Advances in Applied Mathematics
Vol. 11  No. 07 ( 2022 ), Article ID: 54129 , 9 pages
10.12677/AAM.2022.117517

带阻尼的三维热带气候模型的适定性研究

陈贤

浙江师范大学,浙江 金华

收稿日期:2022年6月25日;录用日期:2022年7月20日;发布日期:2022年7月27日

摘要

本文考虑了带阻尼的三维热带气候模型。利用能量估计的方法,证明了带阻尼的三维热带气候模型对于 1 α 5 2 ,如果 β γ δ 满足 β 4 γ α + 3 α δ 1 时,那么带阻尼的三维热带气候模型强解是存在的,且是唯一的。

关键词

热带气候模型,适定性,阻尼性,强解

Well-Posed Study of a Three-Dimensional Tropical Climate Model with Damping

Xian Chen

Zhejiang Normal University, Jinhua Zhejiang

Received: Jun. 25th, 2022; accepted: Jul. 20th, 2022; published: Jul. 27th, 2022

ABSTRACT

This paper considers a three-dimensional tropical climate model with damping. Using the method of energy estimation, a damped three-dimensional tropical climate model is demonstrated. For 1 α 5 2 , if β , γ , δ satisfies β 4 , γ α + 3 α , δ 1 , then the existence and uniqueness of a damped 3-D tropical climate model is strong.

Keywords:Tropical Climate Model, Well-Posedness, Damping, Strong Solution

Copyright © 2022 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

在本文中,我们考虑以下带阻尼的三维热带气候模型:

{ u t + Λ 2 α u + ( u ) u + | u | β 1 u + π + d i v ( v v ) = 0 , v t Δ v + ( u ) v + | v | γ 1 v + ψ + ( v ) u = 0 , ψ t Δ ψ + ( u ) ψ + | ψ | δ 1 ψ + d i v v = 0 , d i v u = 0 , ( u , v , ψ ) ( x , 0 ) = ( u 0 , v 0 , ψ 0 )

其中向量场 u = u ( x , t ) R 3 v = v ( x , t ) R 3 分别表示速度的正压模式和第一斜压模式。 π = π ( x , t ) ψ = ψ ( x , t ) 分别表示压强和温度。分数拉普拉斯算子 Λ = ( Δ ) 1 2 α > 0 β , γ , δ 0 为实参数。

需要指出的是,当 ψ = 0 α = 1 d i v v = 0 时,系统(1.1)可简化为带有阻尼的三维磁流体动力学(MHD)型方程。对于阻尼磁流体系统,Ye [1] 首先得到了全局强解的存在性和唯一性。然后,在 [2] [3] 中,证明了含阻尼的三维磁流体方程的全局适定性和衰减。当v = 0时,带阻尼的mhd型方程简化为带阻尼

的Navier-Stokes方程。Cai和Jiu [4] 首先证明了带阻尼的Navier-Stokes方程在任何 β 7 2 情况下,强解是唯一的,在 7 2 β 5 的情况下带阻尼的Navier-Stokes方程具有全局强解。Zhou [5] 改进了这一结果,

证明了 β 3 时全局存在强解。随后,有许多结果致力于三维Navier-Stokes方程的阻尼(例如, [6] [7] [8] [9])。

让我们简单回顾一下关于三维热带气候模式的一些成果。当系统(1.1)没有任何阻尼项时,Wang et al. [10] 在初始数据很小的情况下考虑了正则性准则和全局存在性。在 [11] [12] 中,作者建立了分阶耗散的三维热带气候模式的全局正则性。我们可以看到 [13] - [19] 关于二维热带气候模式的全局正则性问题的一些结果。本文利用阻尼项证明了系统(1.1)具有唯一的全局强解。值得一提的是,由于缺乏v的自由发散条件,热带气候模式的结果与三维MHD方程的结果存在差异。

阻尼项在一定程度上是好项,可以增加正则性,我们为了提高三维热带气候模型的正则性,为此我们增加阻尼项,研究带阻尼的三维热带气候模式的适定性。我们的主要结果可以陈述如下:

定理1.1. 让 ( u 0 ( x ) , v 0 ( x ) , ψ 0 ( x ) ) H 1 ( R 3 ) 满足 u = 0 。对于 1 α 5 2 ,如果 β , γ , δ 满足

β 4 , γ α + 3 α , δ 1.

那么系统(1.1)有一个唯一的全局强解u满足,对于任意T > 0,

u L ( 0 , T ; H 1 ( R 3 ) ) L 2 ( 0 , T ; H α + 1 ( R 3 ) ) L β + 1 ( 0 , T ; H β + 1 ( R 3 ) ) v L ( 0 , T ; H 1 ( R 3 ) ) L 2 ( 0 , T ; H 2 ( R 3 ) ) L γ + 1 ( 0 , T ; H γ + 1 ( R 3 ) ) ψ L ( 0 , T ; H 1 ( R 3 ) ) L 2 ( 0 , T ; H 2 ( R 3 ) ) L δ + 1 ( 0 , T ; H δ + 1 ( R 3 ) )

本文的结构如下:第一部分我们给出关于三维热带气候模型的相关进展和研究现状,并且给出主要结果;第二部分,我们给出主要结果的证明步骤。

2. 定理1.1的证明

在这一节中,我们证明定理1.1。首先,我们对系统(1.1)给出了一个先验 L 2 估计。将(1.1)分别乘以 ( u , v , ψ ) ,经过分部积分,并使用 u = 0 ,得到以下能量估计

u ( t ) L 2 2 + v ( t ) L 2 2 + ψ ( t ) L 2 2 + 2 0 T ( Λ α u ( t ) L 2 2 + v ( t ) L 2 2 + ψ ( t ) L 2 2 + u L β + 1 β + 1 + v L γ + 1 γ + 1 + ψ L δ + 1 δ + 1 ) d s = u 0 L 2 2 + v 0 L 2 2 + ψ 0 L 2 2 .

我们在哪里使用了下面的事实

R 3 ψ v d x + R 3 ( v ) ψ d x = 0 , R 3 d i v ( v v ) u d x + R 3 ( v ) u v d x = 0

将(1.1)分别乘以 Δ u Δ v Δ ψ ,在 R 3 中积分后相加,得到

1 2 d d t ( u L 2 2 + v L 2 2 + ψ L 2 2 ) + Λ α + 1 u L 2 2 + Δ v L 2 2 + Δ ψ L 2 2 + | u | β 1 2 u L 2 2 + | v | γ 1 2 v L 2 2 + | ψ | δ 1 2 ψ L 2 2 + 4 ( β 1 ) ( β + 1 ) 2 | u | β + 1 2 L 2 2 + 4 ( γ 1 ) ( γ + 1 ) 2 | v | γ + 1 2 L 2 2 + 4 ( δ 1 ) ( δ + 1 ) 2 | ψ | δ + 1 2 L 2 2 = R 3 ( u ) u Δ u d x + R 3 d i v ( v v ) Δ u d x + R 3 ( u ) v Δ v d x + R 3 ( v ) u Δ v d x + R 3 ψ Δ v d x + R 3 ( u ) ψ Δ ψ d x + R 3 ( v ) Δ ψ d x = I 1 + I 2 + I 3 + I 4 + I 5 + I 6 + I 7 ,

首先,应用Young不等式、Hölder不等式和Gagliardo-Nirenberg不等式, I 1 可以估计如下。

I 1 = R 3 ( u ) u Δ u d x = R 3 Λ 1 α ( u u ) Λ α + 1 u d x = R 3 Λ 2 α ( u u ) Λ α + 1 u d x Λ α + 1 u L 2 Λ 2 α ( u u ) L 2

Λ α + 1 u L 2 Λ 2 α u L 2 ( β + 1 ) β 1 u L β + 1 Λ α + 1 u L 2 1 + θ u L 2 1 θ u L β + 1 1 2 Λ α + 1 u L 2 2 + C u L β + 1 2 1 θ u L 2 2

这里我们使用了以下的Gagliardo-Nirenberg不等式:

Λ 2 α u L 2 ( β + 1 ) β 1 C Λ α + 1 u L 2 θ u L 2 1 θ

在这里

β 1 2 ( β + 1 ) = 1 α 3 + ( 1 2 α 3 ) θ + 1 θ 2

通过直接计算,得到

θ = ( 5 2 α ) ( β + 1 ) 3 ( β 1 ) 2 α ( β + 1 )

如果下列限制成立

2 1 θ β + 1

然后我们得到 β 4 2 α 1

通过Hölder不等式、Gagliardo-Nirenberg不等式和Young不等式, I 2 I 3 I 4 的项可以估计如下:

I 2 + I 3 + I 4 = R 3 ( v v ) Δ u d x + R 3 ( u ) v Δ v d x + R 3 ( v ) u Δ v d x = R 3 ( v j i v i + v i i v j ) k k u j d x + R 3 u i i v j k k v j d x + R 3 v i i u j k k v j d x = R 3 ( v j i v i + v i i v j ) k k u j d x + R 3 ( k k u i i v j + k u i k i v j ) d x + R 3 v i i u j k k v j d x R 3 | v | | v | | 2 u | d x + R 3 | v | | u | | 2 v | d x = J 1 + J 2

接下来,我们将估计 J 1 J 2

J 1 = R 3 | v | | v | | 2 u | d x = R 3 | v | γ 1 2 | v | | v | 3 γ 2 | Δ u | d x | v | γ 1 2 v L 2 v L γ + 1 3 γ 2 Δ u L γ + 1 γ 1 | v | γ 1 2 v L 2 v L γ + 1 3 γ 2 u L 2 1 λ 1 Λ 1 + α u L 2 λ 1 1 2 | v | γ 1 2 v L 2 2 + 1 2 Λ 1 + α u L 2 2 + C v L γ + 1 3 γ 1 λ 1 u L 2 2

这里我们使用了Gagliardo-Nirenberg不等式:

Δ u L γ + 1 γ 1 C Λ α + 1 u L 2 λ 1 u L 2 1 λ 1

在这里

γ 1 γ + 1 = 1 3 + ( 1 2 α 3 ) λ 1 + 1 λ 1 2 , λ 1 [ 1 α , 1 ]

从(2.12)我们可以直接计算出 λ 1 = 11 γ 2 α ( γ + 1 ) γ 11 2 α 2 α + 1 α 1

如果下列限制成立

3 γ 1 λ 1 γ + 1

然后,我们可以得到 γ 4 α + 11 4 α + 1

同理, J 2 可以估算如下:

J 2 = R 3 | v | | u | | 2 v | d x v L γ + 1 u L 2 γ + 1 γ 1 Δ v L 2 C v L γ + 1 2 u L 2 γ + 1 γ 1 2 + 1 4 Δ u L 2 2 C v L γ + 1 2 u L 2 2 ( 1 λ 2 ) Λ 1 + α u L 2 2 λ 2 + 1 4 Δ v L 2 2 C v L γ + 1 2 1 λ 2 u L 2 2 + 1 4 Λ 1 + α u L 2 2 + 1 4 Δ v L 2 2

这里我们使用了Gagliardo-Nirenberg不等式:

u L 2 ( γ + 1 ) γ 1 C Λ α + 1 u L 2 λ 2 u L 2 1 λ 2 .

通过直接计算,我们有 λ 2 = 3 α ( γ + 1 ) 。如果下列限制成立

2 1 λ 2 γ + 1

然后,我们可以得到 γ α + 3 α 。对于 I 5 I 7 ,我们可以得到

I 5 + I 7 = R 3 ψ Δ v d x + R 3 ( v ) Δ ψ d x R 3 | ψ | | Δ v | d x 1 4 Δ v L 2 2 + C ψ L 2 2 .

应用soblove不等式, I 6 可以估计如下

I 6 = R 3 ( u ) ψ Δ ψ d x u L β + 1 ψ L 2 β + 1 β 1 Δ ψ L 2 1 4 Δ ψ L 2 2 + C u L β + 1 2 ( β + 1 ) β 2 ψ L 2 2 .

收集以上的估计(2.5)~(2.18)并将它们应用到(2.4)中,有下列结果成立

d d t ( u L 2 2 + v L 2 2 + ψ L 2 2 ) + Λ α + 1 u L 2 2 + Δ v L 2 2 + Δ ψ L 2 2 + | u | β 1 2 u L 2 2 + | v | γ 1 2 v L 2 2 + | ψ | δ 1 2 ψ L 2 2 + 4 ( β 1 ) ( β + 1 ) 2 | u | β + 1 2 L 2 2 + 4 ( γ 1 ) ( γ + 1 ) 2 | v | γ + 1 2 L 2 2 + 4 ( δ 1 ) ( δ + 1 ) 2 | ψ | δ + 1 2 L 2 2 C ( 1 + u L β + 1 β + 1 + v L γ + 1 γ + 1 ) ( u L 2 2 + v L 2 2 + ψ L 2 2 ) .

在这里,我们使用了 β 4 γ α + 3 α 去确保 2 ( β + 1 ) β 2 β + 1 、(2.8)、(2.13)及(2.16)。根据Gronwall不等式和(2.1),我们

u L 2 2 + v L 2 2 + ψ L 2 2 + 0 t ( Λ α + 1 u L 2 2 + Δ v L 2 2 + Δ ψ L 2 2 + | u | β 1 2 u L 2 2 + | v | γ 1 2 v L 2 2 + | ψ | δ 1 2 ψ L 2 2 ) C ( t , u 0 H 1 , v 0 H 1 , ψ 0 H 1 )

这样我们就完成了强解存在的证明。

接下来,我们将证明定理1.1中构造的强解的唯一性。假设 ( u 1 , v 1 , ψ 1 ) ( u 2 , v 2 , ψ 2 ) 是方程组(1.1)的两个解,它们的解 ( u 0 , v 0 , ψ 0 ) 相同。我们定义 ( u ¯ , v ¯ , ψ ¯ ) = ( u 1 u 2 , v 1 v 2 , ψ 1 ψ 2 ) 。然后我们可以得到

{ t u ¯ Λ 2 α u ¯ + | u 1 | α 1 u 1 | u 2 | α 1 u 2 + π ¯ = [ ( u 2 u ¯ + u ¯ u 1 ) + ( v 2 v ¯ ) + ( v ¯ v 1 ) ] , t v ¯ = Δ v ¯ + | v 1 | β 1 v 1 | v 2 | β 1 v 2 = ( u 2 v ¯ + u ¯ v 1 ) ψ ¯ ( v 2 u ¯ + v ¯ u 1 ) , t ψ ˜ Δ ψ ¯ + | ψ 1 | γ 1 ψ 1 | ψ 2 | γ 1 ψ 2 = ( u 2 ψ ¯ + u ¯ ψ 1 ) v ¯ , u ¯ = 0.

将(2.21)式分别与 ( u ¯ , v ¯ , ψ ¯ ) L 2 内积,将结果相加,我们得到

1 2 d d t ( u ¯ , v ¯ , ψ ¯ ) L 2 2 + Λ α u ¯ L 2 2 + ( v ¯ , ψ ¯ ) L 2 2 + R 3 ( | u 1 | α 1 u 1 | u 2 | α 1 u 2 ) u ¯ d x + R 3 ( | v 1 | β 1 v 1 | v 2 | β 1 v 2 ) v ¯ d x + R 3 ( | ψ 1 | γ 1 ψ 1 | ψ 2 | γ 1 ψ 2 ) ψ ¯ d x R 3 | u ¯ | 2 | u 1 | d x + R 3 | Δ u ¯ | ( v 1 , v 2 ) | v ˜ | d x + R 3 | v 1 | | u ¯ | | v ¯ | d x + R 3 | v ¯ | 2 | v 1 | d x + R 3 | ψ 1 | | u ¯ | | ψ ¯ | d x = K 1 + K 2 + + K 5 .

应用Hölder不等式,当 β 1 时,我们可以得到

R 3 ( | u 1 | β 1 u 1 | u 2 | β 1 u 2 ) u ¯ d x = R 3 ( | u 1 | β 1 u 1 | u 2 | β 1 u 2 ) ( u 1 u 2 ) d x = R 3 | u 1 | β + 1 d x R 3 | u 1 | β 1 u 1 u 2 d x R 3 | u 2 | β 1 u 2 u 1 d x + R 3 | u 2 | β + 1 d x u 1 L β + 1 β + 1 u 1 L β + 1 β u 2 L β + 1 u 2 L β + 1 β u 1 L β + 1 + u 2 L β + 1 β + 1 = ( u 1 L β + 1 β u 2 L β + 1 β ) ( u 1 L β + 1 u 2 L β + 1 ) 0.

同样,对于 γ , δ 1 ,我们有

R 3 ( | v 1 | β 1 v 1 | v 2 | β 1 v 2 ) v ¯ d x 0 , R 3 ( | ψ 1 | β 1 ψ 1 | ψ 2 | β 1 ψ 2 ) ψ ¯ d x 0.

应用Hölder, Gagliardo-Nirenberg和Young不等式, K 1 K 4 可以估计如下

K 1 = R 3 | u ¯ | 2 | u 1 | d x C u ¯ L 4 2 u 1 L 2 C u ¯ L 2 2 ( 1 3 4 α ) Λ α u ¯ L 2 3 2 α u 1 L 2 1 4 Λ α u ¯ L 2 2 + C u ¯ L 2 2 u 1 L 2 4 α 4 α 3 1 4 Λ α u ¯ L 2 2 + C u ¯ L 2 2 u 1 L 2 4

我们使用了Gagliardo-Nirenberg不等式:

u ¯ L 4 C u ¯ L 2 1 3 4 α Λ α u ¯ L 2 3 4 α

同样的, K 4 也可以这样估计

K 4 = R 3 | v ¯ | 2 | u 1 | d x C v ¯ L 4 2 u 1 L 2 C v ¯ L 2 1 2 v ¯ L 2 3 2 u 1 L 2 4 1 4 v ¯ L 2 2 + C v ¯ L 2 2 u 1 L 2 4

接下来,我们将估计 K 2

K 2 = R 3 | u ¯ | ( v 1 , v 2 ) | v ¯ | d x C u ¯ L 6 5 2 α ( v 1 , v 2 ) L 4 v ¯ L 12 4 α 1 C Λ α u ¯ L 2 ( v 1 , v 2 ) L 4 v ˜ L 12 4 α 1 1 4 Λ α u ¯ L 2 2 + C ( v 1 , v 2 ) L 4 2 v ¯ L 12 4 α 1 2 1 4 Λ α u ¯ L 2 2 + C ( v 1 , v 2 ) L 4 1 2 ( v 1 , v 2 ) L 2 3 2 v ¯ L 2 2 ( 1 θ 1 ) v ¯ L 2 2 θ 1 1 4 Λ α u ¯ L 2 2 + 1 4 v ¯ L 2 2 + C ( v 1 , v 2 ) L 2 1 2 ( 1 θ 1 ) ( v 1 , v 2 ) L 2 3 2 ( 1 θ 1 ) v ¯ L 2 2 .

这里我们使用了Gagliardo-Nirenberg不等式:

v ¯ L 12 4 α 1 C v ¯ L 2 1 θ 1 v ¯ L 2 θ 1

通过直接计算,我们可以得到 θ 1 = 7 4 α 4 1 2 ( 1 θ 1 ) 2 3 2 ( 1 θ 1 ) 6 。所以我们有

K 2 1 4 Λ α u ¯ L 2 2 + 1 4 v ¯ L 2 2 + C ( v 1 , v 2 ) L 2 2 ( v 1 , v 2 ) L 2 6 v ¯ L 2 2

涉及 K 3 K 5 的项可以估计如下

K 3 + K 5 = R 3 | ( v 1 , ψ 1 ) | | u ¯ | | ( v ¯ , ψ ¯ ) | d x C ( v 1 , ψ 1 ) L 2 u ¯ L 4 ( v ¯ , ψ ¯ ) L 4 C ( v 1 , ψ 1 ) L 2 u ¯ L 2 1 θ 2 Λ α u ¯ L 2 θ 2 ( v ¯ , ψ ¯ ) L 2 1 4 ( v ¯ , ψ ¯ ) L 2 3 4 1 4 Λ α u ¯ L 2 2 + C ( v ¯ , ψ ¯ ) L 2 2 2 θ 2 u ¯ L 2 2 ( 1 θ 2 ) 2 θ 2 ( v ¯ , ψ ¯ ) L 2 1 2 ( v 1 , ψ 1 ) L 2 3 2 1 4 Λ α u ¯ L 2 2 + 1 4 ( v ¯ , ψ ¯ ) L 2 2 + C u ¯ L 2 8 ( 1 θ 2 ) 5 4 θ 2 ( v ¯ , ψ ¯ ) L 2 2 5 4 θ 2 ( v 1 , ψ 1 ) L 2 8 5 4 θ 2

通过直接计算,我们可以得到 θ 2 = 3 4 α 8 ( 1 θ 2 ) 5 4 θ 2 2 8 5 4 θ 2 4 2 5 4 θ 2 2 。所以我们有

K 3 + K 5 1 4 Λ α u ¯ L 2 2 + 1 4 ( v ¯ , ψ ¯ ) L 2 2 + C ( u ¯ , v ¯ , ψ ¯ ) L 2 2 ( v 1 , ψ 1 ) L 2 4 .

将(2.24)~(2.31)估计应用到(2.22)中,可以得到

d d t ( u ¯ , v ¯ , ψ ¯ ) L 2 2 C ( ( v 1 , v 2 ) L 2 2 ( v 1 , v 2 ) L 2 6 + ( u 1 , v 1 , ψ 1 ) L 2 4 ) ( u ¯ , v ¯ , ψ ¯ ) L 2 2

应用Grönwall不等式,通过 H 1 -估计,可以得到

( u ¯ , v ¯ , ψ ¯ ) L 2 2 = 0

这样完成了定理1.1唯一性部分的证明。

文章引用

陈 贤. 带阻尼的三维热带气候模型的适定性研究
Well-Posed Study of a Three-Dimensional Tropical Climate Model with Damping[J]. 应用数学进展, 2022, 11(07): 4933-4941. https://doi.org/10.12677/AAM.2022.117517

参考文献

  1. 1. Ye, Z. (2015) Regularity and Decay of 3D Incompressible MHD Equations with Nonlinear Damping Terms. Colloquium Mathematicum, 139, 185-203. https://doi.org/10.4064/cm139-2-3

  2. 2. Titi, E.S. and Trabelsi, S. (2019) Global Well-Posedness of a 3D MHD Model in Porous Media. Journal of Geometric Mechanics, 11, 621-637. https://doi.org/10.3934/jgm.2019031

  3. 3. Zhang, Z.J., Wu, C.P. and Yao, Z.A. (2018) Remarks on Global Regu-larity for the 3D MHD System with Damping. Applied Mathematics and Computation, 333, 1-7. https://doi.org/10.1016/j.amc.2018.03.047

  4. 4. Cai, X.J. and Jiu, Q.S. (2008) Weak and Strong Solutions for the Incompressible Navier-Stokes Equations with Damping. Journal of Mathematical Analysis and Applications, 343, 799-809. https://doi.org/10.1016/j.jmaa.2008.01.041

  5. 5. Zhou, Y. (2012) Regularity and Uniqueness for the 3D Imcompressible Navier-Stokes Equations with Damping. Applied Mathematics Letters, 25, 1822-1825. https://doi.org/10.1016/j.aml.2012.02.029

  6. 6. Jiang, Z.H. and Zhu, M.X. (2012) The Large Time Behavior of So-lutions to 3D Navier-Stokes Equations with Nonlinear Damping. Mathematical Methods in the Applied Sciences, 35, 97-102. https://doi.org/10.1002/mma.1540

  7. 7. Liu, H. and Gao, H.J. (2017) Decay of Solutions for the 3D Na-vier-Stokes Equations with Damping. Applied Mathematics Letters, 68, 48-54. https://doi.org/10.1016/j.aml.2016.11.013

  8. 8. Wang, W.H. and Zhou, G.P. (2015) Remarks on the Regularity Criterion of the Navier-Stokes Equations with Nonlinear Damping. Mathematical Problems in Engineering, 35, 1-5. https://doi.org/10.1155/2015/310934

  9. 9. Zhang, Z.J., Wu, X.L. and Lu, M. (2011) On the Uniqueness of Strong Solution to the Incompressible Navier-Stokes Equations with Damping. Journal of Mathematical Analysis and Applica-tions, 377, 414-419. https://doi.org/10.1016/j.jmaa.2010.11.019

  10. 10. Wang, Y.N., Zhang, S.Y. and Pan, N.N. (2020) Regularity and Global Existence on the 3D Tropical Climate Model. Bulletin of the Malaysian Mathematical Sciences Society, 43, 641-650. https://doi.org/10.1007/s40840-018-00707-3

  11. 11. Li, J.K. and Yu, Y.H. (2019) Global Regularity for a Class of 3D Tropical Climate Model without Thermal Diffusion.

  12. 12. Zhu, M.X. (2018) Global Regularity for the Trop-ical Climate Model with Fractional Diffusion on Barotropic Model. Applied Mathematics Letters, 81, 99-104. https://doi.org/10.1016/j.aml.2018.02.003

  13. 13. Dong, B.Q., Wang, W.J., Wu, J.H., Ye, Z. and Zhang, H. (2019) Global Regularity for a Class of 2D Generalized Tropical Climate Models. Journal of Differential Equations, 266, 6346-6382. https://doi.org/10.1016/j.jde.2018.11.007

  14. 14. Dong, B.Q., Wang, W.J., Wu, J.H. and Zhang, H. (2019) Global Regularity Results for the Climate Model with Fractional Dissipation. Centered around Dynamics, Discrete and Continuous Dynamical Systems—Series B, 24, 211-229. https://doi.org/10.3934/dcdsb.2018102

  15. 15. Dong, B.Q., Wu, J.H. and Ye, Z. (2019) Global Regularity for a 2D Tropical Climate Model with Fractional Dissipation. Journal of Nonlinear Science, 29, 511-550. https://doi.org/10.1007/s00332-018-9495-5

  16. 16. Dong, B.Q., Wu, J.H. and Ye, Z. (2020) 2D Tropical Climate Model with Fractional Dissipation and Without Thermal Diffusion. Communications in Mathematical Sciences, 18, 259-292. https://doi.org/10.4310/CMS.2020.v18.n1.a11

  17. 17. Li, J.K. and Titi, E.S. (2016) Global Well-Posedness of Strong Solutions to a Tropical Climate Model. Discrete and Continuous Dynamical Systems, 36, 4495-4516. https://doi.org/10.3934/dcds.2016.36.4495

  18. 18. Wan, R.H. (2016) Global Small Solutions to a Tropical Climate Model without Thermal Diffusion. Journal of Mathematical Physics, 57, 1-13. https://doi.org/10.1063/1.4941039

  19. 19. Ye, X. and Zhu, M.X. (2020) Global Strong Solutions of the 2D Tropical Climate System with Temperature-Dependent Viscosity. Zeitschrift für Angewandte Mathematik und Physik, 71, 97-107. https://doi.org/10.1007/s00033-020-01321-9

期刊菜单