Advances in Clinical Medicine
Vol. 13  No. 02 ( 2023 ), Article ID: 61314 , 6 pages
10.12677/ACM.2023.132243

糖尿病周围神经病变相关生物学标志物研究 进展

王艳,彭鹏*

新疆医科大学第一附属医院,新疆 乌鲁木齐

收稿日期:2023年1月9日;录用日期:2023年2月3日;发布日期:2023年2月14日

摘要

糖尿病周围神经病变(DPN)是糖尿病最常见的慢性并发症,起病隐匿可导致足部溃疡及疼痛、步态紊乱、坏疽,严重降低患者生活质量甚至导致截肢、致死,而当前尚无逆转方法。目前发病机制尚未明确,近年来各项研究表明,多种生物标志物参与DPN的发生发展,本文就对DPN相关的生物学标志物研究进展进行阐述,为DPN的诊断及治疗提供新方向。

关键词

糖尿病周围神经病变,生物学标志物,研究进展

Research Progress on Biological Markers Related to Diabetic Peripheral Neuropathy

Yan Wang, Peng Peng*

The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Jan. 9th, 2023; accepted: Feb. 3rd, 2023; published: Feb. 14th, 2023

ABSTRACT

Diabetic peripheral neuropathy (DPN) is the most common chronic complication of diabetes, which can lead to foot ulcers and pain, gait disorders, gangrene, seriously reducing the quality of life of patients and even leading to amputation and death, and there is currently no way to reverse it. At present, the pathogenesis is not clear, and various studies in recent years have shown that a variety of biomarkers are involved in the occurrence and development of DPN, and this article elaborates on the research progress of DPN-related biological markers, which provides a new direction for the diagnosis and treatment of DPN.

Keywords:Diabetic Peripheral Neuropathy, Biomarkers, Research Progress

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

糖尿病周围神经病变(diabetic peripheral neuropathy, DPN)是糖尿病最常见的慢性并发症 [1] 。临床上多见于对称性多发性感觉神经病变,最开始于下肢远端,随病情逐渐向上形成典型的“袜套样”和“手套样”感觉,约50%的糖尿病患者会发生DPN [2] 。目前糖尿病周围神经病变的病因复杂,研究认为与高血糖、脂代谢紊乱以及胰岛素抵抗促进多元醇、晚期糖基化终产物(advanced glycation end products, AGEs)、ADP-核糖聚合酶途经激活导致氧化应激、炎性反应、线粒体功能障碍、神经营养因子减少最终神经组织损伤和功能障碍有关 [3] 。

DPN早期可无症状,随着病情进展可导致足部溃疡及疼痛、步态紊乱、坏疽,严重降低患者生活质量甚至导致截肢、致死,而当前尚无逆转方法,主要以对症治疗为主 [4] 。因此,能够找到有效的生物学标志物提高早期DPN诊断率对糖尿病患者意义重大。临床上诊断主要依据临床症状和体征,易受患者主观影响,而神经电生理检查价格昂贵、需要专业人员、普及性存在局限。导致临床上易漏诊、误诊,因此寻找相关生物学标志物有重要的临床意义。目前国内外已有研究证明多种生物标记物与DPN发生、发展关系密切相关,本文就对DPN相关的生物学标志物研究进展进行阐述。

2. 炎性标志物

2.1. Toll样受体4

Toll样受体(toll-like receptors, TLR)是在先天免疫反应中起重要作用的蛋白质,微生物病原体表达的TLR与其配体之间的相互作用可触发信号级联,导致细胞因子产生和启动适应性免疫应答。轴突损伤,髓鞘变性,施旺细胞死亡和周围神经系统中的免疫细胞浸润都是DPN的特征,DPN现在被认为是一种慢性炎症性疾病,高葡萄糖、游离脂肪酸和血管紧张素II可诱导在背根神经节中表达TLR4,从而导致炎症下游信号通路的激活,激活NF-κB可产生TNF-α、活环加氧酶(cyclooxygenase, COX)和前列腺素等炎症因子,导致DPN中的神经炎症 [5] 。在DPN患者和小鼠模型中,促炎性细胞因子和趋化因子,尤其是肿瘤坏死因子α (tumor necrosis actor-α, TNF-α)、IL-8、IL-6和IL-1上调,表明免疫机制失调在DPN发病过程中起着重要作用 [6] 。也有研究表明,TLR4敲除小鼠不太可能因摄入高脂肪饮食而发生神经病变,这表明与糖尿病性神经病变的致病机制有关 [7] 。Zhu等 [8] 研究了从2型糖尿病患者收集的人外周血单核细胞中TLR4及其下游基因的表达水观察到,未发生神经病变的健康受试者和糖尿病患者相比,TLR4的表达水平在发生神经病变的糖尿病患者中增加,血清中TNF-α和IL-6的水平在发生神经病变的糖尿病患者中也显着增加。研究表明TLR4的Asp299Gly和Thr399Ile基因型与T2DM糖尿病神经病变发病率的降低相关 [9] 。这些结果表明,TLR4可能是糖尿病性神经病变的标志物。

2.2. miR-146a

微小RNA (microRNAs, miRNA)是非编码单链RNA,长度约为20~22个碱基,通过互补结合靶mRNA的3'未翻译区域抑制降解或翻译来控制基因表达。因其在血清中的稳定性和易于检测而成为阿尔兹海默症、癫痫、多发性硬化症、帕金森病等神经疾病的潜在生物学标志物。有研究表明,miRNA与神经变性的诱导和促炎反应的激活有关 [10] 。此外,疼痛识别和炎症相关的各种蛋白质,如嘌呤能受体P2RX4,也受特异性miRNA的调节 [11] ,其中miR-146a是糖尿病患者血清样本中表达水平降低的miRNA之一,与炎症显著相关,并可导致糖尿病神经病变的发展。有报道称,miR-146a在转录后抑制介导NF-ΚB激活的白细胞介素-1受体相关激酶1 (interleukin-1receptor-associated kinase 1, IRAK1)和TNF受体相关因子6 (TNF receptor associated factor 6, TRAF6) [12] 。而长期高血糖诱发DPN大鼠坐骨神经miR-146a下调,导致NF-ΚB抑制丧失、组织损伤、TNF-α和IL-1β释放,从而促进炎症和凋亡,导致DPN的发生 [13] 。Wang等 [14] 发现在发生DPN的T2DM患者血清中miR-146a含量显著低于未出现周围神经病变的糖尿病患者,这表明miR-146a与DPN的发生密切相关,该指标可作为诊断DPN的标志物。

3. 氧化应激标志物

3.1. 甲基乙二醛和乙二醛酶 I

甲基乙二醛(methylglyoxal, MG)是一种产生于糖酵解过程中的高活性二羰基化合物,人体内的MG最重要的代谢途经是以乙二醛酶I (glyoxalase I, GLOI)为限速酶的乙二醛酶系统。正常情况下,MG含量较低,高糖环境下GLOI活性受抑制,体内MG含量升高,造成细胞毒性的增强。同时,高浓度MG可促使AGEs持续产生并积累,AGEs与其细胞表面受体(receptor for advanced glycationend products, RAGE)结合后,产生大量活性氧,诱导炎症、细胞凋亡的发生。已有研究表明,发生糖尿病时,MG可通过氧化应激介导的p38MAPK途经损伤大鼠周围神经系统的细胞成分来促进糖尿病神经病变的发展 [15] 。在糖尿病性神经病变的周围神经组织中也观察到AGEs的过度积累,已被证明与神经纤维数量的减少相关 [16] 。此外,在缺乏AGE受体的敲除小鼠中,疼痛感知的丧失得到了预防,表明RAGE表达直接参与神经病变的发作 [17] 。因此,MG作为预测糖尿病性神经病变发作和进展的生物标志物而受到广泛关注 [18] 。有研究显示,血清样本中GLO I活性降低与疼痛性糖尿病性神经病变之间存在显著相关性 [19] 。此外,Groener等 [20] 报道,在GLO I基因中C332C突变纯合子的2型糖尿病患者中,糖尿病神经病变的发病率主要较高(p = 0.03; OR = 1.49 [95%-CI: 1.04; 2.11])。因此,GLO I活性可能是一种有用的预测糖尿病神经病变的生物标志物。

3.2. 转录因子Nrf2

转录因子Nrf2 (nuclear factor erythroid 2-related factor 2)是通过抗氧化反应元件(antioxidant response element, ARE)结合位点参与各种抗氧化蛋白(如解毒酶)的表达,参与抗氧化防御系统的调节的关键蛋白。在正常情况下,Nrf2在细胞内是无活性的,并且是在应激下增加的自由基产生过程中被激活。这种活化的Nrf2迁移到细胞核与ARE相互作用,以增加许多抗氧化和解毒酶的蛋白质表达,减少自由基的产生和氧化应激。在糖尿病性神经病变发生时下,高血糖导致诱导各种神经炎症途径和自由基产生,Nrf2水平降低并通过各种与其连接的神经炎症途径导致神经病变进展 [21] 。有研究发现,对于链脲佐菌素诱导的DPN,增强Nrf2的表达具有正向作用 [22] ,关于Nrf2转录调控影响糖尿病神经病变病理生理学的研究可能为糖尿病神经病变药物开发提供一条有价值的未来途径。

4. 神经损伤标志物

4.1. 神经特异性烯醇化酶

神经元特异性烯醇化酶(neuron-specific enolase, NSE)是参与糖酵解途径的烯醇化酶中的一种,主要存在于神经组织和神经内分泌组织中,调控神经胶质和神经细胞的生长发育,具有高度的神经特异性。正常生理状态下,血清中NSE含量甚微。当神经元损伤时,NSE合成速率增快,促进能量快速生成功能,损伤同时血–神经屏障受损,NSE通过血-神经屏障外漏从而释放,通过配体与受体特异性相结合,保护受损神经元细胞并促使胶质细胞再生 [23] 。Li等 [24] 研究发现由于慢性高血糖引起的氧化应激,DPN患者的血清NSE水平明显高于无神经病变的糖尿病患者。此外,有报道称该值可随着治疗神经病变的改善而降低 [25] 。因此,NSE可能是预测治疗效果以及早期检测糖尿病神经病变的标志物。

4.2. 髓鞘蛋白零和蛋白神经丝轻链

髓鞘蛋白零(myelin protein zero, MPZ)是神经组织中负责髓鞘形成的蛋白质之一,在一项研究中发现髓鞘蛋白零在各种髓鞘特异性基因的mRNA中被确定为最佳生物标志物 [26] 。DPN在很大程度上是由于神经的脱髓鞘和施万细胞的功能障碍导致。在人类成像研究和DPN动物模型已显示,MPZ cmRNA的减少可反映人类A-δ/β纤维脱髓鞘的过程 [27] [28] [29] 。神经丝是中枢神经系统和周围神经系统中神经元的主要细胞骨架蛋白,可形成由神经丝轻链(neurofilament light chain, NfL)和重链(neurofilament heavy chain, NfH)组成。神经丝轻链是神经元和轴突的一种成分,正常生理条件下轴突释放少量NfL,当神经损伤导致这些蛋白质释放量显著增加,在临床上可被用作神经元损伤标志物 [30] 。已有研究发现,糖尿病神经病变受试者髓鞘蛋白零的cmRNA显著降低,而糖尿病神经病变受试者的神经丝轻链蛋白水平升高 [26] 。血液中NfL蛋白的增加和轴突损伤与痛觉过敏有关,脱髓鞘的过程可能以MPZ cmRNA降低为特征,NfL蛋白和MPZ cmRNA是非侵入性生物标志物,可以作为诊断DPN并可预测其发展的指标。

5. 神经营养因子标志物

5.1. 神经生长因子

神经生长因子(nerve growth factor, NGF)是可以促进神经元存活和生长的生长因子,在突触成熟、轴突靶向、突触可塑性以及神经元生长中至关重要。NGF会影响成熟伤害感受器受体的表型以及胚胎神经系统的正常发育,NGF水平的变化与神经性疼痛等慢性疼痛病症的病理生理学有关 [31] 。NGF蛋白的表达降低与临床糖尿病中神经元的死亡呈正相关,NGF产生的增加可能是对神经元活动减少的代偿反应,这进一步证实了它与DPN的发生和发展有关 [32] ,在糖尿病小鼠中,在神经病变发作时观察到神经组织或周围组织中神经生长因子的表达减少。目前已有研究发现,患有神经病变的糖尿病患者的血液NGF水平显著降低 [32] [33] [34] 。因此,神经生长因子被认为是糖尿病神经病变潜在生物标志物,然而,也有研究中血清NGF水平与糖尿病周围神经病变患者的神经病变严重程度无关。因此,NGF是否足以预测糖尿病神经病变和了解其病理生理学仍然未知。

5.2. 热休克蛋白27

热休克蛋白(heat shock protein, HSP)是一种细胞暴露于环境应激条件时,能产生保护细胞伤害的特殊蛋白,在恢复蛋白质稳态并促进细胞存活中起重要作用。其中HSP27是一种分子量低的小型热休克蛋白,可以通过调节基因表达,修复受损蛋白质防御热休克、氧化应激,对抑制细胞凋亡、稳定细胞结构有重要作用。有研究表明,在糖尿病小鼠脊髓的背跟神经节细胞中观察到HSP27水平升高 [35] ,这种蛋白质在保护施万细胞免受细胞凋亡方面发挥作用 [36] 。在研究中表明,2型糖尿病患者中HSP27水平高,有着更好的神经功能和更少的神经性体征,但也存在相互结果矛盾的研究。未来需要更多研究,来证实其与糖尿病神经病变的关系。

6. 小结与展望

DPN发病机制复杂,目前仍然缺乏针对神经损伤的有效方法,因此早期筛查、早期干预十分重要。综上所述,相关生物学标志物已被证实参与DPN的发生发展,但目前仍无单一特异性强的生物学标志物来判断发生DPN及病情情况,但结合相关生物学指标异常,可对疾病发展起到警示作用,同时,可为药物开发提供靶点。未来仍需要大样本、长时间、多中心临床研究来获得诊断及治疗DPN的方法。

文章引用

王 艳,彭 鹏. 糖尿病周围神经病变相关生物学标志物研究进展
Research Progress on Biological Markers Related to Diabetic Peripheral Neuropathy[J]. 临床医学进展, 2023, 13(02): 1758-1763. https://doi.org/10.12677/ACM.2023.132243

参考文献

  1. 1. 中华医学会糖尿病学分会神经并发症学组. 糖尿病神经病变诊治专家共识(2021年版) [J]. 中华糖尿病杂志, 2021, 13(6): 540-557.

  2. 2. Hicks, C.W. and Selvin, E. (2019) Epidemiology of Peripheral Neuropathy and Lower Ex-tremity Disease in Diabetes. Current Diabetes Reports, 19, 86. https://doi.org/10.1007/s11892-019-1212-8

  3. 3. Feldman, E.L., Nave, K.A., Jensen, T.S., et al. (2017) New Hori-zons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron, 93, 1296-1313. https://doi.org/10.1016/j.neuron.2017.02.005

  4. 4. Sadosky, A., Schaefer, C., Mann, R., et al. (2013) Burden of Illness Associated with Painful Diabetic Peripheral Neuropathy among Adults Seeking Treatment in the US: Results from a Retrospective Chart Review and Cross-Sectional Survey. Diabetes, Metabolic Syndrome and Obesity, 6, 79-92. https://doi.org/10.2147/DMSO.S37415

  5. 5. Aghamiri, S.H., Komlakh, K. and Ghaffari, M. (2022) The Crosstalk among TLR2, TLR4 and Pathogenic Pathways; a Treasure Trove for Treatment of Diabetic Neuropathy. Inflammophar-macology, 30, 51-60. https://doi.org/10.1007/s10787-021-00919-3

  6. 6. Mu, Z.P., Wang, Y.G., Li, C.Q., et al. (2017) Association be-tween Tumor Necrosis Factor-α and Diabetic Peripheral Neuropathy in Patients with Type 2 Diabetes: A Meta-Analysis. Molecular Neurobiology, 52, 983-996. https://doi.org/10.1007/s12035-016-9702-z

  7. 7. Elzinga, S., Murdock, B.J., Guo, K., et al. (2019) Toll-Like Re-ceptors and Inflammation in Metabolic Neuropathy; a Role in Early versus Late Disease? Experimental Neurology, 320, Article ID: 112967. https://doi.org/10.1016/j.expneurol.2019.112967

  8. 8. Zhu, T., Meng, Q., Ji, J., et al. (2015) Toll-Like Receptor 4 and Tumor Necrosis Factor-Alpha as Diagnostic Biomarkers for Diabetic Peripheral Neuropathy. Neuroscience Letters, 585, 28-32. https://doi.org/10.1016/j.neulet.2014.11.020

  9. 9. Rudofsky, G., Reismann, P., Witte, S., et al. (2004) Asp299Gly and Thr399Ile Genotypes of the TLR4 Gene Are Associated with a Reduced Prevalence of Diabetic Neurop-athy in Patients with Type 2 Diabetes. Diabetes Care, 27, 179-183. https://doi.org/10.2337/diacare.27.1.179

  10. 10. Lehmann, S.M., Krüger, C., Park, B., et al. (2012) An Unconven-tional Role for miRNA: Let-7 Activates Toll-Like Receptor 7 and Causes Neurodegeneration. Nature Neuroscience, 15, 827-835. https://doi.org/10.1038/nn.3113

  11. 11. Bali, K.K. and Kuner, R. (2014) Noncoding RNAs: Key Molecules in Understanding and Treating Pain. Trends in Molecular Medicine, 20, 437-448. https://doi.org/10.1016/j.molmed.2014.05.006

  12. 12. Yang, K., He, Y.S., Wang, X.Q., et al. (2011) MiR-146a In-hibits Oxidized Low-Density Lipoprotein-Induced Lipid Accumulation and Inflammatory Response via Targeting Toll-Like Receptor 4. FEBS Letters, 585, 854-860. https://doi.org/10.1016/j.febslet.2011.02.009

  13. 13. Feng, Y., Chen, L., Luo, Q., et al. (2018) Involvement of mi-croRNA-146a in Diabetic Peripheral Neuropathy through the Regulation of Inflammation. Drug Design, Development and Therapy, 12, 171-177. https://doi.org/10.2147/DDDT.S157109

  14. 14. 王征, 李艳芳. microRNA-146a在2型糖尿病周围神经病变患者血清中的表达及其临床意义[J]. 中国慢性病预防与控制, 2019, 27(1): 28-31.

  15. 15. Fukunaga, M., Miyata, S., Higo, S., et al. (2005) Methylglyoxal Induces Apoptosis through Oxidative Stress-Mediated Activation of p38 Mito-gen-Activated Protein Kinase in Rat Schwann Cells. Annals of the New York Academy of Sciences, 1043, 151-157. https://doi.org/10.1196/annals.1333.019

  16. 16. Sugimoto, K., Nishizawa, Y., Horiuchi, S., et al. (1997) Localization in Human Diabetic Peripheral Nerve of N(epsilon)-carboxymethyllysine-Protein Adducts, an Advanced Glycation End-product. Diabetologia, 40, 1380-1387. https://doi.org/10.1007/s001250050839

  17. 17. Bierhaus, A., Haslbeck, K.M., Humpert, P.M., et al. (2004) Loss of Pain Perception in Diabetes Is Dependent on a Receptor of the Immunoglobulin Superfamily. The Journal of Clinical In-vestigation, 114, 1741-1751. https://doi.org/10.1172/JCI18058

  18. 18. Thornalley, P.J. (2002) Glycation in Diabetic Neuropathy: Characteristics, Consequences, Causes, and Therapeutic Options. International Review of Neurobiology, 50, 37-57. https://doi.org/10.1016/S0074-7742(02)50072-6

  19. 19. Skapare, E., Konrade, I., Liepinsh, E., et al. (2013) Associa-tion of Reduced Glyoxalase 1 Activity and Painful Peripheral Diabetic Neuropathy in Type 1 and 2 Diabetes Mellitus Pa-tients. Journal of Diabetes and Its Complications, 27, 262-267. https://doi.org/10.1016/j.jdiacomp.2012.12.002

  20. 20. Groener, J.B., Reismann, P., Fleming, T., et al. (2013) C332C Genotype of Glyoxalase 1 and Its Association with Late Diabetic Complications.Experimental and Clinical Endocrinolo-gy & Diabetes, 121, 436-439. https://doi.org/10.1055/s-0033-1345124

  21. 21. Negi, G., Kumar, A., Joshi, R.P., et al. (2011) Oxidative Stress and Nrf2 in the Pathophysiology of Diabetic Neuropathy: Old Perspective with a New Angle. Biochemical and Biophysical Research Communications, 408, 1-5. https://doi.org/10.1016/j.bbrc.2011.03.087

  22. 22. Xu, C., Hou, B., He, P., et al. (2020) Neuroprotective Effect of Salvianolic Acid A against Diabetic Peripheral Neuropathy through Modulation of Nrf2. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 6431459. https://doi.org/10.1155/2020/6431459

  23. 23. Odagiri, E. (2005) Neuron Specific Enolase. Nihon Rinsho, 63, 717-719.

  24. 24. Li, J., Zhang, H., Xie, M., et al. (2013) NSE, a Potential Biomarker, Is Closely Connected to Diabetic Pe-ripheral Neuropathy. Diabetes Care, 36, 3405-3410. https://doi.org/10.2337/dc13-0590

  25. 25. Ummer, V.S., Maiya, A.G., et al. (2020) Effect of Photobiomodulation on Serum Neuron Specific Enolase (NSE) among Patients with Diabetic Peripheral Neuropathy—A Pilot Study. Diabetology & Metabolic Syndrome, 14, 1061-1063. https://doi.org/10.1016/j.dsx.2020.06.065

  26. 26. Morgenstern, J., Groener, J.B., Jende, J.M.E., et al. (2021) Neu-ron-Specific Biomarkers Predict Hypo- and Hyperalgesia in Individuals with Diabetic Peripheral Neuropathy. Diabetolo-gia, 64, 2843-2855. https://doi.org/10.1007/s00125-021-05557-6

  27. 27. Park, H.T., Kim, Y.H., Lee, K.E., et al. (2020) Behind the Pa-thology of Macrophage-Associated Demyelination in Inflammatory Neuropathies: Demyelinating Schwann Cells. Cellu-lar and Molecular Life Sciences, 77, 2497-2506. https://doi.org/10.1007/s00018-019-03431-8

  28. 28. Jende, J.M.E., Groener, J.B., Kender, Z., et al. (2020) Structural Nerve Remodeling at 3-T MR Neurography Differs between Painful and Painless Diabetic Polyneuropathy in Type 1 or 2 Diabetes. Radiology, 294, 405-414. https://doi.org/10.1148/radiol.2019191347

  29. 29. Groener, J.B., Jende, J.M.E., Kurz, F.T., et al. (2020) Understand-ing Diabetic Neuropathy—From Subclinical Nerve Lesions to Severe Nerve Fiber Deficits: A Cross-Sectional Study in Patients with Type 2 Diabetes and Healthy Control Subjects. Diabetes, 69, 436-447. https://doi.org/10.2337/db19-0197

  30. 30. Sandelius, Å., Zetterberg, H., Blennow, K., et al. (2018) Plasma Neurofil-ament Light Chain Concentration in the Inherited Peripheral Neuropathies. Neurology, 90, e518-e524. https://doi.org/10.1212/WNL.0000000000004932

  31. 31. Evans, L.J., Loescher, A.R., Boissonade, F.M., et al. (2014) Temporal Mismatch between Pain Behaviour, Skin Nerve Growth Factor and Intra-Epidermal Nerve Fibre Density in Trigeminal Neuropathic Pain. BMC Neuroscience, 15, 1. https://doi.org/10.1186/1471-2202-15-1

  32. 32. Kim, H.C., Cho, Y.J., Ahn, C.W., et al. (2009) Nerve Growth Factor and Expression of Its Receptors in Patients with Diabetic Neuropathy. Diabetic Medicine, 26, 1228-1234. https://doi.org/10.1111/j.1464-5491.2009.02856.x

  33. 33. Sun, Q., Tang, D.D., Yin, E.G., et al. (2018) Diagnostic Significance of Serum Levels of Nerve Growth Factor and Brain Derived Neurotrophic Factor in Diabetic Peripheral Neuropathy. Medical Science Monitor, 24, 5943-5950. https://doi.org/10.12659/MSM.909449

  34. 34. Faradji, V. and Sotelo, J. (1990) Low Serum Levels of Nerve Growth Factor in Diabetic Neuropathy. Acta Neurologica Scandinavica, 81, 402-406. https://doi.org/10.1111/j.1600-0404.1990.tb00984.x

  35. 35. Kamiya, H., Zhangm, W. and Sima, A.A. (2005) Apop-totic Stress Is Counterbalanced by Survival Elements Preventing Programmed Cell Death of Dorsal Root Ganglions in Subacute Type 1 Diabetic BB/Wor Rats. Diabetes, 54, 3288-3295. https://doi.org/10.2337/diabetes.54.11.3288

  36. 36. Benn, S.C., Perrelet, D., Kato, A.C., et al. (2002) Hsp27 Upregu-lation and Phosphorylation Is Required for Injured Sensory and Motor Neuron Survival. Neuron, 36, 45-56. https://doi.org/10.1016/S0896-6273(02)00941-8

  37. NOTES

    *通讯作者。

期刊菜单