Advances in Clinical Medicine
Vol. 13  No. 06 ( 2023 ), Article ID: 67176 , 7 pages
10.12677/ACM.2023.1361319

糖尿病肾病临床诊疗进展

陈思凝1,2,刘璠娜1,2*

1暨南大学第一临床医学院,广东 广州

2暨南大学附属第一医院(华侨医院)肾内科,广东 广州

收稿日期:2023年5月13日;录用日期:2023年6月7日;发布日期:2023年6月16日

摘要

糖尿病是一种发病率逐年升高并且造成我国沉重公共卫生财政负担的慢性疾病,糖尿病肾病是其常见的微血管并发症之一,随着糖尿病患者数量的增加,在全球范围内,糖尿病导致的慢性肾脏病患者比例明显增加。目前暂无糖尿病肾病特效治疗的药物,大多是通过控制血糖以延缓疾病的发生发展。而由于DKD早期症状不明显或患者缺乏对于糖尿病肾病的认识,患者未能及时就医,或者忽略筛查及定期随访的重要性等,最终导致终末期肾病甚至死亡。因此加强糖尿病患者对于糖尿病肾病的了解和科普宣教是很有必要的。本文综述了糖尿病肾病临床诊疗相关研究进展,为糖尿病肾病的防治提供依据。

关键词

糖尿病,糖尿病肾病,临床诊疗

Advances in Clinical Diagnosis and Treatment of Diabetic Kidney Disease

Sining Chen1,2, Fanna Liu1,2*

1The First Clinical Medical College of Jinan University, Guangzhou Guangdong

2Nephrology Department, The First Affiliated Hospital of Jinan University (Overseas Chinese Hospital), Guangzhou Guangdong

Received: May 13th, 2023; accepted: Jun. 7th, 2023; published: Jun. 16th, 2023

ABSTRACT

Diabetes, causing heavy public health financial burden, is one of chronic diseases. Diabetic kidney disease (DKD) is prevalent chronic micro-vascular complications of diabetes. As the number of patients with diabetes increases, the proportion of patients with chronic kidney disease due to diabetes increases significantly in the world. Currently, the treatment of DKD is limited and there is no unified treatment plan for DKD patients. Due to the lack of awareness of DKD, lots of patients with DKD could not be diagnosed and treated in time and eventually caused renal failure. So, it is necessary to strengthen the understanding about DKD for diabetic patients. This article reviews the clinical diagnosis and treatment of DKD, which provides reference for the prevention and treatment of DKD.

Keywords:Diabetes, Diabetic Kidney Disease, Clinical Diagnosis and Treatment

Copyright © 2023 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

2021年,全球糖尿病患病率(20~79岁)估计为5.366亿人,并且据预测,糖尿病患病率将继续上升,到2045年将达到7.832亿,中国已经成为世界上糖尿病患者人数最多的国家,约1.4亿 [1] 。糖尿病令人恐惧的并不是疾病本身,而是长期慢性高血糖所引起的各种并发症。糖尿病并发症,尤其是是血管并发症,是糖尿病患者死亡率增加的主要原因,并且给糖尿病患者带来沉重的医疗经济负担 [2] 。而糖尿病肾病(DKD)是常见的慢性微血管并发症之一 [3] 。在糖尿病患者中DKD发生率约为30%~40% [4] 。随着糖尿病患者数量的增加,在全球范围内,糖尿病导致的慢性肾脏病患者比例明显增加。自2011年以来已超过肾小球肾炎,成为我国慢性肾脏病病因首位 [5] 。据统计,在美国糖尿病肾病患者约占慢性肾脏病患者的44%,在澳大利亚为38% [6] 。由于DKD早期症状不明显,患者未能及时就医,或者忽略筛查及定期随访的重要性等,最终导致终末期肾病甚至死亡 [7] [8] 。因此加强糖尿病患者对于糖尿病肾病的了解和科普宣教是很有必要的。本综述总结了糖尿病肾病临床诊疗相关研究进展,为糖尿病肾病的防治提供依据。

2. 临床特点

2.1. 临床表现及诊断

DKD是指由糖尿病所致的慢性肾脏病,通常早期症状轻微难以察觉,常以尿泡沫增多为首发症状,渐进性尿蛋白增多和肾功能下降是其主要临床特点 [9] 。当然2型糖尿病肾病异质性较强,非白蛋白尿性慢性肾脏病也很常见(eGFR < 60 mL/min/1.73 m2且UACR ≤ 300 mg/g) [10] 。根据2021年中国糖尿病肾脏病防治指南:在明确糖尿病病史并排除其他原因引起慢性肾脏病的情况下,具备下列任一项者可诊断为DKD 1) 尿白蛋白肌酐比 ≥ 30 mg/g或尿白蛋白排泄率 ≥ 30 mg/24 h,且复查 ≥ 2次均超过30 mg (3~6月内)。2) 估算肾小球滤过率 < 60 ml∙min−1∙(1.73 m2)−1超过3个月以上。3) 肾活检符合DKD的病理改变 [11] 。

随着对糖尿病肾病机制认识的深入和生物信息学的发展,一些新的炎症、纤维化、肾小管损伤等相关的生物标志物逐渐被发现。如肿瘤坏死因子α受体-1(TNFR1) [12] 、肿瘤坏死因子α受体-2 (TNFR2) [13] 、内皮抑素(endostatin) [14] 、肾损伤分子-1(KIM-1) [15] 等。但是基于糖尿病为病因复杂的多样,生物标志物临床有效性评价不一,目前蛋白尿和eGFR仍是临床上诊断/预测预后的最常用生物标志物。

2.2. 临床分期

目前临床上最常用的分期为Mogensen分期 [16] (表1)。I期,II期临床表现较轻微,患者往往未能察觉,因此,临床上强调糖尿病患者定期筛查,可在eGFR发生变化前通过UACR上升筛查早期肾损伤,及时控制与治疗。

Table 1. Stage of diabetic kidney disease

表1. 糖尿病肾病临床分期

3. 糖尿病肾病病理

尽管病理活检并非诊断糖尿病肾病的首选诊断方法 [17] ,但依旧是糖尿病肾病诊断的金标准。由于糖尿病肾病与非糖尿病肾病的治疗完全不同,因此当出现以下情况时:1) T1DM病程较短(<10年)或未合并DR。2) 估算肾小球滤过率(eGFR)迅速下降。3) 尿白蛋白迅速增加或出现肾病综合征。4)活动性尿常规异常(红细胞、白细胞或细胞管型等),仍建议进行肾穿刺活检。糖尿病肾病病理表现详见表2 [18] 。

Table 2. Pathological features of diabetic kidney disease

表2. 糖尿病肾病病理

4. 治疗

2023年版《糖尿病医学诊疗标准》建议,需用全面、综合的管理方式降低糖尿病并发症风险,以生活方式干预(非药物治疗)是糖尿病患者治疗的基石 [19] 。糖尿病肾病的治疗仍控制血糖为主,通过药物治疗与非药物治疗以延缓疾病的发展。

4.1. 非药物治疗

根据KDIGO 2022慢性肾脏病糖尿病管理临床实践指南 [20] 建议:1) DKD患者应多吃富含膳食纤维的谷物、蔬菜、水果,富含优质植物蛋白的豆类和富含不饱和脂肪的坚果;而精制碳水化合物、甜味饮料和加工肉类尽量避免摄入。2) 0.8 g/kg/d的蛋白质摄入量,对未接受透析治疗的DKD患者是最为合适的,低于0.8 g/kg/d会导致生活质量下降,甚至营养不良,或者发生低血糖风险增加,而高蛋白质饮食会引起肾小球内压升高和肾小球滤过增加,进而导致肾小球硬化和肾小管间质损伤 [21] ,并且在肾脏功能不好的情况下,容易诱发代谢性酸中毒。3) 建议DKD患者的钠摄入量应 < 2 g/d (氯化钠 < 5 g/d),降低膳食Na的摄入有助于减少尿白蛋白排泄并降低血压 [22] 。

4.2. 药物治疗

随着科学家们对糖尿病肾病机制的深入研究,新型药物不断涌现,被证实对肾脏具有保护作用,能延缓糖尿病肾病病程的进展,如ARB/ACEI类药物、钠–葡萄糖共转运蛋白2 (SGLT2)抑制剂类药物、MRA类药物等,同时中医药在DKD预防和治疗方面也具有相当大的潜力。

4.2.1. 血管紧张素转化酶抑制剂/血管紧张素受体拮抗剂类药物(ARB/ACEI)

肾素–血管紧张素系统(RAS)的过度激活一直被认为是DKD的原因之一。既往研究表明,在血糖升高时,循环RAS正常或降低,而肾脏中RAS高度激活,肾组织对血管紧张素II (Ang II)敏感,导致肾血管收缩、肾小球传出动脉阻力增加、钠和水重吸收增加,均导致肾小球高滤过与高灌注 [23] 。血管紧张素转化酶抑制剂/血管紧张素受体拮抗剂类药物是治疗糖尿病肾病的经典药物。一项210个临床中心进行的前瞻性临床试验证实,与氨氯地平组或安慰剂组相比,血管紧张素-II受体阻滞剂厄贝沙坦组发生终末期肾病的相对风险明显降低,可有效延缓2型糖尿病引起的肾病进展,并且这种保护作用远不止是控制血压的原因 [24] 。

4.2.2. 钠-葡萄糖共转运蛋白2 (SGLT2)抑制剂类药物

血流动力学异常、炎症、氧化应激、代谢异常已被证明是导致DKD的关键因素 [25] [26] 。SGLT2表达上调会促进葡萄糖摄取,从而影响肾小管–肾小球反馈机制,表现为肾小球高灌注和高滤过,肾血流量和肾小球滤过率升高,导致肾小球高血压。SGLT2抑制剂阻断近端小管中的SGLT2,产生利钠作用,诱导肾小管–肾小球反馈,导致传入小动脉血管收缩,减少肾小球高滤过率 [27] 。SGLT2抑制剂能抑制CYP4A诱导的20-HETE产生并减弱2型糖尿病模型小鼠肾脏中的氧化应激 [28] 。SGLT2抑制剂通过促进酮体生成从而抑制mTORC1,延缓糖尿病肾病进展 [29] 一项在21个国家进行的随机对照实验表明,SGLT2抑制剂可减轻性肾脏病患者蛋白尿,并且DKD病患者的尿白蛋白减少幅度更大 [30] 。对于DKD患者,若eGFR ≥ 20 mL/min/1.73 m2、UACR ≥ 200 mg/g,建议可起始使用SGLT2i来延缓慢性肾脏疾病进展和减少心血管事件 [19] 。

4.2.3. 盐皮质激素受体拮抗剂(MRA)

盐皮质激素受体(Mineralocorticoid Receptor, MR)过度激活,一方面会导致肾脏炎症和纤维化途径的激活,并对足细胞和系膜细胞产生有害影响,引发肾小球肥大、肾脏纤维化、肾小球硬化等一系列反应,导致DKD患者发生不良肾脏事件(肾衰竭、或肾病死亡);另一方面,MR过度活化可引起心脏损害,导致心肌梗死、心律失常、心力衰竭等不良心血管结局 [31] 。因此,阻断MR过度激活是防治T2DM相关CKD患者不良肾脏和心血管结局的重要治疗靶点。

非奈利酮(finerenone)是全球首个获批应用于治疗DKD的新型非甾体盐皮质激素受体拮抗剂(Mineralocorticoid Receptor Antagonists, MRA)类药物 [32] 。一项为期2.6年的随机、双盲、安慰剂对照、多中心临床试验表明,非奈利酮(17.8%)不良肾脏事件风险(肾衰竭,eGFR从基线持续下降至少40%,或肾病死亡)低于安慰剂组(21.1%) (HR: 0.82, 95% CI, 0.73~0.93, P = 0.001) [33] 。一项7352名DKD患者的对照试验证明:非奈利酮组新发心衰的发生率(1.9%)显著低于安慰剂(2.8%) (HR: 0.68, 95% CI, 0.50~0.93, P = 0.0162) [34] 。基于其明确的临床研究证据,非奈利酮作为新型非甾体类MRA,能够直接高效阻断DKD患者存在的MR过度激活的病理状态,从而抑制肾脏炎症反应,延缓DKD进展的观点已被广泛接受。2023年版《糖尿病医学诊疗标准》对非奈利酮使用推荐程度较2022年更为升高,建议其无需在其他药物治疗无效时作为才作为替代治疗使用,且不必受限于发生心血管事件 [19] 。

4.2.4. 中医药

中医认为糖尿病向DKD转归的根本病机为“肾阴虚”,其典型症状为:多饮,多食,多尿,腰膝酸痛,五心烦躁,眩晕耳鸣,倦怠乏力等,同时兼具气虚或肝阴虚 [35] 。基于中医辨证论治,早期“肾阴虚”型DKD的治疗当以“补肾”为主。

据《藏本草》《本草从新》等历代医家典籍记载冬虫夏草,可补益肺肾,益精气,补虚损,用于肾虚精亏,腰膝酸痛,阳痿遗精等症候 [36] ,因而“补肾”中药冬虫夏草常常用于糖尿病肾病患者的临床治疗。一项纳入6个研究的Meta分析结果显示,与对照组相比,冬虫夏草能显著减少DKD患者尿蛋白,降低血清肌酐值、尿素氮和膀胱抑素C (P < 0.05),改善DKD患者肾功能 [37] 。在动物实验中,冬虫夏草能够显著降低DKD动物的血肌酐、血尿素氮、尿蛋白,通过抑制P2X7R的表达和NLRP3炎症小体的活化减轻足细胞损伤、足突增宽、肾小球增大和系膜基质增多等一系列病理改变 [38] ,还能通过调节肾小管上皮细胞中自噬相关的AMPK/m TOR信号通路,抑制肾小管损伤和肾小管上皮细胞脱落死亡 [39] 。据动物研究结果,正常组小鼠(维生素A:0.072 ± 0.010 µg/g tissue;维生素C:2.33 ± 0.04 µg/g tissue)对比糖尿病组小鼠(维生素A:0.026 ± 0.003 µg/g tissue;维生素C:1.97 ± 0.03 µg/g tissue)的肾脏维生素A和维生素C含量显著降低,这表明糖尿病小鼠通过消耗抗氧化剂来减轻肾脏中自由基的积累,而冬虫夏草子实体组(维生素A:0.079 ± 0.004 µg/g tissue;维生素C:2.34 ± 0.07 µg/g tissue)肾脏中维生素A和C的消耗显著减少,因此冬虫夏草可以减轻糖尿病引起肾小管上皮细胞磷脂过氧化的氧化应激状态 [40] 。基于临床及动物实验证据,中国医师协会中西医结合医师分会于2022年发表《糖尿病肾病病证结合诊疗指南》将具“阴阳同补”传统功效的冬虫夏草以强推荐用药等级(la级),用于临床防治早期DKD [41] 。

5. 总结与展望

本文综述了糖尿病肾病的临床表现、诊断标准,病理特点及治疗措施相关研究进展。近年来,包括ARB/ACEI类药物、钠–葡萄糖转运蛋白2 (SGLT2)抑制剂、盐皮质激素受体拮抗剂(MRA)在内的新疗法为DKD患者提供了新的治疗选择。中医药在DKD预防和治疗方面也具有相当大的潜力。期待随着对糖尿病肾病机制认识的深入,未来开发更有效的药物和治疗方案的个体化,能进一步延缓或预防糖尿病肾病的进展。

文章引用

陈思凝,刘璠娜. 糖尿病肾病临床诊疗进展
Advances in Clinical Diagnosis and Treatment of Diabetic Kidney Disease[J]. 临床医学进展, 2023, 13(06): 9426-9432. https://doi.org/10.12677/ACM.2023.1361319

参考文献

  1. 1. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C.N., Mbanya, J.C., Pavkov, M.E., Ramachandaran, A., Wild, S.H., James, S., Herman, W.H., Zhang, P., Bommer, C., Kuo, S., Boyko, E.J. and Magliano, D.J. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119

  2. 2. Forbes, J.M. and Fotheringham, A.K. (2017) Vascular Com-plications in Diabetes: Old Messages, New Thoughts. Diabetologia, 60, 2129-2138. https://doi.org/10.1007/s00125-017-4360-x

  3. 3. Forbes, J.M. and Cooper, M.E. (2013) Mechanisms of Diabetic Complications. Physiological Reviews, 93, 137-188. https://doi.org/10.1152/physrev.00045.2011

  4. 4. Umanath, K. and Lewis, J.B. (2018) Update on Diabetic Nephropathy: Core Curriculum 2018. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 71, 884-895. https://doi.org/10.1053/j.ajkd.2017.10.026

  5. 5. Yang, C., Wang, H., Zhao, X., Matsushita, K., Coresh, J., Zhang, L. and Zhao, M.H. (2020) CKD in China: Evolving Spectrum and Public Health Implications. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 76, 258-264. https://doi.org/10.1053/j.ajkd.2019.05.032

  6. 6. Koye, D.N., Shaw, J.E., Reid, C.M., Atkins, R.C., Reutens, A.T. and Magliano, D.J. (2017) Incidence of Chronic Kidney Disease among People with Diabetes: A Systematic Review of Observational Studies. Diabetic Medicine: A Journal of the British Diabetic Association, 34, 887-901. https://doi.org/10.1111/dme.13324

  7. 7. Rodriguez, F., Lee, D.J., Gad, S.S., Santos, M.P., Beetel, R.J., Vasey, J., Bailey, R.A., Patel, A., Blais, J., Weir, M.R. and Dash, R. (2021) Real-World Diagnosis and Treatment of Diabetic Kid-ney Disease. Advances in Therapy, 38, 4425-4441. https://doi.org/10.1007/s12325-021-01777-9

  8. 8. McGrath, K. and Edi, R. (2019) Diabetic Kidney Disease: Diag-nosis, Treatment, and Prevention. American Family Physician, 99, 751-759.

  9. 9. Afkarian, M., Zelnick, L.R., Hall, Y.N., Heagerty, P.J., Tuttle, K., Weiss, N.S. and de Boer, I.H. (2016) Clinical Manifestations of Kidney Disease among US Adults with Diabetes, 1988-2014. JAMA, 316, 602-610. https://doi.org/10.1001/jama.2016.10924

  10. 10. Yamanouchi, M., Furuichi, K., Hoshino, J., Ubara, Y. and Wada, T. (2020) Nonproteinuric Diabetic Kidney Disease. Clinical and Experimental Nephrology, 24, 573-581. https://doi.org/10.1007/s10157-020-01881-0

  11. 11. 中华医学会糖尿病学分会微血管并发症学组. 中国糖尿病肾脏病防治指南(2021年版) [J]. 中华糖尿病杂志, 2021, 13(8): 762-784.

  12. 12. Barr, E.L.M., Barzi, F., Hughes, J.T., Jerums, G., Hoy, W.E., O’Dea, K., Jones, G.R.D., Lawton, P.D., Brown, A.D.H., Thomas, M., Ekinci, E.I., Sinha, A., Cass, A., MacIsaac, R.J. and Maple-Brown, L.J. (2018) High Baseline Levels of Tumor Necrosis Factor Receptor 1 Are Associated with Progression of Kidney Disease in Indigenous Australians with Diabetes: The eGFR Follow-up Study. Diabetes Care, 41, 739-747. https://doi.org/10.2337/dc17-1919

  13. 13. Pavkov, M.E., Weil, E.J., Fufaa, G.D., Nel-son, R.G., Lemley, K.V., Knowler, W.C., Niewczas, M.A. and Krolewski, A.S. (2016) Tumor Necrosis Factor Recep-tors 1 and 2 Are Associated with Early Glomerular Lesions in Type 2 Diabetes. Kidney International, 89, 226-234. https://doi.org/10.1038/ki.2015.278

  14. 14. Chauhan, K., Verghese, D.A., Rao, V., Chan, L., Parikh, C.R., Coca, S.G. and Nadkarni, G.N. (2019) Plasma Endostatin Predicts Kidney Outcomes in Patients with Type 2 Diabetes. Kidney In-ternational, 95, 439-446. https://doi.org/10.1016/j.kint.2018.09.019

  15. 15. Mori, Y., Ajay, A.K., Chang, J.H., Mou, S., Zhao, H., Kishi, S., Li, J., Brooks, C.R., Xiao, S., Woo, H.M., Sabbisetti, V.S., Palmer, S.C., Galichon, P., Li, L., Henderson, J.M., Kuchroo, V.K., Hawkins, J., Ichimura, T. and Bonventre, J.V. (2021) KIM-1 Mediates Fatty Acid Uptake by Renal Tubular Cells to Promote Progressive Diabetic Kidney Disease. Cell Metabolism, 33, 1042-1061.e7. https://doi.org/10.1016/j.cmet.2021.04.004

  16. 16. Mogensen, C.E., Christensen, C.K. and Vittinghus, E. (1983) The Stages in Diabetic Renal Disease: With Emphasis on the Stage of Incipient Diabetic Nephropathy. Diabetes, 32, 64-78. https://doi.org/10.2337/diab.32.2.S64

  17. 17. Biesenbach, G., Bodlaj, G., Pieringer, H. and Sedlak, M. (2011) Clinical versus Histological Diagnosis of Diabetic Nephropathy—Is Renal Biopsy Required in Type 2 Diabetic Patients with Re-nal Disease? QJM: An International Journal of Medicine, 104, 771-774. https://doi.org/10.1093/qjmed/hcr059

  18. 18. 中华医学会肾脏病学分会专家组. 糖尿病肾脏疾病临床诊疗中国指南[J]. 中华肾脏病杂志, 2021, 37(3): 255-304.

  19. 19. ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., Collins, B.S., Cusi, K., Das, S.R., Gibbons, C.H., Giurini, J.M., Hilliard, M.E., Isaacs, D., Johnson, E.L., Kahan, S., Khunti, K., Kosiborod, M., Leon, S.K. Lyons, L. Murdock, M.L. Perry, P. Prahalad, R.E. Pratley, J.J. Seley, R.C. Stanton, J.K. Sun, C.C. Woodward, J., Young-Hyman, D., Gabbay, R.A. and on Behalf of the American Diabetes Association. (2023) In-troduction and Methodology: Standards of Care in Diabetes—2023. Diabetes Care, 46, S1-S4. https://doi.org/10.2337/dc23-Sint

  20. 20. Improving Global Outcomes (KDIGO) Diabetes Work Group (2022) KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney International, 102, S1-S127. https://doi.org/10.1016/j.kint.2022.06.008

  21. 21. Hostetter, T.H., Meyer, T.W., Rennke, H.G. and Brenner, B.M. (1986) Chronic Effects of Dietary Protein in the Rat with Intact and Reduced Renal Mass. Kidney International, 30, 509-517. https://doi.org/10.1038/ki.1986.215

  22. 22. Chen, Y., Wang, X., Jia, Y., Zou, M., Zhen, Z. and Xue, Y. (2022) Effect of a Sodium Restriction Diet on Albuminuria and Blood Pressure in Diabetic Kidney Disease Patients: A Meta-Analysis. International Urology and Nephrology, 54, 1249-1260. https://doi.org/10.1007/s11255-021-03035-x

  23. 23. Giacchetti, G., Sechi, L.A., Rilli, S. and Carey, R.M. (2005) The Renin-Angiotensin-Aldosterone System, Glucose Metabolism and Diabetes. Trends in Endocrinology and Metabolism, 16, 120-126. https://doi.org/10.1016/j.tem.2005.02.003

  24. 24. Lewis, E.J., Hunsicker, L.G., Clarke, W.R., Berl, T., Pohl, M.A., Lewis, J.B., Ritz, E., Atkins, R.C., Rohde, R. and Raz, I. (2001) Renoprotective Effect of the Angiotensin-Receptor An-tagonist Irbesartan in Patients with Nephropathy due to Type 2 Diabetes. The New England Journal of Medicine, 345, 851-860. https://doi.org/10.1056/NEJMoa011303

  25. 25. Donate-Correa, J., Luis-Rodríguez, D., Martín-Núñez, E., Tagua, V.G., Hernández-Carballo, C., Ferri, C., Rodríguez- Rodríguez, A.E., Mora-Fernández, C. and Navarro-González, J.F. (2020) Inflammatory Targets in Diabetic Nephropathy. Journal of Clinical Medicine, 9, Article 458. https://doi.org/10.3390/jcm9020458

  26. 26. Thallas-Bonke, V., Thorpe, S.R., Coughlan, M.T., Fukami, K., Yap, F.Y., Sourris, K.C., Penfold, S.A., Bach, L.A., Cooper, M.E. and Forbes, J.M. (2008) Inhibition of NADPH Oxidase Pre-vents Advanced Glycation End Product— Mediated Damage in Diabetic Nephropathy through a Protein Kinase C-α-Dependent Pathway. Diabetes, 57, 460-469. https://doi.org/10.2337/db07-1119

  27. 27. Fioretto, P., Zambon, A., Rossato, M., Busetto, L. and Vettor, R. (2016) SGLT2 Inhibitors and the Diabetic Kidney. Diabetes Care, 39, S165-S171. https://doi.org/10.2337/dcS15-3006

  28. 28. Dia, B., Alkhansa, S., Njeim, R., Al Moussawi, S., Farhat, T., Haddad, A., Riachi, M.E., Nawfal, R., Azar, W.S. and Eid, A.A. (2023) SGLT2 Inhibitor—Dapagliflozin Attenuates Diabe-tes-Induced Renal Injury by Regulating Inflammation through a CYP4A/20-HETE Signaling Mechanism. Pharmaceutics, 15, Article 965. https://doi.org/10.3390/pharmaceutics15030965

  29. 29. Tomita, I., Kume, S., Sugahara, S., Osawa, N., Yamahara, K., Yasuda-Yamahara, M., Takeda, N., Chin-Kanasaki, M., Kaneko, T., Mayoux, E., Mark, M., Yanagita, M., Ogita, H., Araki, S.I. and Maegawa, H. (2020) SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metabolism, 32, 404-419.E6. https://doi.org/10.1016/j.cmet.2020.06.020

  30. 30. Jongs, N., Greene, T., Chertow, G.M., McMurray, J.J.V., Lang-kilde, A.M., Correa-Rotter, R., Rossing, P., Sjöström, C.D., Stefansson, B.V., Toto, R.D., Wheeler, D.C. and Heerspink, H.J.L. (2021) Effect of Dapagliflozin on Urinary Albumin Excretion in Patients with Chronic Kidney Disease with and without Type 2 Diabetes: A Prespecified Analysis from the DAPA-CKD Trial. The Lancet Diabetes & Endocrinology, 9, 755-766. https://doi.org/10.1016/S2213-8587(21)00243-6

  31. 31. Barrera-Chimal, J., Lima-Posada, I., Bakris, G.L. and Jaisser, F. (2022) Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease—Mechanistic and Therapeutic Effects. Nature Reviews Nephrology, 18, 56-70. https://doi.org/10.1038/s41581-021-00490-8

  32. 32. Frampton, J.E. (2021) Finerenone: First Approval. Drugs, 81, 1787-1794. https://doi.org/10.1007/s40265-021-01599-7

  33. 33. Bakris, G.L., Agarwal, R., Anker, S.D., Pitt, B., Ruilope, L.M., Rossing, P., Kolkhof, P., Nowack, C., Schloemer, P., Joseph, A. and Filippatos, G. (2020) Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 383, 2219-2229. https://doi.org/10.1056/NEJMoa2025845

  34. 34. Filippatos, G., Anker, S.D., Agarwal, R., Ruilope, L.M., Rossing, P., Bakris, G.L., Tasto, C., Joseph, A., Kolkhof, P., Lage, A. and Pitt, B. (2022) Finerenone Reduces Risk of Incident Heart Failure in Patients with Chronic Kidney Disease and Type 2 Diabetes: Analyses from the FIGARO-DKD Trial. Circulation, 145, 437-447. https://doi.org/10.1161/CIRCULATIONAHA.121.057983

  35. 35. 李金菊, 刘旺华, 李花, 李甜, 夏琳, 何翔. 糖尿病肾病不同证型舌象的客观化研究[J]. 亚太传统医药, 2021, 17(4): 161-165.

  36. 36. 郑依玲, 梅全喜, 李文佳, 唐志芳, 钱正明, 陶盛昌, 董鹏鹏. 冬虫夏草的药用历史及现代服用方法探讨[J]. 中药材, 2017, 40(11): 2722-2725.

  37. 37. 陈仁慈, 项洁琼, 陈洪宇. 冬虫夏草治疗糖尿病肾病疗效的系统评价[J]. 中国中西医结合肾病杂志, 2017, 18(4): 340-344.

  38. 38. Wang, C., Hou, X.X., Rui, H.L., Li, L.J., Zhao, J., Yang, M., Sun, L.J., Dong, H.R., Cheng, H. and Chen, Y.P. (2018) Artificially Cultivated Ophiocordyceps sinensis Alleviates Diabetic Nephropathy and Its Podocyte Injury via Inhibiting P2X7R Expression and NLRP3 Inflammasome Activation. Journal of Diabetes Re-search, 2018, Article ID: 1390418. https://doi.org/10.1155/2018/1390418

  39. 39. 徐喆, 赵凯, 李志军. 冬虫夏草对糖尿病肾病大鼠肾小管细胞中AMPK/mTOR信号传导途径的影响[J]. 中国现代医学杂志, 2018, 28(3): 1-5.

  40. 40. Wu, W.T., Hsu, T.H., Lee, C.H. and Lo, H.C. (2020) Fruiting Bodies of Chinese Caterpillar Mushroom, Ophiocordyceps sinensis (Ascomycetes) Allevi-ate Diabetes-Associated Oxidative Stress. International Journal of Medicinal Mushrooms, 22, 15-29. https://doi.org/10.1615/IntJMedMushrooms.2019033275

  41. 41. 中国医师协会中西医结合医师分会内分泌与代谢病学专业委员会. 糖尿病肾病病证结合诊疗指南[J]. 中医杂志, 2022, 63(2): 190-197.

  42. NOTES

    *通讯作者。

期刊菜单