Advances in Clinical Medicine
Vol. 13  No. 05 ( 2023 ), Article ID: 65315 , 7 pages
10.12677/ACM.2023.1351069

食管胃结合部癌血清肿瘤标志物的研究进展

张梦迪1,马臻棋2*,王学红2,任怀静1,李重杰1

1青海大学研究生院,青海 西宁

2青海大学附属医院消化内科,青海 西宁

收稿日期:2023年4月17日;录用日期:2023年5月9日;发布日期:2023年5月16日

摘要

食管胃结合部癌近年来发病率逐年上升,早期发现是诊治的关键,如何在人群中筛查出食管胃结合部癌高危患者是当前的研究重点。血清学检测是最易推广和最便捷的方法,对食管结合部癌的诊断和筛查有重要意义,因此不断探索血清肿瘤标志物用于早期诊断和预后监测食管胃结合部癌是必要的。本文就近几年新型与传统血清肿瘤标志物在食管胃结合部癌中的研究进展作一综述。

关键词

食管胃结合部癌,血清肿瘤标志物,诊断价值,预后评估

Research Progress of Serum Tumor Markers in Esophagogastric Junction Cancer

Mengdi Zhang1, Zhenqi Ma2*, Xuehong Wang2, Huaijing Ren1, Chongjie Li1

1Graduate School of Qinghai University, Xining Qinghai

2Department of Gastroenterology, Affiliated Hospital of Qinghai University, Xining Qinghai

Received: Apr. 17th, 2023; accepted: May 9th, 2023; published: May 16th, 2023

ABSTRACT

In recent years, the incidence rate of esophagogastric junction cancer has increased year by year. Early detection is the key to diagnosis and treatment. How to screen high-risk patients of esophagogastric junction cancer in the population is the current research focus. Serological detection is the easiest and most convenient method to promote and has important significance for the diagnosis and screening of esophagogastric junction cancer. Therefore, it is necessary to continuously explore serum tumor markers for early diagnosis and prognosis monitoring of esophagogastric junction cancer. This article reviews the research progress of new and traditional serum tumor markers in esophagogastric junction cancer in recent years.

Keywords:Esophagogastric Junction Cancer, Serum Tumor Markers, Diagnostic Value, Prognosis Assessment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

食管胃结合部癌又称为贲门癌,是我国较为常见的上消化道恶性肿瘤,其发病率和病死率在各类恶性肿瘤中位居前列 [1] 。食管胃交界部癌是位于食管胃中间特殊部位的肿瘤,以腺癌为主,鳞癌的发生率较低,其特殊位置及生物学行为导致患者预后较差,与远处胃癌相比,食管胃结合部癌更易出现血清浸润、淋巴结转移和血源性复发,因此也被单独提出作为一种独立的肿瘤 [2] 。据统计,食管胃结合部癌的发生近几年来呈上升趋势,全世界胃食管交界部肿瘤的发病率也在迅速增加,食管胃结合部癌发病隐蔽的特点使大多数患者在诊断时已经处于晚期,这是其生存率低的主要原因 [3] 。其中有一项综述中报道食管胃结合部癌的死亡率为85%,食管胃结合部癌的5年总生存率为23%至38% [4] ,这也使得对其治疗效果差,导致总体预后不好,严重威胁人类健康。传统的血清肿瘤标志物,如癌胚抗原CEA、糖类抗原CA19-9,在癌症的诊断和筛查中的诊断性能较差,缺乏一定的敏感性和特异性 [5] ,因此近几年人们进行了大量研究,以寻找具有潜在临床价值的新的血清肿瘤生物标志物。针对食管胃结合部癌患者,也同样希望找到多种安全、有效和简单的方法在早期识别食管胃结合部癌,以提高食管胃结合部癌患者的生存率。

2. 新型肿瘤标志物

2.1. DSG2

桥粒芯糖蛋白-2 (Desmoglin-2, DSG2)是一种跨膜糖蛋白,属于桥粒钙粘蛋白家族,在桥粒连接、形成细胞–细胞连接和中间丝 [6] 的锚定中发挥重要作用。它编码单个跨膜蛋白。作为经典钙粘蛋白家族的一员,DSG2针对钙有一定的依赖性,其可以互相之间组装形成桥粒。DSG2具有介导细胞间粘附的作用,而在癌症进展中,抑制细胞间粘附是肿瘤转移过程中至关重要的第一步,DSG2还可以作为促进细胞运动的重要信号支架 [7] 。在多数国外研究报道中DSG2在血清中的异常高表达与多种类型癌症的不良预后密切相关,例如结肠癌 [8] 、胃癌 [9] 、肝细胞癌 [10] 等,使其成为某些肿瘤的候选血清生物标志物。Liu Y Q等人 [11] 研究发现,食管胃结合部癌患者血清DSG2水平与健康人对照组相比表现出显著升高的趋势,进一步分析数据可得出对于食管胃结合部癌患者来说,血清DSG2表达水平的AUC值为0.698,敏感性为29.2%,特异性为90.2%,其具备一定的高特异性且明显优于单一的传统血清生物标志物(例CEA、CA19-9等),同时也进一步表明DSG2是早期检测食管胃结合部癌的潜在血清学标志物。此外,已有研究表明,将多种血清蛋白作为一组联合检测可以提高单一生物标志物的敏感性或特异性 [12] [13] 。通过上述研究结果我们可以推断出在食管胃结合部癌患者的血清DSG2的水平可以联合传统肿瘤血清标志物来作为早期诊断食管胃结合部癌的特异性肿瘤标志物的补充,但上述研究中的不足之处并没有进一步与传统肿瘤血清标志物进行对比,因此相应的扩大样本量并设置对照进一步验证DSG2的诊断价值是有必要的。

2.2. IGFBP3

胰岛素样生长因子结合蛋白3 (insulin-like growth factor binding-protein3, IGFBP3)是IGFBP家族中六个结构相关蛋白之一,具有一定的结构相似性,同时也是机体循环中胰岛素样生长因子IGF-1和IGF-2结合血清中占百分之九十以上IGF的主要载体蛋白,分子量大约在23至31 kDa之间,并且含有三个不同的结构域,在行使各种功能以及翻译后修饰过程中发挥作用。其中在循环中含量最多的IGFBP3,不同于其他蛋白的是IGFBP3没有特定的结合偏好。有研究表明,IGFBPs通过延长IGF在循环中存在的半衰期,从而减少游离IGFs的量,最终导致在一定程度上发挥出抑制IGFs的作用。因此,可以说IGFBPs是具有抗增殖、抗有丝分裂和促凋亡 [14] 的生物学功能的。IGFBP3作为一种多功能蛋白在存在肿瘤的背景下 [14] 可以影响多种调控细胞存活或凋亡的分子机制。许多研究表明IGFBP3的表达水平改变可以影响多种肿瘤的发生发展,包括肝细胞癌、乳腺癌、肺癌 [15] [16] [17] 。Tian-Yan Ding等人 [18] 的一项研究回顾性收集了长达5年间经过影像学和病理组织学共同确定诊断为食管胃结合部癌的患者152例,健康志愿者152例的数据,并且根据美国癌症联合委员会(AJCC)癌症分期手册第8版 [19] 对患者进行TNM分期。最终在这项研究中,实验结果发现血清IGFBP3水平在食管胃结合部癌患者的诊断及预后监测过程中具有一定的潜力,并且发现IGFBP3的低水平与食管胃结合部癌患者预后不良存在一定的相关性。因此,我们可以认为食管胃结合部癌患者血清IGFBP3水平可能作为一个潜在的候选血清肿瘤生物标志物,与传统血清肿瘤标志物联合检测可能得到一个更优化的早期检测食管胃结合部癌的生物标志物组合。因此我们可以通过上述研究结果得出血清IGFBP3水平对食管胃结合部癌的诊断敏感性可能会优于目前临床应用的CEA和CA19-9的结论。

2.3. PD-L1

程序性死亡配体-1 (Programmed death ligand-1, PD-L1),又称B7-H1,系属于B7家族的一个共刺激信号分子,PD-L1是PD-1的主要配体,并且已经有较多研究证实其在一些肿瘤细胞、活化的B细胞、T细胞、树突状细胞、髓样细胞以及内皮细胞中表达。免疫逃逸作为肿瘤的重要特征之一,近几年在肿瘤的发生发展中扮演了重要的角色,有研究报道,肿瘤发生的高突变负荷与肿瘤细胞上的PD-L1过表达有关 [20] 。PD-L1表达水平的上升与下降主要由肿瘤细胞通过各种机制诱导,其在恶性肿瘤中的激活会在一定程度上降低宿主机体的免疫反应,尤其是调节细胞毒性T细胞的活性 [21] ,降低细胞因子的产生,导致肿瘤进展、转移。从而帮助肿瘤细胞逃避免疫监视 [22] [23] 。最近的一项研究表明,人血清中存在PD-L1阳性细胞所释放入血的可溶性PD-L1 [24] ;同时也有研究得出结论,肿瘤患者在术前可溶性PD-L1的浓度和PD-L1在癌组织中的表达均具有不同的临床意义,循环可溶性PD-L1和组织PD-L1的表达均可作为预后标志物 [25] 。其中Shigemori T等人 [25] 等人研究发现,胃癌患者血清中的可溶性PD-L1水平与病情的发展和预后相关,并且可以监视疾病状态和检测早期复发,这与Fan Y. [26] 、Gershtein E. S. [27] 等人的研究结果一致。而在其他实体肿瘤中,近几年仍有少量研究报道PD-L1可在肿瘤患者血清当中检测到,并且与疾病进展及监测预后具有一定的相关性,Toyozumi T. [28] 等人在食管癌患者中检测到患者血清中的PD-L1浓度与癌组织中PD-L1的表达呈正相关水平并且通过大量数据证实前者水平与食管癌病情预后不良有关。同样的实验方法在Wu W.等人的一项研究中也被证实,即血清可溶性PD-L1可能是诊断胰腺癌的新型潜在生物标志物,并且其与血清CA19-9联合使用可能会提高诊断敏感性和特异性 [29] 。而在胃食管结合部癌方面,针对晚期患者使用PD-L1抑制剂的药物表现出相比单纯化疗更好的应答效果及预后即使用PD-1/PD-L1抑制剂可延长晚期胃食管癌患者的OS,这一结果与Chen [30] 、Formica [31] 、Oh [32] 等人结果一致。Thompson E. D. [33] 等人研究发现,PD-L1在食管胃结合部癌所有阶段和组织学的肿瘤细胞和免疫基质上表达,并且大多数研究集中在胃癌、食管癌及胰腺癌等肿瘤中,关于PD-L1在食管胃结合部癌血清中的研究目前仍较少,因此上述研究均可推测PD-L1可能在食管胃结合部癌中是一种潜在的预后和预测性生物标志物,但具体的还需要大量的实验来论证和说明,仍需要进一步探究。

2.4. miRNA

循环microRNAs (简称miRNAs)被认为是各种类型癌症的新型生物标志物。miRNAs是由18~25个核苷酸组成的非编码单链RNA分子,主要作用是在原发肿瘤部位坏死和凋亡过程中被通过一系列的包装以相对稳定的复合物形式主动分泌并输出到循环中去,进而对远处相关位点的转录后调节产生影响,可以调节互补信使RNAs6的表达,从而使其在代谢、炎症和致癌等内源性过程中发挥出重要的核心作用。Mitchell等人 [34] 于2008年提出在人外周血中检测到了游离的miRNA,即其不受内源性核糖核酸酶活性的影响,这一特点也体现了其存在于外周血中的稳定性,进一步证实了外周血中的miRNA可以作为诊断肿瘤的无创标志物。据相关研究表明,部分肿瘤患者的血清miRNA水平具有高于传统血清肿瘤标志物的特异性及敏感性,这与Liu [35] 等人、Song [36] 等人的结论一致。针对食管胃结合部癌及贲门癌,近几年有研究人员通过miRNA定量RT-PCR (qRT-PCR)技术筛选出了具有潜力的血清miRNA在贲门癌患者外周血中的水平,并且通过大量数据对比得出这些血清miRNA水平对于贲门癌具有更好的针对性,同时也进一步证实了其中5种血清miRNA的组合检测可以作为贲门癌诊断的新的无创标记物,而这项专利的成功开发与认可也更有力的说明了血清miRNA在肿瘤的临床筛查和诊断过程中是具有一定的可靠性及可重复性的。上述所提及的miRNA在组织中也呈类似的表现,这一结果也与Wang J [37] 等人的结果一致。上述这些研究结果也进一步证实了循环miRNAs起源的理论,但不足之处是上述研究有一些局限性,研究为单中心,血清和组织样本不够大,可能导致结果存在偏倚,仍需要进一步验证。

3. 传统血清肿瘤标志物

肿瘤标志物是指肿瘤细胞和抗核产生的蛋白质、糖蛋白或其他物质,肿瘤标志物在疾病诊断过程中常用于癌症的筛查、检测癌症的预后和评估疾病的进展。血清癌胚抗原(Carcinoembryonic antigen, CEA)是一种糖蛋白,在细胞粘附中起作用。CEA被广泛用于肺腺癌、胃癌和结直肠癌的评估。在胃癌患者中,CEA的血清水平与预后不良有关,并且可以作为一个影响预后的独立危险因素,但也临床病理特征之间并未发现相关性。在食管胃结合部癌患者中,其阳性率也仅为20.3%。糖类抗原19-9 (carbohydrate antigen, CA19-9)是一种糖脂抗原,作为Lewis家族的成员,也是Lewis血型抗原,用于胃肠道癌症的另一种传统血清肿瘤标志物。Ryuma Tokunag等人 [38] 对211名食管胃结合部癌患者进行了术前及术后血清中CA19-9水平的比较,这项回顾性研究显示,食管胃结合部癌腺癌中CA19-9阳性的发生率为12.9%,并且与肿瘤浸润深度存在显著相关。CEA和CA19-9是胃肠道癌的主要血清肿瘤标志物,并且是全世界消化道肿瘤中常用的血清肿瘤标志物。Scarpa等人 [39] 证明了术前血清CEA和CA19-9水平对检测无症状晚期食管腺癌的有用性,这与上述的研究结论发现的一致。因此CEA、CA19-9虽然可以用于鉴别是否存在食管胃结合部癌的简单筛查,从而确定进一步行病理学检查的必要性,但不足之处是这类肿瘤相关标志物的血清水平异常仅提示可能存在消化道恶性肿瘤而不具备器官的特异性。

上述所提及的血清肿瘤标志物均为单一性的研究结果,除此之外,还有研究探讨上述血清肿瘤标志物多种联合检测在食管胃结合部癌诊断与预后中的应用价值,并且通过分析多种指标与食管胃结合部癌风险的相关性。结果显示多种血清肿瘤标志物组合将有效的提高食管胃结合部癌的诊断准确率,为患者疾病预后评估提供了更好的理论依据。

4. 小结与展望

综上,随着人们生活水平的提高及生活习惯的巨大变化,消化道肿瘤的发病率在逐年上升,食管胃结合部癌作为独立于食管癌与胃癌之外的另一种消化道恶性肿瘤,其特有的生物学特征与不典型症状使食管胃结合部癌的发生率近几年来也呈上升趋势。食管胃结合部癌的发生发展是复杂的、多因素参与的,包括环境因素、饮食因素、Hp感染以及癌前病变等,因此针对该肿瘤的筛查任务是非常重要的。传统肿瘤标志物CEA、CA19-9虽然可以早期提示可能存在消化道肿瘤,但灵敏度及特异度较低,而前文中所提及的新型血清肿瘤标志物DSG2、IGFBP3、PD-L1和miRNA在食管胃结合部癌患者中表现出优于CEA、CA19-9的良好敏感性和特异性,这一发现也为食管胃结合部癌患者在早期诊断与预后监测过程中提供了新的思路,并且为新型血清肿瘤标志物联合传统血清肿瘤标志物来对食管胃结合部癌的诊断诊治方面提供了更好的数据理论支持,更好的检测疾病发展,从而做到早诊断、早治疗,最大程度上延长患者的生存时间,提高患者的生活质量,同时对于指导临床治疗管理具有重要意义。

文章引用

张梦迪,马臻棋,王学红,任怀静,李重杰. 食管胃结合部癌血清肿瘤标志物的研究进展
Research Progress of Serum Tumor Markers in Esophagogastric Junction Cancer[J]. 临床医学进展, 2023, 13(05): 7652-7658. https://doi.org/10.12677/ACM.2023.1351069

参考文献

  1. 1. Feng, R.-M., Zong, Y.-N., Cao, S.-M. and Xu, R.-H. (2019) Current Cancer Situation in China: Good or Bad News from the 2018 Global Cancer Statistics? Cancer Communications, 39, 1-12. https://doi.org/10.1186/s40880-019-0368-6

  2. 2. Japanese Gastric Cancer Association (2011) Japanese Classifica-tion of Gastric Carcinoma: 3rd English Edition. Gastric Cancer, 14, 101-112. https://doi.org/10.1007/s10120-011-0041-5

  3. 3. Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X.Q. and He, J. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132. https://doi.org/10.3322/caac.21338

  4. 4. Liu, C.-T., Hong, C.-Q., Huang, X.-C., Li, E.-M., Xu, Y.-W. and Peng, Y.-H. (2020) Blood-Based Markers in the Prognostic Prediction of Esophagogastric Junction Cancer. Journal of Cancer, 11, 4332-4342. https://doi.org/10.7150/jca.44545

  5. 5. Liu, H.N., Yao, C., Wang, X.F., Zhang, N.P., Chen, Y.J., Pan, D., Zhao, G.P., Shen, X. Z., Wu, H. and Liu, T.T. (2023) Diagnostic and Economic Value of Carcinoembryonic Antigen, Carbo-hydrate Antigen 19-9 and Carbohydrate Antigen 72-4 in Gastrointestinal Cancers. World Journal of Gastroenterology, 29, 706-730. https://doi.org/10.3748/wjg.v29.i4.706

  6. 6. Kim, J., Beidler, P., Wang, H., Li, C., Quassab, A., Coles, C., Drescher, C., Carter, D. and Lieber, A. (2020) Desmoglein-2 as a Prognostic and Biomarker in Ovarian Cancer. Cancer Biology & Therapy, 21, 1154-1162. https://doi.org/10.1080/15384047.2020.1843323

  7. 7. Saito, M., Tucker, D.K., Kohlhorst, D., Niessen, C.M. and Kowalczyk, A.P. (2012) Classical and Desmosomal Cadherins at a Glance. Journal of Cell Science, 125, 2547-2552. https://doi.org/10.1242/jcs.066654

  8. 8. Kamekura, R., Kolegraff, K.N., Nava, P., Hilgarth, R.S., Feng, M., Parkos, C.A. and Nusrat, A. (2014) Loss of the Desmosomal Cadherin Desmoglein-2 Suppresses Colon Cancer Cell Prolifera-tion through EGFR Signaling. Oncogene, 33, 4531-4536. https://doi.org/10.1038/onc.2013.442

  9. 9. Biedermann, K., Vogelsang, H., Becker, I., Plaschke, S., Siewert, J.R., Höfler, H. and Keller, G. (2005) Desmoglein 2 Is Expressed Abnormally Rather than Mutated in Familial and Sporadic Gastric Cancer. The Journal of Pathology, 207, 199-206. https://doi.org/10.1002/path.1821

  10. 10. Han, C.P., Yu, Y.H., Wang, A.G., Tian, Y., Zhang, H.T., Zheng, Z.M. and Liu, Y.S. (2018) Desmoglein-2 Overexpression Predicts Poor Prognosis in Hepatocellular Carcinoma Patients. European Review for Medical and Pharmacological Sciences, 22, 5481-5489.

  11. 11. Liu, Y.Q., Chu, L.Y., Yang, T., Zhang, B., Zheng, Z.T., Xie, J.J., Xu, Y.W. and Fang, W.K. (2022) Serum DSG2 as a Potential Biomarker for Diagnosis of Esophageal Squamous Cell Carcinoma and Esophagogastric Junction Adenocarcinoma. Bioscience Reports, 42, BSR20212612. https://doi.org/10.1042/BSR20212612

  12. 12. Xu, Y.-W., Peng, Y.-H., Chen, B., Wu, Z.-Y., Wu, J.-Y., Shen, J.-H., Zheng, C.-P., Wang, S.-H., Guo, H.-P., Li, E.-M. and Xu, L.-Y. (2014) Autoantibodies as Potential Biomarkers for the Early Detection of Esophageal Squamous Cell Carcinoma. The American Journal of Gastroenterolo-gy, 109, 36-45. https://doi.org/10.1038/ajg.2013.384

  13. 13. Zhang, H.-F., Qin, J.-J., Ren, P.-F., Shi, J.-X., Xia, J.-F., Ye, H., Wang, P., Song, C.-H., Wang, K.-J. and Zhang, J.-Y. (2016) A Panel of Autoantibodies against Multiple Tu-mor-Associated Antigens in the Immunodiagnosis of Esophageal Squamous Cell Cancer. Cancer Immunology, Immu-notherapy, 65, 1233-1242. https://doi.org/10.1007/s00262-016-1886-6

  14. 14. Johnson, M.A. and Firth, S.M. (2014) IGFBP-3: A Cell Fate Pivot in Cancer and Disease. Growth Hormone & IGF Research, 24, 164-173. https://doi.org/10.1016/j.ghir.2014.04.007

  15. 15. Regel, I., Eichenmüller, M., Joppien, S., Liebl, J., Häberle, B., Müller-Höcker, J., Vollmar, A., von Schweinitz, D. and Kappler, R. (2012) IGFBP3 Impedes Aggressive Growth of Pe-diatric Liver Cancer and Is Epigenetically Silenced in Vascular Invasive and Metastatic Tumors. Molecular Cancer, 11, Article No. 9. https://doi.org/10.1186/1476-4598-11-9

  16. 16. Zeng, L., Jarrett, C., Brown, K., Gillespie, K.M., Holly, J.M. and Perks, C.M. (2013). Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3) Plays a Role in the Anti-Tumorigenic Ef-fects of 5-Aza-2’-Deoxycytidine (AZA) in Breast Cancer Cells. Experimental Cell Research, 319, 2282-2295. https://doi.org/10.1016/j.yexcr.2013.06.011

  17. 17. Pernía, O., Belda-Iniesta, C., Pulido, V., Cortes-Sempere, M., Rodriguez, C., Vera, O., Soto, J., Jiménez, J., Taus, A., Rojo, F., Arriola, E., Rovira, A., Albanell, J., Macías, M.T., de Castro, J., Perona, R. and de Caceres, I.I. (2014) Methylation Status of IGFBP-3 as a Useful Clinical Tool for Deciding on a Concomitant Radiotherapy. Epigenetics, 9, 1446-1453. https://doi.org/10.4161/15592294.2014.971626

  18. 18. Ding, T.-Y., Peng, Y.-H., Hong, C.-Q., Huang, B.-L., Liu, C.-T., Luo, Y., Chu, L.-Y., Zhang, B., Li, X.-H., Qu, Q.-Q., Xu, Y.-W. and Wu, F.-C. (2022) Serum Insulin-Like Growth Factor Binding Protein 3 as a Promising Diagnostic and Prognostic Biomarker in Esophagogastric Junction Ad-enocarcinoma. Discover Oncology, 13, Article No. 128. https://doi.org/10.1007/s12672-022-00591-1

  19. 19. Rice, T.W., Ishwaran, H., Hofstetter, W.L., Kelsen, D.P., Ap-person-Hansen, C. and Blackstone, E.H., for the worldwide Esophageal Cancer Collaboration Investigators (2016) Rec-ommendations for Pathologic Staging (pTNM) of Cancer of the Esophagus and Esophagogastric Junction for the 8th edi-tion AJCC/UICC Staging Manuals. Diseases of the Esophagus, 29, 897-905. https://doi.org/10.1111/dote.12533

  20. 20. Rizvi, N.A., Hellmann, M.D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J.J., Lee, W., Yuan, J., Wong, P., Ho, T.S., Miller, M.L., Rekhtman, N., Moreira, A.L., Ibrahim, F., Bruggeman, C., Gasmi, B., Zappasodi, R., Maeda, Y., Sander, C., Garon, E.B., et al. (2015) Mutational Landscape Determines Sensi-tivity to PD-1 Blockade in Non-Small Cell Lung Cancer. Science, 348, 124-128. https://doi.org/10.1126/science.aaa1348

  21. 21. Chan, A.W.H., Tong, J.H.M., Kwan, J.S.H., Chow, C., Chung, L.Y., Chau, S.L., Lung, R.W.M., Ng, C.S.H., Wan, I.Y.P., Mok, T.S.K. and To, K.F. (2018) Assessment of Programmed Cell Death Ligand-1 Expression by 4 Diagnostic Assays and Its Clinicopathological Correlation in a Large Cohort of Surgical Resected Non-Small Cell Lung Carcinoma. Modern Pathology, 31, 1381-1390. https://doi.org/10.1038/s41379-018-0053-3

  22. 22. Sanmamed, M.F. and Chen, L. (2014) Inducible Expression of B7-H1 (PD-L1) and Its Selective Role in Tumor Site Immune Modulation. Cancer Journal, 20, 256-261. https://doi.org/10.1097/PPO.0000000000000061

  23. 23. Patel, S.P. and Kurzrock, R. (2015) PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Molecular Cancer Therapeutics, 14, 847-856. https://doi.org/10.1158/1535-7163.MCT-14-0983

  24. 24. Chen, Y., Wang, Q., Shi, B., Xu, P., Hu, Z., Bai, L. and Zhang, X. (2011) Development of a Sandwich ELISA for Evaluating Soluble PD-L1 (CD274) in Human Sera of Dif-ferent Ages as Well as Supernatants of PD-L1+ Cell Lines. Cytokine, 56, 231-238. https://doi.org/10.1016/j.cyto.2011.06.004

  25. 25. Shigemori, T., Toiyama, Y., Okugawa, Y., Yamamoto, A., Yin, C., Narumi, A., Ichikawa, T., Ide, S., Shimura, T., Fujikawa, H., Yasuda, H., Hiro, J., Yoshiyama, S., Ohi, M., Araki, T. and Kusunoki, M. (2019) Soluble PD-L1 Expression in Circulation as a Predictive Marker for Recurrence and Prognosis in Gastric Cancer: Direct Comparison of the Clinical Burden Between Tissue and Serum PD-L1 Expression. Annals of Surgical Oncology, 26, 876-883. https://doi.org/10.1245/s10434-018-07112-x

  26. 26. Fan, Y., Che, X., Qu, J., Hou, K., Wen, T., Li, Z., Li, C., Wang, S., Xu, L., Liu, Y. and Qu, X. (2019) Exosomal PD-L1 Retains Immunosuppressive Activity and Is Associated with Gastric Cancer Prognosis. Annals of Surgical Oncology, 26, 3745-3755. https://doi.org/10.1245/s10434-019-07431-7

  27. 27. Gershtein, E.S., Ognerubov, N.A., Chang, V.L., Delektorskaya, V.V., Korotkova, E.A., Sokolov, N.Y., Polikarpova, S.B., Stilidi, I.S. and Kushlinskii, N.E. (2020) The Content of the Soluble Forms PD-1 and PD-L1 in Blood Serum of Patients with Gastric Cancer and Their Relationship with Clinical and Morphological Characteristics of the Disease. Klinicheskaia Laboratornaia Diagnostika, 65, 347-352. https://doi.org/10.18821/0869-2084-2020-65-6-347-352

  28. 28. Shiraishi, T., Toyozumi, T., Sakata, H., Murakami, K., Kano, M., Matsumoto, Y., Yokoyama, M., Okada, K., Kamata, T., Ryuzaki, T., Kinoshita, K., Hirasawa, S. and Matsubara, H. (2022) Soluble PD-L1 Concentration Is Proportional to the Expression of PD-L1 in Tissue and Is Associ-ated with a Poor Prognosis in Esophageal Squamous Cell Carcinoma. Oncology, 100, 39-47. https://doi.org/10.1159/000518740

  29. 29. Wu, W., Xia, X., Cheng, C., Niu, L., Wu, J. and Qian, Y. (2021) Serum Soluble PD-L1, PD-L2 and B7-H5 as Potential Diagnostic Biomarkers of Human Pancreatic Cancer. Clinical Laboratory, 67. https://doi.org/10.7754/Clin.Lab.2021.210103

  30. 30. Chen, K., Wang, X., Yang, L. and Chen, Z. (2021) The An-ti-PD-1/PD-L1 Immunotherapy for Gastric Esophageal Cancer: A Systematic Review and Meta-Analysis and Literature Review. Cancer Control, 28. https://doi.org/10.1177/1073274821997430

  31. 31. Formica, V., Morelli, C., Patrikidou, A., Shiu, K.K., Nardecchia, A., Lucchetti, J., Roselli, M. and Arkenau, H.T. (2021) A Systematic Review and Meta-Analysis of PD-1/PD-L1 Inhib-itors in Specific Patient Subgroups with Advanced Gastro-Oesophageal Junction and Gastric Adenocarcinoma. Critical Reviews in Oncology/Hematology, 157, Article ID: 103173. https://doi.org/10.1016/j.critrevonc.2020.103173

  32. 32. Oh, S., Kim, E. and Lee, H. (2021) Comparative Impact of PD-1 and PD-L1 Inhibitors on Advanced Esophageal or Gastric/Gastroesophageal Junction Cancer Treatment: A Sys-tematic Review and Meta-Analysis. Journal of Clinical Medicine, 10, Artticle 3612. https://doi.org/10.3390/jcm10163612

  33. 33. Thompson, E.D., Zahurak, M., Murphy, A., Cornish, T., Cuka, N., Ab-delfatah, E., Yang, S., Duncan, M., Ahuja, N., Taube, J.M., Anders, R.A. and Kelly, R.J. (2017) Patterns of PD-L1 Ex-pression and CD8 T Cell Infiltration in Gastric Adenocarcinomas and Associated Immune Stroma. Gut, 66, 794-801. https://doi.org/10.1136/gutjnl-2015-310839

  34. 34. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., Lin, D.W., Urban, N., Drescher, C.W., Knudsen, B.S., Stirewalt, D.L., Gentleman, R., Vessella, R.L., Nelson, P.S., Martin, D.B. and Tewari, M. (2008) Circulating microRNAs as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513-10518. https://doi.org/10.1073/pnas.0804549105

  35. 35. Liu, H., Zhu, L., Liu, B., Yang, L., Meng, X., Zhang, W., Ma, Y. and Xiao, H. (2012) Genome-Wide microRNA Profiles Identify miR-378 as a Serum Biomarker for Early Detection of Gastric Cancer. Cancer Letters, 316, 196-203. https://doi.org/10.1016/j.canlet.2011.10.034

  36. 36. Liu, R., Zhang, C., Hu, Z., Li, G., Wang, C., Yang, C., Huang, D., Chen, X., Zhang, H., Zhuang, R., Deng, T., Liu, H., Yin, J., Wang, S., Zen, K., Ba, Y. and Zhang, C.Y. (2011) A Five-microRNA Signature Identified from Genome-Wide Serum microRNA Expression Profiling Serves as a Fingerprint for Gastric Cancer Diagnosis. European Journal of Cancer, 47, 784-791. https://doi.org/10.1016/j.ejca.2010.10.025

  37. 37. Wang, J., Zhang, H., Zhou, X., Wang, T., Zhang, J., Zhu, W., Zhu, H. and Cheng, W. (2018) Five Serum-Based miRNAs Were Identified as Potential Diagnostic Biomarkers in Gastric Cardia Adenocarcinoma. Cancer Biomarkers, 23, 193-203. https://doi.org/10.3233/CBM-181258

  38. 38. Tokunaga, R., Imamura, Y., Nakamura, K., Uchihara, T., Ishimoto, T., Nakagawa, S., Iwatsuki, M., Baba, Y., Sakamoto, Y., Miyamoto, Y., Yoshida, N., Oyama, S., Shono, T., Naoe, H., Saeki, H., Oki, E., Watanabe, M., Sasaki, Y., Maehara, Y. and Baba, H. (2015) Carbohydrate Antigen 19-9 Is a Useful Prognostic Marker in Esophagogastric Junction Adenocar-cinoma. Cancer Medicine, 4, 1659-1666. https://doi.org/10.1002/cam4.514

  39. 39. Scarpa, M., Noaro, G., Saadeh, L., Cavallin, F., Cagol, M., Alfieri, R., Plebani, M. and Castoro, C. (2015) Esophageal Cancer Management: Preoperative CA19.9 and CEA Serum Levels May Identify Occult Advanced Adenocarcinoma. World Journal of Surgery, 39, 424-432. https://doi.org/10.1007/s00268-014-2835-1

  40. NOTES

    *通讯作者。

期刊菜单