Advances in Clinical Medicine
Vol. 13  No. 03 ( 2023 ), Article ID: 62402 , 7 pages
10.12677/ACM.2023.133489

肥胖合并糖尿病中脂肪组织巨噬细胞极化相关信号通路研究进展

汤冉,杜国利*

新疆医科大学第一附属医院内分泌科,新疆 乌鲁木齐

收稿日期:2023年2月11日;录用日期:2023年3月6日;发布日期:2023年3月14日

摘要

脂肪组织中过多的脂质积聚,既是肥胖的根源,也可能是慢性局部炎症的起因和结果,最近的研究表明,巨噬细胞可诱导许多其他特异性免疫疾病,因此在脂肪组织巨噬细胞活化过程中,巨噬细胞的招募、极化都是潜在的干预靶点。本文对脂肪组织慢性低级别炎症的发病机制及相关信号转导通路,包括AMPK通路,JNK信号通路,以及Notch信号通路进行了综述。为将来对慢性疾病如胰岛素抵抗、2型糖尿病的治疗干预提供一些思路和新的治疗方法。

关键词

肥胖,糖尿病,脂肪组织巨噬细胞,极化

Advances in Macrophage Polarization-Related Signaling Pathways in Adipose Tissue in Obesity Combined with Diabetes

Ran Tang, Guoli Du*

Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi Xinjiang

Received: Feb. 11th, 2023; accepted: Mar. 6th, 2023; published: Mar. 14th, 2023

ABSTRACT

Excessive lipid accumulation in adipose tissue is both a root cause of obesity and consequence of chronic local inflammation. Recent studies have shown that macrophages can induce specific immune characteristics. The process of macrophage activation in adipose tissue all are the potential targets for intervention, such as macrophages recruitment and polarization. This paper reviewed the pathogenesis of chronic low-grade inflammation in adipose tissue and related signal transduction pathways, including AMPK pathway, JNK signaling pathway and Notch signaling pathway. It provides some ideas and new therapeutic methods for the treatment of chronic diseases such as insulin resistance and type 2 diabetes in the future.

Keywords:Obesity, Diabetes, Adipose Tissue Macrophages, Polarization

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 前言

肥胖症困扰着全世界数百万人,根据世界卫生组织的数据,自1975年以来,肥胖的患病率几乎增加了两倍,2016年约有6.5亿人被诊断为肥胖。预计到2030年肥胖人口将增加到11.2亿 [1] 。肥胖具有许多合并症风险,尤其是胰岛素抵抗及2型糖尿病。肥胖患者脂肪组织的慢性炎症抑制了脂肪细胞的胰岛素信号通路,其中巨噬细胞组织浸润所致的炎症反应是胰岛素抵抗的主要原因 [2] ,尤其是M1型极化的脂肪组织巨噬细胞炎症与肥胖相关的胰岛素抵抗发展密切相关 [3] ,接下来对于肥胖合并糖尿病中脂肪组织巨噬细胞极化相关信号通路予以综述。

2. 脂肪组织巨噬细胞及其分类

脂肪组织并不仅仅是脂类的贮存场所,也是一种内分泌器官,可分泌多种激素和脂肪因子,从而调节全身代谢 [4] 。脂肪组织主要由脂肪细胞组成,除此之外,它也有常驻的免疫细胞,从而维持机体稳态。在正常体重情况下,脂肪组织巨噬细胞(ATMs)是最丰富的白细胞种群,约占脂肪组织的5%,但在肥胖的情况下,脂肪组织巨噬细胞占比显著增加(高达脂肪组织的50%) [5] 。

许多研究发现饮食诱导的肥胖小鼠,可以通过募集巨噬细胞从而诱导巨噬细胞活化,导致局部脂肪组织的慢性轻度炎症,其中巨噬细胞极化是慢性炎症的重要过程之一 [6] 。Lumeng等人 [7] 在2007年发表了关于肥胖小鼠和正常体重小鼠ATMs极化的报道,研究发现内脏脂肪组织中聚集了大量F4/80+、CD16/32+、CD11c+巨噬细胞,ATMs分泌促炎性因子,如肿瘤坏死因子α (TNF-α)、白细胞介素-1β (IL-1β) 和诱导型一氧化氮合酶(iNOS)的高表达,以此引发炎症反应。此外,还有研究发现活化的单核细胞可在单核细胞趋化蛋白-1 (MCP-1)等细胞因子的诱导下聚集并且活化,可造成脂肪细胞肥大、局部缺氧 [8] 。慢性炎症中的巨噬细胞极化,可根据其表型和分泌的细胞因子,分为经典活化型(M1型)和替代活化型(M2型),M1主要通过分泌TNF-α、IL-1β、iNOS和MCP-1等的细胞因子,发挥促进炎症的作用 [9] ,M2则是在IL-4、Arg-1、IL-10、TGF-β的作用下诱导形成,可分泌TGF-β、VEGF、EGF等细胞因子,具有抗炎和组织再生的作用 [10] 。在标准体重及胰岛素敏感的状态下,ATMs向M2状态极化,在胰岛素敏感性保留的轻度肥胖的早期阶段,M2极化的巨噬细胞可以使脂肪细胞不受这些炎症因子的影响,并阻止M1极化。但随着肥胖程度加重,将会抑制M2型巨噬细胞。除此之外,PPARγ和NF-κB也是调节巨噬细胞极化的关键靶点。PPARγ已被证明是M2产生的重要因素,可激活M2极化,具有抗炎作用。阻断或抑制PPARγ信号通路可抑制M2极化,同时PPARγ可阻断NF-κB促炎通路,抑制TNF-α等相关因子的表达,从而抑制炎症反应 [11] 。

3. 脂肪组织巨噬细胞极化相关信号通路

影响巨噬细胞极化具有多条信号通路,这些通路包括巨噬细胞迁移抑制因子(MIF)通路、腺苷酸活化蛋白激酶(AMPK)信号通路、C-Jun氨基末端激酶(JNK)信号通路、Notch信号通路等。

3.1. MIF参与脂肪组织巨噬细胞极化

巨噬细胞迁移抑制因子(MIF)是一种多功能的促炎细胞因子,最初是从活化的T淋巴细胞培养液中分离出来的,能够抑制体外培养的巨噬细胞迁移。MIF具有广泛的生物学特性,与自身免疫性疾病和炎症性疾病密切相关,并且巨噬细胞已被确认为MIF在体内和体外的主要来源和靶点 [12] 。MIF在炎症刺激时会做出迅速反应,促使细胞释放脂多糖、TNF-α和干扰素γ (IFN-γ),以旁分泌和自分泌的方式诱发其效应。MIF也可抑制糖皮质激素的释放,促进TNF-α、IL-2、IL-6、IL-8、IFN-γ、IL-1β等多种细胞因子的分泌,并抑制IL-10的促炎反应 [13] 。肥胖患者的MIF水平较正常体重患者增高,具有免疫抑制作用,与胰岛素抵抗的程度直接相关。

流行病学研究提示MIF与肥胖症和T2DM有关,有研究显示肥胖及2型糖尿病个体外周血单核细胞MIF mRNA表达上调60% [14] [15] ,但经过6周的降糖干预可使肥胖患者血浆MIF浓度明显下降,而中断药物治疗可以逆转这种现象。此外,多项研究表明肥胖症患者体重减轻与血清MIF浓度降低和胰腺β细胞功能改善有关 [16] [17] [18] ,并且与体型偏瘦个体相比,MIF浓度的升高与T2DM的发病率相关性更大 [19] 。最近,还有研究发现MIF浓度增加与妊娠糖尿病和产后代谢综合征易感性增强同样相关 [20] ,与健康妊娠对照组相比,患有妊娠糖尿病的女性血清MIF浓度(11.31 ± 4.92 ng/ml vs 5.31 ± 4.07 ng/ml; p < 0.001)水平显著增高 [21] 。在肥胖的发展过程中,脂肪组织炎症的早期,脂肪细胞分泌的MIF可通过CD74受体直接促进M1型巨噬细胞的极化;伴随着肥胖的进展,M1型巨噬细胞来源的MIF增加会进一步加剧正反馈循环中脂肪细胞的炎症及巨噬细胞极化,导致脂肪组织炎症和相关的胰岛素抵抗的加重。CD74靶向抑制的MIF受体可阻断COX-2/MIF信号通路从而减轻炎症反应和胰岛素抵抗 [3] 。

3.2. AMPK信号通路

AMPK是细胞和整个机体能量代谢稳态的重要调节因子,尤其是在葡萄糖代谢中表现得更加显著 [22] [23] [24] 。AMPK是一种在进化过程中高度保守的丝氨酸/苏氨酸激酶,由一个异三聚体复合物组成,包括催化亚基和调节亚基。在哺乳动物组织中,存在着两种亚基的α (α1和α2)、β (β1和β2)及3种亚基的γ (γ1、γ2和γ3),AMPK亚型的结构在哺乳动物组织中也表达不同 [25] 。AMPK可通过变构调控AMP浓度增加而被激活,通过上游激酶丝氨酸/苏氨酸激酶1 (LKB1)、钙调蛋白依赖性蛋白激酶激酶β (CaMKKβ)和磷酸化腺苷单磷酸活化蛋白激酶α1抗体(Thr172)。AMPK信号的一个主要作用是通过刺激能量生产(包括葡萄糖和脂质分解代谢)或抑制能量消耗途径(如蛋白质、脂肪酸和胆固醇的合成)来响应代谢需求。AMPK活性受损可导致许多组织发生胰岛素抵抗 [26] 。

下丘脑中的AMPK是体重增加的常见调节器,AMPK作为应激传感器,可被一系列因素激活,如氧化应激、代谢应激和物理应激 [27] 。AMPK在2型糖尿病中是一个关键的调节因子,与肥胖诱导的炎症及胰岛素敏感性相关。在脂肪细胞中,脂质累积以及脂肪在胰腺、肌肉等内脏器官的异位存储,均可刺激免疫系统防御,刺激促炎细胞因子分泌及巨噬细胞/单核细胞募集 [28] 。AMPK可在多种脂肪因子的作用下抑制炎症反应,例如,脂多糖(LPS)可通过AMPK经典激活剂5-氨基咪唑-4-羧基核苷(AICAR)激活AMPK而抑制LPS诱导的炎症反应。Steinberg等人 [29] 的研究发现,TNF-α可通过加强蛋白磷酸酶2C (AMPK信号通路的抑制剂)的表达而抑制AMPK活性。在AMPK信号通路中,AMPK抑制NF-κB p65磷酸化,抑制促炎脂肪细胞因子表达,上调PPARγ表达。具体来说,AMPK是通过沉默信息调节因子1 (silent information regulator 1, SIRT1)和过氧化物酶体增殖激活受体γ共激活因子1α (PGC-1α)等下游介质间接抑制NF-κB信号通路 [30] 。

3.3. JNK信号通路

JNK信号通路属于丝裂原活化蛋白激酶(MAPKs)的超家族,是细胞增殖、分化和凋亡的主要调控因子 [31] [32] 。在脂肪组织中,巨噬细胞中的JNK在胰岛素抵抗和慢性炎症的建立以及巨噬细胞积累和巨噬细胞极化方面发挥了重要作用 [7] 。JNK信号通路参与炎症反应,并在肥胖及胰岛素抵抗的代谢反应中发挥关键作用。有研究发现巨噬细胞中JNK的表达可能在HFD诱导的小鼠ATM积累和M1极化中发挥关键作用,ATMs由M1向M2的极化转变被认为是提高胰岛素敏感性的原因。Oliveira等人研究发现运动可以改善胰岛素抵抗,通过下调磷酸化JNK诱导巨噬细胞向M2状态极化。由此,我们可以认识到JNK通路在调控巨噬细胞极化中的重要性,通过JNK途径干预巨噬细胞极化可能有助于治疗肥胖等疾病。此外,在JNK信号通路中,JNK1/2是脂肪细胞中TNF-α降低PPARγ和葡萄糖转运蛋白4 (GLUT4)表达过程的间接介导因子之一 [33] 。

3.4. Notch信号通路

Notch信号通路是一个高度保守的信号通路,广泛参与器官、组织及细胞的发育分化,尤其是对调节单核细胞和淋巴细胞等免疫系统细胞的发育、分化及成熟免疫细胞的功能具有重要作用 [34] 。Notch信号通路由Notch受体、配体、细胞内效应分子、调节分子及其他效应物组成。Notch家族在哺乳动物中有四个表达的跨膜Notch受体,它们可能与Notch信号结合并调节不同的下游因子。Notch1~3可在许多组织器官中表达,而Notch4的表达则局限于成熟的巨噬细胞、胰腺和上皮细胞。Notch属Ⅰ型跨膜蛋白,由胞外亚基(NEC)、跨膜亚基(NTM)和胞内亚基(NIC)组成,胞外区和胞内区均高度保守 [35] 。

单核细胞可分别通过粒细胞–巨噬细胞集落刺激因子(GM-CSF)或巨噬细胞CSF (M-CSF)分化为M1型或M2型细胞 [36] [37] 。研究表明外周血单核细胞(PBMC)表达较多的Notch1和Notch2 [38] ,Notch信号通路通过促进或抑制细胞增殖、细胞分化和细胞死亡维持组织更新 [39] 。有实验表明,在肥胖小鼠中通过药物抑制Notch信号通路,肥胖小鼠Ucp1表达增强,体重下降,血糖降低 [40] 。Notch信号除了能降低葡萄糖和减轻肥胖外,还能调节巨噬细胞的极化。Notch受体与配体DII4结合可诱导一种分离金属蛋白酶(ADAM)域型蛋白酶和γ-分泌酶复合体的激活 [41] ,Notch细胞内结构域(NICD)易位进入细胞核,并与序列特异性DNA结合因子RBP-J结合。从而导致M1型巨噬细胞极化。此外,RBP-J可能通过选择性增强TLR4的IRAK2-Mnk1-eif4E轴信号,促进干扰素调节因子8 (IRF8)的合成。TLR4既能上调NF-κB,又能激活RBP-J;相反,SOCS3在下游调控通路中对M1型巨噬细胞极化的抑制发挥重要作用 [42] 。

4. 小结与展望

在不同的微环境中或在不同的刺激下,巨噬细胞可以表现出不同的激活方式,极化为功能不同的亚型,各亚型在肥胖和胰岛素抵抗的发生、发展中起着重要的作用。因此可通过调节影响巨噬细胞极化相关通路的各种因素来诱导巨噬细胞的极化方向,从而稳定体内巨噬细胞M1/M2型之间的平衡,这将有助于提高我们对肥胖和2型糖尿病靶向相关治疗的理解和治疗。首先鉴于MIF的趋化特性,MIF是促进肥胖期间ATM招募的主要因子。MIF活性在肥胖个体中增强,并直接与外周胰岛素抵抗的程度相关。许多研究已经在MIF基因启动子区域中发现了一些与肥胖和T2DM相关的SNP。因此,利用药物制剂或功能性食品控制肥胖患者的MIF炎症活动,可能对治疗和预防肥胖相关的代谢性疾病有益。其次AMPK信号可以抑制炎症反应引起的NF-κB系统,而NF-κB亚基并不直接磷酸化AMPK,而是通过几个下游AMPK的目标来抑制NF-κB信号通路,例如SIRT1,PGC-1α和p53等。在肥胖和代谢综合症中,AMPK的活性降低,这可能会增强NF-κB信号通路的激活及慢性低级别的代谢炎症。脂肪细胞的过量所导致的氧化应激可通过NFκB信号通路触发炎症反应,在临床上AMPK激动剂二甲双胍可通过降低轻度代谢综合征的C反应蛋白和白介素-6 (IL-6)水平来降低全身炎症反应 [43] ,二甲双胍还可以降低肥胖患者血浆MIF的浓度 [15] 。JNK信号通路参与炎症反应,并在肥胖的代谢反应中发挥十分关键的作用。有研究给予对照组和JNK缺乏的小鼠高脂喂养,虽然都引起了类似的肥胖,但只有JNK缺乏的巨噬细胞仍然保持胰岛素敏感。表明巨噬细胞特异性JNK缺乏小鼠对胰岛素抵抗的保护与巨噬细胞减少组织浸润有关,其免疫表型也显示JNK对促炎性的巨噬细胞极化是必需的。因此,药物介导靶向巨噬细胞表达的JNK是一种潜在的抑制炎症的治疗方法,可能适用于炎症性疾病的治疗。Notch信号是巨噬细胞生物学功能的关键调节器,Notch受体可与配体DII4结合可诱导一种分离金属蛋白酶(ADAM)域型蛋白酶和γ-分泌酶复合体的激活,Notch细胞内结构域(NICD)易位进入细胞核并与序列特异性DNA结合因子RBP-J结合。这些规则可能导致M1样的极化。而阻断Notch信号通路有助于巨噬细胞向M2型极化。因此了解Notch信号通路在巨噬细胞极化过程中的作用并进行针对性的调节对于疾病治疗有重要意义。以上这些发现可能会为肥胖合并糖尿病患者提供新的疗法或检测策略。

文章引用

汤 冉,杜国利. 肥胖合并糖尿病中脂肪组织巨噬细胞极化相关信号通路研究进展
Advances in Macrophage Polarization-Related Signaling Pathways in Adipose Tissue in Obesity Combined with Diabetes[J]. 临床医学进展, 2023, 13(03): 3431-3437. https://doi.org/10.12677/ACM.2023.133489

参考文献

  1. 1. Kelly, T., Yang, W., Chen, C.-S., Reynolds, K. and He, J. (2008) Global Burden of Obesity in 2005 and projections to 2030. International Journal of Obesity, 32, 1431-1437. https://doi.org/10.1038/ijo.2008.102

  2. 2. Qatanani, M. and Lazar, M.A. (2007) Mechanisms of Obesity-Associated Insulin Resistance: Many Choices on the Menu. Genes & De-velopment, 21, 1443-1455. https://doi.org/10.1101/gad.1550907

  3. 3. Chan, P.-C., et al. (2018) Targeted Inhibition of CD74 Attenuates Adipose COX-2-MIF-Mediated M1 Macrophage Polarization and Retards Obesity-Related Adipose Tissue Inflammation and Insulin Resistance. Clinical Science, 132, 1581-1596. https://doi.org/10.1042/CS20180041

  4. 4. Ouchi, N., Parker, J.L., Lugus, J.J. and Walsh, K. (2011) Adipokines in Inflammation and Metabolic Disease. Nature Reviews Immunology, 11, 85-97. https://doi.org/10.1038/nri2921

  5. 5. Weisberg, S.P., et al. (2003) Obesity Is Associated with Macrophage Accu-mulation in Adipose Tissue. Journal of Clinical Investigation, 112, 1796-1808. https://doi.org/10.1172/JCI19246

  6. 6. Hotamisligil, G.S. (2017) Foundations of Immunometabolism and Implica-tions for Metabolic Health and Disease. Immunity, 47, 406-420. https://doi.org/10.1016/j.immuni.2017.08.009

  7. 7. Lumeng, C.N., Bodzin, J.L. and Saltiel, A.R. (2007) Obesity Induces a Phenotypic Switch in Adipose Tissue Macrophage Polarization. Journal of Clinical Investigation, 117, 175-184. https://doi.org/10.1172/JCI29881

  8. 8. Lee, Y.H., et al. (2005) Microarray Profiling of Isolated Ab-dominal Subcutaneous Adipocytes from Obese vs Non-Obese Pima Indians: Increased Expression of Inflamma-tion-Related Genes. Diabetologia, 48, 1776-1783. https://doi.org/10.1007/s00125-005-1867-3

  9. 9. Mueller, C.K. and Schultze-Mosgau, S. (2011) Histomorphomet-ric Analysis of the Phenotypical Differentiation of Recruited Macrophages Following Subcutaneous Implantation of an Allogenous Acellular Dermal Matrix. International Journal of Oral & Maxillofacial Surgery, 40, 401-407. https://doi.org/10.1016/j.ijom.2010.10.025

  10. 10. Fujiu, K., Manabe, I. and Nagai, R. (2011) Renal Collecting Duct Epithelial Cells Regulate Inflammation in Tubulointerstitial Damage in Mice. Journal of Clinical Investigation, 121, 3425-3441. https://doi.org/10.1172/JCI57582

  11. 11. Galès, A., et al. (2010) PPARγ Controls Dectin-1 Expression Required for Host Antifungal Defense against Candida albicans. PLOS Pathogens, 6, e1000714. https://doi.org/10.1371/journal.ppat.1000714

  12. 12. Calandra, T., Bernhagen, J., Mitchell, R.A. and Bucala, R. (1994) The Macrophage Is an Important and Previously Unrecognized Source of Macrophage Migration Inhibitory Factor. Journal of Experimental Medicine, 179, 1895-1902. https://doi.org/10.1084/jem.179.6.1895

  13. 13. Finucane, O.M., Reynolds, C.M., McGillicuddy, F.C. and Roche, H.M. (2012) Insights into the Role of Macrophage Migration Inhibitory Factor in Obesity and Insulin Resistance. Pro-ceedings of the Nutrition Society, 71, 622-633. https://doi.org/10.1017/S0029665112000730

  14. 14. Ghanim, H., et al. (2004) Circulating Mononuclear Cells in the Obese Are in a Proinflammatory State. Circulation, 110, 1564-1571. https://doi.org/10.1161/01.CIR.0000142055.53122.FA

  15. 15. Dandona, P., et al. (2004) Increased Plasma Concen-tration of Macrophage Migration Inhibitory Factor (MIF) and MIF mRNA in Mononuclear Cells in the Obese and the Suppressive Action of Metformin. The Journal of Clinical Endocrinology & Metabolism, 89, 5043-5047. https://doi.org/10.1210/jc.2004-0436

  16. 16. Sakaue, S., et al. (2006) Promoter Polymorphism in the Macrophage Migration Inhibitory Factor Gene Is Associated with Obesity. International Journal of Obesity, 30, 238-242. https://doi.org/10.1038/sj.ijo.0803148

  17. 17. Vozarova, B., et al. (2002) Plasma Concentrations of Macrophage Mi-gration Inhibitory Factor Are Elevated in Pima Indians Compared to Caucasians and Are Associated with Insulin Re-sistance. Diabetologia, 45, 1739-1741. https://doi.org/10.1007/s00125-002-0896-4

  18. 18. Church, T.S., et al. (2005) Obesity, Macrophage Migration Inhib-itory Factor, and Weight Loss. International Journal of Obesity, 29, 675-681. https://doi.org/10.1038/sj.ijo.0802942

  19. 19. Herder, C., et al. (2008) Effect of Macrophage Migration Inhibitory Factor (MIF) Gene Variants and MIF Serum Concentrations on the Risk of Type 2 Diabetes: Results From the MONICA/KORA Augsburg Case-Cohort Study, 1984-2002. Diabetologia, 51, 276-284. https://doi.org/10.1007/s00125-007-0800-3

  20. 20. Aslani, S., Hossein-Nezhad, A., Maghbooli, Z., Mirzaei, K. and Karimi, F. (2011) Genetic Variation in Macrophage Migration Inhibitory Factor Associated with Gestational Diabetes Mellitus and Metabolic Syndrome. Hormone and Metabolic Research, 43, 557-561. https://doi.org/10.1055/s-0031-1275706

  21. 21. Yilmaz, Ö., et al. (2012) Macrophage Migration-Inhibitory Factor Is Elevated in Pregnant Women with Gestational Diabetes Mellitus. Gynecological Endocrinology, 28, 76-79. https://doi.org/10.3109/09513590.2011.588757

  22. 22. Stark, R., Ashley, S.E. and Andrews, Z.B. (2013) AMPK and the Neuroendocrine Regulation of Appetite and Energy Expenditure. Molecular and Cellular Endocrinology, 366, 215-223. https://doi.org/10.1016/j.mce.2012.06.012

  23. 23. Cantó, C. and Auwerx, J. (2010) AMP-Activated Protein Kinase and Its Downstream Transcriptional Pathways. Cellular and Molecular Life Sciences, 67, 3407-3423. https://doi.org/10.1007/s00018-010-0454-z

  24. 24. Steinberg, G.R. and Kemp, B.E. (2009) AMPK in Health and Disease. Physiological Reviews, 89, 1025-1078. https://doi.org/10.1152/physrev.00011.2008

  25. 25. Salminen, A., Hyttinen, J.M. and Kaarniranta, K. (2011) AMP-Activated Protein Kinase Inhibits NF-κB Signaling and Inflammation: Impact on Healthspan and Lifespan. Journal of Molecular Medicine, 89, 667-676. https://doi.org/10.1007/s00109-011-0748-0

  26. 26. Lage, R., Diéguez, C., Vidal-Puig, A. and López, M. (2008) AMPK: A Metabolic Gauge Regulating Whole-Body Energy Homeostasis. Trends in Molecular Medicine, 14, 539-549. https://doi.org/10.1016/j.molmed.2008.09.007

  27. 27. Park, S., Kim, D.S., Kang, S. and Shin, B.K. (2014) Chronic Activation of Central AMPK Attenuates Glucose-Stimulated Insulin Secretion and Exacerbates Hepatic Insulin Re-sistance in Diabetic Rats. Brain Research Bulletin, 108, 18-26. https://doi.org/10.1016/j.brainresbull.2014.08.002

  28. 28. Maury, E. and Brichard, S.M. (2010) Adipokine Dysregu-lation, Adipose Tissue Inflammation and Metabolic Syndrome. Molecular and Cellular Endocrinology, 314, 1-16. https://doi.org/10.1016/j.mce.2009.07.031

  29. 29. Steinberg, G.R., et al. (2006) Tumor Necrosis Factor α-Induced Skeletal Muscle Insulin Resistance Involves Suppression of Amp-Kinase Signaling. Cell Metabolism, 4, 465-474. https://doi.org/10.1016/j.cmet.2006.11.005

  30. 30. Lan, F., Cacicedo, J.M., Ruderman, N. and Ido, Y. (2008) SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1. Possible Role in AMP-Activated Protein Kinase Activation. Journal of Biological Chemistry, 283, 27628-27635. https://doi.org/10.1074/jbc.M805711200

  31. 31. Zhou, D., et al. (2014) Macrophage Polarization and Function with Emphasis on the Evolving Roles of Coordinated Regulation of Cellular Signaling Pathways. Cellular Signalling, 26, 192-197. https://doi.org/10.1016/j.cellsig.2013.11.004

  32. 32. Dhanasekaran, D.N. and Reddy, E.P. (2008) JNK Signaling in Apoptosis. Oncogene, 27, 6245-6251. https://doi.org/10.1038/onc.2008.301

  33. 33. Tesz, G.J., et al. (2007) Tumor Necrosis Factor α (TNFα) Stimulates Map4k4 Expression through TNFα Receptor 1 Signaling to c-Jun and Activating Transcription Factor 2. Journal of Bio-logical Chemistry, 282, 19302-19312. https://doi.org/10.1074/jbc.M700665200

  34. 34. Radtke, F., MacDonald, H.R. and Tacchini-Cottier, F. (2013) Regu-lation of Innate and Adaptive Immunity by Notch. Nature Reviews Immunology, 13, 427-437. https://doi.org/10.1038/nri3445

  35. 35. Artavanis-Tsakonas, S., Rand, M.D. and Lake, R.J. (1999) Notch Signaling: Cell Fate Control and Signal Integration in Development. Science, 284, 770-776. https://doi.org/10.1126/science.284.5415.770

  36. 36. Leidi, M., et al. (2009) M2 Macrophages Phagocytose Rituxi-mab-Opsonized Leukemic Targets More Efficiently than M1 Cells in Vitro. The Journal of Immunology, 182, 4415-4422. https://doi.org/10.4049/jimmunol.0713732

  37. 37. Sica, A., Schioppa, T., Mantovani, A. and Allavena, P. (2006) Tumour-Associated Macrophages Are a Distinct M2 Polarised Population Promoting Tumour Progression: Potential Targets of Anti-Cancer Therapy. European Journal of Cancer, 42, 717-727. https://doi.org/10.1016/j.ejca.2006.01.003

  38. 38. Ohishi, K., et al. (2000) Monocytes Express High Amounts of Notch and Undergo Cytokine Specific Apoptosis Following Interaction with the Notch Ligand, Delta-1. Blood, 95, 2847-2854. https://doi.org/10.1182/blood.V95.9.2847.009k19_2847_2854

  39. 39. Kopan, R. and Ilagan, M.X. (2009) The Ca-nonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell, 137, 216-233. https://doi.org/10.1016/j.cell.2009.03.045

  40. 40. Bi, P., et al. (2014) Inhibition of Notch Signaling Promotes Brown-ing of White Adipose Tissue and Ameliorates Obesity. Nature Medicine, 20, 911-918. https://doi.org/10.1038/nm.3615

  41. 41. Xu, H., et al. (2012) Notch-RBP-J Signaling Regulates the Transcription Factor IRF8 to Promote Inflammatory Macrophage Polarization. Nature Immunology, 13, 642-650. https://doi.org/10.1038/ni.2304

  42. 42. Wang, Y.-C., et al. (2010) Notch Signaling Determines the M1 versus M2 Polarization of Macrophages in Antitumor Immune Responses. Cancer Research, 70, 4840-4849. https://doi.org/10.1158/0008-5472.CAN-10-0269

  43. 43. Akbar, D.H. (2003) Effect of Metformin and Sulfonylurea on C-Reactive Protein Level in Well-Controlled Type 2 Diabetics with Metabolic Syndrome. Endocrine, 20, 215-218. https://doi.org/10.1385/ENDO:20:3:215

  44. NOTES

    *通讯作者。

期刊菜单