi.org/10.1164/rccm.201303-0448OC

  15. 15. Prabhakar, N.R., Peng, Y.J., Kumar, G.K. and Nanduri, J. (2015) Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia. Comprehensive Physiology, 5, 561-577. https://doi.org/10.1002/cphy.c140039

  16. 16. Ayas, N., Hirsch, A.J., Laher, I., et al. (2014) New Fron-tiers in Obstructive Sleep Apnoea. Clinical Science, 127, 209-216. https://doi.org/10.1042/CS20140070

  17. 17. Verse, T. and Pirsig, W. (2003) Impact of Impaired Nasal Breathing on Sleep-Disordered Breathing. Sleep Breath, 7, 63-76. https://doi.org/10.1007/s11325-003-0063-2

  18. 18. Rabe, K.F. and Watz, H. (2017) Chronic Obstructive Pulmonary Disease. The Lancet, 389, 1931-1940. https://doi.org/10.1016/S0140-6736(17)31222-9

  19. 19. Romero Artaza, J., Carbia, C.D., Ceballo, M.F. and Díaz, N.B. (1999) Red Cell Distribution Width (RDW): Its Use in the Characterization of Microcytic and Hypochromic Ane-mias. Medicina, 59, 17-22.

  20. 20. Tonelli, M., Sacks, F., Arnold, M., Moye, L., Davis, B. and Pfeffer, M. (2008) Relation between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People With Coronary Disease. Circula-tion, 117, 163-168. https://doi.org/10.1161/CIRCULATIONAHA.107.727545

  21. 21. Schmoeller, D., Picarelli, M.M., Paz Munhoz, T., Poli de Figueiredo, C.E. and Staub, H.L. (2017) Mean Platelet Volume and Immature Platelet Fraction in Autoimmune Disorders. Frontiers in Medicine, 4, Article 146. https://doi.org/10.3389/fmed.2017.00146

  22. 22. Harrison, P. and Goodall, A.H. (2016) Studies on Mean Platelet Volume (MPV)—New Editorial Policy. Platelets, 27, 605-606. https://doi.org/10.1080/09537104.2016.1225467

  23. 23. Arnardottir, E.S., Mackiewicz, M., Gislason, T., Teff, K.L. and Pack, A.I. (2009) Molecular Signatures of Obstructive Sleep Apnea in Adults: A Review and Perspective. Sleep, 32, 447-470. https://doi.org/10.1093/sleep/32.4.447

  24. 24. Arnardottir, E.S., Maislin, G., Schwab, R.J., et al. (2012) The Interaction of Obstructive Sleep Apnea and Obesity on the Inflammatory Markers C-Reactive Protein and Interleukin-6: The Icelandic Sleep Apnea Cohort. Sleep, 35, 921-932. https://doi.org/10.5665/sleep.1952

  25. 25. Bouloukaki, I., Mermigkis, C., Kallergis, E.M., Moniaki, V., Mauroudi, E. and Schiza, S.E. (2015) Obstructive Sleep Apnea Syndrome and Cardiovascular Disease: The Influence of C-Reactive Protein. World Journal of Experimental Medicine, 5, 77-83. https://doi.org/10.5493/wjem.v5.i2.77

  26. 26. Szygula, Z., Lubkowska, A., Giemza, C., Skrzek, A., Bryczkowska, I. and Dołęgowska, B. (2014) Hematological Parameters, and Hematopoietic Growth Factors: EPO and IL-3 in Response to Whole-Body Cryostimulation (WBC) in Military Academy Students. PLOS ONE, 9, e93096. https://doi.org/10.1371/journal.pone.0093096

  27. 27. Dayyat, E.A., Zhang, S.X., Wang, Y., Cheng, Z.J. and Gozal, D. (2012) Exogenous Erythropoietin Administration Attenuates Intermittent Hypox-ia-Induced Cognitive Deficits in a Murine Model of Sleep Apnea. BMC Neuroscience, 13, Article No. 77. https://doi.org/10.1186/1471-2202-13-77

  28. 28. Almendros, I., Farré, R., Planas, A.M., et al. (2011) Tissue Oxy-genation in Brain, Muscle, and Fat in a Rat Model of Sleep Apnea: Differential Effect of Obstructive Apneas and Inter-mittent Hypoxia. Sleep, 34, 1127-1133. https://doi.org/10.5665/SLEEP.1176

  29. 29. León Subías, E., Gómara de la Cal, S. and Marin Trigo, J.M. (2017) Red Cell Distribution Width in Obstructive Sleep Apnea. Archivos de Bronconeumología (English Edition), 53, 114-119. https://doi.org/10.1016/j.arbr.2016.12.003

  30. 30. Pierce, C.N. and Larson, D.F. (2005) Inflammatory Cytokine Inhi-bition of Erythropoiesis in Patients Implanted with a Mechanical Circulatory Assist Device. Perfusion, 20, 83-90. https://doi.org/10.1191/0267659105pf793oa

  31. 31. Maclay, J.D., Mcallister, D.A. and Macnee, W. (2007) Cardio-vascular Risk in Chronic Obstructive Pulmonary Disease. Official Journal of the Asian Pacific Society of Respirology, 12, 634-641. https://doi.org/10.1111/j.1440-1843.2007.01136.x

  32. 32. Palange, P., Testa, U., Huertas, A., et al. (2006) Circulating Haemopoietic and Endothelial Progenitor Cells Are Decreased in COPD. European Respiratory Journal, 27, 529-541. https://doi.org/10.1183/09031936.06.00120604

  33. 33. Schols, A.M., Buurman, W.A., Staal van den Brekel, A.J., Dentener, M.A. and Wouters, E.F. (1996) Evidence for a Relation between Metabolic Derangements and Increased Lev-els of Inflammatory Mediators in a Subgroup of Patients with Chronic Obstructive Pulmonary Disease. Thorax, 51, 819-824. https://doi.org/10.1136/thx.51.8.819

  34. 34. Park, Y., Schoene, N. and Harris, W. (2002) Mean Platelet Volume as an Indicator of Platelet Activation: Methodological Issues. Platelets, 13, 301-306. https://doi.org/10.1080/095371002220148332

  35. 35. Vagdatli, E., Gounari, E., Lazaridou, E., Katsibourlia, E., Tsikopoulou, F. and Labrianou, I. (2010) Platelet Distribution Width: A Simple, Practical and Specific Marker of Activa-tion of Coagulation. Hippokratia, 14, 28-32.

  36. 36. Papanas, N., Symeonidis, G., Maltezos, E., et al. (2004) Mean Platelet Volume in Patients with Type 2 Diabetes Mellitus. Platelets, 15, 475-478. https://doi.org/10.1080/0953710042000267707

  37. 37. Vizioli, L., Muscari, S. and Muscari, A. (2009) The Relation-ship of Mean Platelet Volume with the Risk and Prognosis of Cardiovascular Diseases. International Journal of Clinical Practice, 63, 1509-1515. https://doi.org/10.1111/j.1742-1241.2009.02070.x

  38. 38. Anfossi, G. and Trovati, M. (1996) Role of Catecholamines in Platelet Function: Pathophysiological and Clinical Significance. European Journal of Clinical Investigation, 26, 353-370. https://doi.org/10.1046/j.1365-2362.1996.150293.x

  39. 39. Rahangdale, S., Yeh, S.Y., Novack, V., et al. (2011) The Influence of Intermittent Hypoxemia on Platelet Activation in Obese Patients with Obstructive Sleep Apnea. Journal of Clinical Sleep Medicine, 7, 172-178. https://doi.org/10.5664/jcsm.28105

  40. 40. Nakstad, B., Lyberg, T., Skjønsberg, O.H. and Boye, N.P. (1990) Local Activation of the Coagulation and Fibrinolysis Systems in Lung Disease. Thrombosis Research, 57, 827-838. https://doi.org/10.1016/0049-3848(90)90150-B

  41. 41. Rostagno, C., Prisco, D., Boddi, M. and Poggesi, L. (1991) Evidence for Local Platelet Activation in Pulmonary Vessels in Patients with Pulmonary Hypertension Secondary to Chronic Obstructive Pulmonary Disease. European Respiratory Journal, 4, 147-151. https://doi.org/10.1183/09031936.93.04020147

  42. 42. Kario, K., Matsuo, T. and Nakao, K. (1992) Cigarette Smok-ing Increases the Mean Platelet Volume in Elderly Patients with Risk Factors for Atherosclerosis. Clinical & Laboratory Haematology, 14, 281-287. https://doi.org/10.1111/j.1365-2257.1992.tb00103.x

  43. 43. Onder, I., Topcu, S., Dökmetas, H.S., Türkay, C. and Seyfikli, Z. (1997) Platelet Aggregation Size and Volume in Chronic Obstructive Pulmonary Disease. Materia Medica Polona, 29, 11-13.

  44. 44. Archontogeorgis, K., Nena, E., Papanas, N. and Steiropoulos, P. (2014) Biomarkers to Improve Diagnosis and Monitoring of Obstructive Sleep Apnea Syndrome: Current Status and Future Perspectives. Pulmonary Medicine, 2014, Article ID: 930535. https://doi.org/10.1155/2014/930535

  45. 45. Barnes, P.J. and Celli, B.R. (2009) Systemic Manifestations and Comorbidities of COPD. European Respiratory Journal, 33, 1165-1185. https://doi.org/10.1183/09031936.00128008

  46. 46. Gasparyan, A.Y., Ayvazyan, L., Mikhailidis, D.P. and Kitas, G.D. (2011) Mean Platelet Volume: A Link between Thrombosis and Inflammation. Current Pharmaceutical Design, 17, 47-58.

  47. 47. Wei, J., Xiong, X.F., Lin, Y.H., Zheng, B.X. and Cheng, D.Y. (2015) Association between Serum Interleu-kin-6 Concentrations and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. PeerJ, 3, e1199. https://doi.org/10.7717/peerj.1199

  48. 48. Oelsner, E.C., Pottinger, T.D., Burkart, K.M., et al. (2013) Adhesion Mol-ecules, Endothelin-1 and Lung Function in Seven Population-Based Cohorts. Biomarkers, 18, 196-203. https://doi.org/10.3109/1354750X.2012.762805

  49. NOTES

    *通讯作者。

期刊菜单