Advances in Clinical Medicine
Vol. 14  No. 05 ( 2024 ), Article ID: 86482 , 9 pages
10.12677/acm.2024.1451471

NFKBIA突变致免疫出生缺陷研究进展

李光曌,赵晓东,吴俊峰*

重庆医科大学附属儿童医院风湿免疫科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿童感染与免疫罕见病重庆市重点实验室,重庆

收稿日期:2024年4月13日;录用日期:2024年5月8日;发布日期:2024年5月13日

摘要

NFKBIA突变致免疫出生缺陷极为罕见,目前全球仅报道23例病例,但其死亡率近50%,早期诊治尤为关键。NFKBIA编码IκBα,其突变导致IκBα降解受阻碍,引起NF-κB通路活化障碍,临床表现为免疫缺陷伴(或不伴)少汗或无汗型外胚层发育不良,主要治疗方式为免疫球蛋白替代治疗和抗感染治疗,根治方法为造血干细胞移植。近年来,对NFKBIA突变致免疫出生缺陷的研究逐渐增多,为提高临床医师对该病的认识,本文就NFKBIA突变致免疫出生缺陷研究进展进行综述。

关键词

NFKBIA基因突变,免疫出生缺陷,外胚层发育不良,NF-κB通路

Research Progress on Inborn Errors of Immunity Caused by NFKBIA Mutation

Guangzhao Li, Xiaodong Zhao, Junfeng Wu*

Department of Rheumatology, Immunology and Allergy, The Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing

Received: Apr. 13th, 2024; accepted: May 8th, 2024; published: May 13th, 2024

ABSTRACT

NFKBIA mutation-induced immunodeficiency is extremely rare, with only 23 cases reported worldwide, but with a mortality rate of nearly 50%, early diagnosis and treatment are critical. NFKBIA encodes IκBα, whose mutation leads to impaired degradation of IκBα, resulting in the impaired activation of the NF-κB pathway, which is clinically manifested as immune deficiency with or without hypohidrosis or anhidrosis ectodermal dysplasia. The main treatment is immunoglobulin replacement and anti-infection therapy, and the radical treatment is hematopoietic stem cell transplantation. In recent years, the research on NFKBIA mutation-induced immunodeficiency has been increasing gradually. To improve clinicians’ understanding of NFKBIA mutation-induced immunodeficiency, this paper reviews the research progress of NFKBIA mutation-induced immunodeficiency.

Keywords:NFKBIA Mutation, Inborn Errors of Immunity, Ectodermal Dysplasia, NF-κB Pathway

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

核因子κB (nuclear factor of kappa light polypeptide gene enhancer in B cell, NF-κB)是一种重要的、普遍存在的转录因子,由一组二聚体构成,参与免疫调节及炎症反应、淋巴细胞发育、肿瘤形成等 [1] 。NF-κB通路的激活被一系列抑制蛋白和调控蛋白严格控制 [2] 。NFKBIA基因编码IκBα蛋白,是NF-κB通路活化的重要抑制蛋白之一 [3] 。NFKBIA突变可致IκBα降解受损,引起NF-κB通路的持续抑制,导致无汗型外胚层发育不良伴免疫缺陷(anhidrotic ectodermal dysplasia with immunodeficiency, EDA-ID, OMIM#300291)。NFKBIA突变所致的EDA-ID为一种常染色体显性遗传免疫出生缺陷(Inborn errors of immunity, IEI),临床表现为不同程度的无汗或少汗、锥齿、头发稀疏和免疫功能异常 [4] ,目前唯一根治方法为造血干细胞移植(hematopoietic stem cell transplantation, HSCT)。

至今,全球共报道23例NFKBIA突变患者(见表1) [5] - [22] ,NFKBIA突变导致的EDA-ID非常罕见,但其死亡率高,患者临床表现差异大,治疗效果也存在异质性 [17] 。因此,本文对目前NFKBIA突变导致的免疫出生缺陷相关报道进行总结,以便于临床医生更全面深入地认识该类疾病,早期启动有效诊治及深入开展机制研究,同时探寻更为有效的治疗方式。

2. 致病机制

NF-κB家族包括5个成员:NF-κB1 (p50/p105)、NF-κB2 (p52/p100)、c-Rel、RelA (p65)和RelB。这些转录因子通过N-末端约300个氨基酸的Rel同源结构域(rel homology domain, RHD)关联,该结构域包含了与DNA结合、二聚化、核易位和与NF-κB抑制蛋白(inhibitors of NF-κB, IκB)结合的序列。IκB家族包括IκBα、IκBβ、IκBε、IκBζ和MAIL蛋白等。IκB蛋白主要通过掩蔽NF-κB的核定位信号,阻止其入核和与DNA结合。当细胞处于静息状态,即未受到刺激时,NF-κB被IκB抑制,滞留在细胞质中。多数细胞中的NF-κB复合物为p50-RelA-IκBα三聚体 [23] [24] 。

NF-KB通路可被多种刺激因子激活,包括微生物成分(例如脂多糖)、Toll样受体(Toll like receptor, TLR)、肿瘤坏死因子(TNF-α)、白介素1 (IL-1)以及生长因子等。当细胞处于活化状态时,IκB被IκB激酶(IκB kinase, IKK)复合体通过特定丝氨酸残基磷酸化(Ser32和Ser36),随后从NF-κB上脱落并被泛素化,继而被蛋白酶体降解。IκB降解后,NF-κB转录因子得到短暂释放并进入细胞核内调控目的基因表达。

Table 1. Clinical and mutational characteristics of patients with NFKBIA mutations

表1. NFKBIA突变患者的临床和基因突变特征

NR,未报道;HSCT,造血干细胞移植;IVIG,免疫球蛋白替代治疗;#P3为P2的父亲,为马赛克突变(Mosaicism mutation),P17、P18、P19来自同一家系。

突变的IκBα蛋白不受随后泛素化依赖的蛋白酶体降解,将NF-κB转录因子持续抑制在细胞质中,导致NF-κB通路的活化受损 [25] [26] 。

3. NFKBIA突变患者的基因突变特征

NFKBIA编码的IκBα蛋白是目前NF-κB抑制家族中唯一被鉴定和报道可以导致人类单基因疾病的抑制蛋白 [27] 。IκBα属于丝氨酸/苏氨酸蛋白激酶家族,包括一个N端信号接收域(signal-receiving domain, SRD)、中间锚蛋白重复域(Ankyrin repeat domain)以及C端富含酸性氨基酸及苏氨酸的PEST序列(proline-glutamate/aspartate-serine threonine, PEST)和两个核转运序列(见图1)。N端信号接收域可接受磷酸化和泛素化信号,调节自身降解,是IκBα的重要功能结构域 [28] 。IκBα N端序列在物种之间高度保守,尤其是连续的六位氨基酸序列(DSGLDS)中第32位和第36位丝氨酸磷酸化位点 [29] 。

NFKBIA突变导致的EDA-ID于2003年首次报道 [5] ,截止目前,全球共报道23例NFKBIA突变患者,含15种不同NFKBIA突变(图1表1);其中,13例自发突变,1例马赛克突变(Mosaicism mutation),其余10例患者未能获得其父母的基因突变数据,因此遗传方式未明。23例NFKBIA突变患者均为功能获得性突变,突变均位于NFKBIA基因1号外显子,影响IκBα氨基端的信号接收结构域。

NFKBIA突变有两种形式:错义突变和无义突变。错义突变影响S32和S36磷酸化位点或者相邻碱基,导致单个氨基酸替换,已报道19例患者有12种突变,分别为D31N、S32I、S32G、S32R、S32N、S32C、G33V、L34P、S36Y、S36A、M37K、M37R。无义突变位于S32位点的上游,提前引入早期终止密码子并通过在下游ATG位点重新启动翻译而产生N端截短的IκBα蛋白,共报道4例患者3种突变,分别为W11X、E14X、Q9X。目前对这两种突变形式的基因型–表现型相关性研究认为,IκBα错义突变导致的点突变体较无义突变导致的IκBα截断突变体表达水平更高,更严重损害经典和非经典NF-κB信号通路,临床表现因此更严重 [19] 。

在小鼠模型中,NFKBIA首个被描述的突变位点S32I通过基因敲除得到进一步研究,NFKBIA WT/S32I小鼠大多数表型与患者临床表型一致,但也表现出患者中未被描述的新特征,包括缺乏Peyer斑块,脾脏滤泡、边缘区和生发中心等次级淋巴器官,这为部分患者缺乏扁桃体和淋巴结以及在HSCT后免疫重建不良提供了潜在解释 [30] 。

文献中所有报道的突变位点均标注于序列上方。I-VI分别指示NFBIA的1-6号外显子。K21、K22指示为K48链多泛素化位点的精氨酸。S32、S36指示为两个重要功能磷酸化的丝氨酸。Ankyrin repeat domain:锚蛋白重复域,PEST:富含酸性氨基酸及苏氨酸的重复肽序列。

Figure 1. Schematic representation of NFKBIA gene domain and mutation

图1. NFKBIA基因结构域及突变

4. NFKBIA突变患者的免疫学特征

NFKBIA突变所致NF-κB通路活化受损可引起多种免疫表型,T淋巴细胞受影响最为显著 [5] 。10例NFKBIA突变患者出现T淋巴细胞增多症,其中8例患者幼稚T 细胞数目升高,7例患者记忆T细胞数目降低。在T淋巴细胞数目正常的患者中,也有1例患者出现幼稚T细胞比例增加和记忆T细胞比例降低(P5: E14X)。3例患者出现CD3+CD8+T和γδ +T细胞比例降低,2例患者出现γδ+T细胞比例增加,以及2例患者Treg细胞缺失。3例患者报道NK细胞数目下降,其中有1例患者进行了NK细胞功能评估并且正常(P7: S36Y)。另外,研究人员对13例患者T细胞体外增殖进行了进一步研究,使用α-CD3刺激患者PBMC后,9例患者表现出增殖受损,但使用其它刺激剂(如有丝分裂原等)可部分恢复正常,这表明患者由TCR参与介导的T细胞功能受损,但并未完全缺失。

NFKBIA突变除影响T细胞,还会影响B细胞,绝大多数NFKBIA突变患者B细胞数量正常,仅有1例患者报告有B细胞数量降低(P2: S32I),但有6例患者报道记忆B细胞比例降低,1例患者幼稚B细胞比例增加。5例患者有高IgM、低IgG、低IgA综合表现,2例患者有高丙种球蛋白血症,3例患者为低丙种球蛋白血症。共有9例患者报道只有低水平或没有针对疫苗抗原的抗体。因此,NFKBIA突变导致的EDA-ID也是一种联合免疫缺陷。

目前,已报道的23例NFKBIA突变患者均未描述其固有淋巴细胞比例或计数情况。在NFKBIA WT/S32I小鼠模型中,NFKBIA WT/S32I小鼠的粒细胞正常,骨髓和浆细胞样树突状细胞计数与其同型野生型小鼠相似,但淋巴样树突状细胞计数较低。

5. NFKBIA突变患者的临床特征

5.1. 外胚层发育不良

NFKBIA突变主要影响EDA/EDAR/EDARADD信号通路介导的NF-κB活性调节,影响外胚层和中胚层之间的信号转导,导致外胚层发育不良表型 [31] 。该信号通路上其他基因突变(如EDA基因和NEMO基因)也会引起类似表型。外胚层发育不良的典型临床表现为少汗或无汗、毛发稀疏或全秃、少牙或牙齿形态异常三联症 [32] 。

已报道的23例NFKBIA突变患者中,17例患者都具有EDA的某些特征;其中12例患者观察到因缺乏功能性汗腺而导致的少汗或无汗症,10例患者表现出头发稀疏,8例患者有锥型齿。P3缺乏EDA表现,考虑因为他具有复杂的嵌合体突变表型,WT/WT基因型的细胞比例高于具有WT/S32I基因型的细胞比例(4:1)。然而,目前尚不清楚其它4例患者没有典型EDA表现的原因。

5.2. 感染

23例NFKBIA突变患者均以感染为首发表现。大多数患者在生命早期(<6月龄)就出现了由细菌、真菌和病毒引起的多重严重感染。19例患者报告了复发性上呼吸道感染或肺炎,病原包括由肺炎克雷伯菌、铜绿假单胞菌、流感嗜血杆菌、A族溶血性链球菌、鲍曼不动杆菌、粪肠球菌和军团菌。8例患者报告了由A族溶血性链球菌、沙门氏菌、肺炎克雷伯菌、脑膜炎奈瑟菌、粘质沙雷氏菌或金黄色葡萄球菌引起的败血症或脑膜炎。部分患者还有特殊部位感染,包括骨髓炎、尿路感染、沙门氏菌肠炎、肛周脓肿等;患者对细菌的易感性可能是由于幼稚 B 细胞转换和分化为记忆 B 细胞的能力受损,导致抗体产生水平降低 [33] 。与MyD88或IRAK-4缺乏患者相似,这种对细菌的高易感性还可能与TLR/IL-1受体信号转导途径的反应受损有关 [34] [35] 。值得注意的是,4例患者有结核分枝杆菌感染,在接种卡介苗后出现皮肤脓肿,其中两例患者携带相同位点突变(P7: S36Y, P10: S36Y)。对分枝杆菌的易感性与NEMO缺陷综合征患者类似,可能与IL-12/IFN-γ通路受损有关,导致T细胞分泌IFN-γ减少 [36] [37] 。

NFKBIA突变患者还容易出现真菌感染,8例患者患有慢性皮肤黏膜念珠菌病,其中2例患者同时患有卡氏肺囊虫病。患者真菌感染表现可能与内皮细胞对IL-17反应缺陷相关,正如在一例患者中观察到Th17细胞下降(P8: M37K),但目前还缺乏相关研究 [38] 。与其它CD40/CD40L缺乏患者相似,该通路受损的患者可能更容易发生肺囊虫病 [39] [40] 。此外,3例患者出现由轮状病毒、诺如病毒、副流感病毒、呼吸道合胞病毒和巨细胞病毒引起的严重病毒感染,NF-κB信号通路在诱导干扰素产生中有关键作用,NFKBIA突变可能会降低抗病毒干扰素的产生 [41] [42] 。

5.3. 其它临床表现

除感染外,少数NFKBIA突变患者还有自身炎症和自身免疫表现,如炎症性肠病(P6: Q9X, P15: S32N),幼年特发性关节炎(P17: S36A),自身免疫性溶血性贫血(P22: S32C)。另外,9例患者表现出生长发育迟缓,1例患者(P16: L34P)还报道了NFKBIA突变导致髓系分泌IL-1β过多和肝脏中性粒细胞蓄积 [43] 。患者广泛的临床和免疫学表型反映了NFKBIA基因对先天性和适应性免疫,以及免疫系统之外的巨大影响 [44] 。

6. 治疗

目前,针对NFKBIIA突变患者的主要治疗方式为静脉注射免疫球蛋白 (Intravenous Immunoglobulin, IVIG)替代治疗和抗感染治疗,根治方法为造血干细胞移植。目前,共有13例NFKBIA突变患者进行HSCT,8例患者在移植期间或移植之后死亡,死亡原因包括细菌性败血症、急性呼吸窘迫、进行性神经退行性疾病和小脑出血。5例患者移植成功,其中一例患者(P1: S32I)移植后随访已超过23年,该患者移植后总体情况良好,然而仍然有反复呼吸道和皮肤感染,需继续接受免疫球蛋白替代治疗 [45] 。需要注意的是,造血干细胞移植无法解决患者EDA表现。其余10例NFKBIA突变患者均接受IVIG和预防性抗菌治疗(如复方新诺明、氟康唑),但部分患者仍存在复发性感染、弥漫性皮肤疣和慢性腹泻等;有分枝杆菌感染的患者额外接受规律抗结核和IFN-γ注射治疗。嵌合体突变患者(P3: S32I)未接受相关治疗。截止报道时,23例NFKBIA突变患者中有12例已经死亡,11例患者存活。

7. 小结

NFKBIA突变致免疫出生缺陷极为罕见,目前全球仅报道23例NFKBIA突变患者,但其死亡率近50%,早期、规范诊治对改善患者预后极为重要。NFKBIA功能获得性突变引起IκBα降解障碍,导致NF-κB通路持续抑制,从而引起感染、外胚层发育不良等临床表现。NFKBIA突变患者临床和免疫学表现异质性大,与基因突变类型相关。一旦临床确诊,需尽早开展预防性抗菌联合免疫球蛋白替代治疗,HSCT是NFKBIA突变患者唯一根除治疗方法,但不能纠正细胞固有免疫和某些淋巴器官发育缺陷,以及EDA表现,临床应根据患者的基因型和表现型具体讨论HSCT的适应性。

基金项目

重庆市教委科学技术研究项目(KJQN202200418),国家儿童健康与疾病临床医学研究中心临床医学研究一般项目(NCRCCHD-2022-YP-07)。

文章引用

李光曌,赵晓东,吴俊峰. NFKBIA突变致免疫出生缺陷研究进展
Research Progress on Inborn Errors of Immunity Caused by NFKBIA Mutation[J]. 临床医学进展, 2024, 14(05): 630-638. https://doi.org/10.12677/acm.2024.1451471

参考文献

  1. 1. Zhang, Q., Lenardo, M.J. and Baltimore, D. (2017) 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell, 168, 37-57. https://doi.org/10.1016/j.cell.2016.12.012

  2. 2. Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-KappaB Transcription Factors in the Immune System. Annual Review of Immunology, 27, 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641

  3. 3. Oeckinghaus, A. and Ghosh, S. (2009) The NF-KappaB Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1, A000034. https://doi.org/10.1101/cshperspect.a000034

  4. 4. Boisson, B., Puel, A., Picard, C., et al. (2017) Human IκBα Gain of Function: A Severe and Syndromic Immunodeficiency. Journal of Clinical Immunology, 37, 397-412. https://doi.org/10.1007/s10875-017-0400-z

  5. 5. Wen, W., Wang, L., Deng, M., et al. (2021) A Heterozygous N-Terminal Truncation Mutation of NFKBIA Results in an Impaired NF-κB Dependent Inflammatory Response. Genes & Diseases, 9, 176-186. https://doi.org/10.1016/j.gendis.2021.03.005

  6. 6. Courtois, G., Smahi, A., Reichenbach, J., et al. (2003) A Hypermorphic IkappaBalpha Mutation Is Associated with Autosomal Dominant Anhidrotic Ectodermal Dysplasia and T Cell Immunodeficiency. The Journal of Clinical Investigation, 112, 1108-1115. https://doi.org/10.1172/JCI18714

  7. 7. Chear, C.T., El Farran, B.A.K., Sham, M., et al. (2022) A Novel De Novo NFKBIA Missense Mutation Associated to Ectodermal Dysplasia with Dysgammaglobulinemia. Genes, 13, Article No. 1900. https://doi.org/10.3390/genes13101900

  8. 8. Schimke, L.F., Rieber, N., Rylaarsdam, S., et al. (2013) A Novel Gain-of-Function IKBA Mutation Underlies Ectodermal Dysplasia with Immunodeficiency and Polyendocrinopathy. Journal of Clinical Immunology, 33, 1088-1099. https://doi.org/10.1007/s10875-013-9906-1

  9. 9. Lopez-Granados, E., Keenan, J.E., Kinney, M.C., et al. (2008) A Novel Mutation in NFKBIA/IKBA Results in a Degradation-Resistant N-Truncated Protein and Is Associated with Ectodermal Dysplasia with Immunodeficiency. Human Mutation, 29, 861-868. https://doi.org/10.1002/humu.20740

  10. 10. Sogkas, G., Adriawan, I.R., Ringshausen, F.C., et al. (2020) A Novel NFKBIA Variant Substituting Serine 36 of IκBα Causes Immunodeficiency with Warts, Bronchiectasis and Juvenile Rheumatoid Arthritis in the Absence of Ectodermal Dysplasia. Clinical Immunology (Orlando, Fla.), 210, Article ID: 108269. https://doi.org/10.1016/j.clim.2019.108269

  11. 11. Ohnishi, H., Miyata, R., Suzuki, T., et al. (2012) A Rapid Screening Method to Detect Autosomal-Dominant Ectodermal Dysplasia with Immune Deficiency Syndrome. The Journal of Allergy and Clinical Immunology, 129, 578-580. https://doi.org/10.1016/j.jaci.2011.09.042

  12. 12. Giancane, G., Ferrari, S., Carsetti, R., et al. (2013) Anhidrotic Ectodermal Dysplasia: A New Mutation. The Journal of Allergy and Clinical Immunology, 132, 1451-1453. https://doi.org/10.1016/j.jaci.2013.05.034

  13. 13. Yoshioka, T., Nishikomori, R., Hara, J., et al. (2013) Autosomal Dominant Anhidrotic Ectodermal Dysplasia with Immunodeficiency Caused by a Novel NFKBIA Mutation, P.Ser36Tyr, Presents with Mild Ectodermal Dysplasia and Non-Infectious Systemic Inflammation. Journal of Clinical Immunology, 33, 1165-1174. https://doi.org/10.1007/s10875-013-9924-z

  14. 14. Tan, E.E., Hopkins, R.A., Lim, C.K., et al. (2020) Dominant-Negative NFKBIA Mutation Promotes IL-1β Production Causing Hepatic Disease with Severe Immunodeficiency. The Journal of Clinical Investigation, 130, 5817-5832. https://doi.org/10.1172/JCI98882

  15. 15. Staples, E., Morillo-Gutierrez, B., Davies, J., et al. (2017) Disseminated Mycobacterium Malmoense and Salmonella Infections Associated with a Novel Variant in NFKBIA. Journal of Clinical Immunology, 37, 415-418. https://doi.org/10.1007/s10875-017-0390-x

  16. 16. Batlle-Maso, L., Mensa-Vilaro, A., Solis-Moruno, M., et al. (2020) Genetic Diagnosis of Autoinflammatory Disease Patients Using Clinical Exome Sequencing. European Journal of Medical Genetics, 63, Article ID: 103920. https://doi.org/10.1016/j.ejmg.2020.103920

  17. 17. McDonald, D.R., Mooster, J.L., Reddy, M., et al. (2007) Heterozygous N-Terminal Deletion of IkappaBalpha Results in Functional Nuclear Factor KappaB Haploinsufficiency, Ectodermal Dysplasia, and Immune Deficiency. The Journal of Allergy and Clinical Immunology, 120, 900-907. https://doi.org/10.1016/j.jaci.2007.08.035

  18. 18. Moriya, K., Sasahara, Y., Ohnishi, H., et al. (2018) IKBA S32 Mutations Underlie Ectodermal Dysplasia with Immunodeficiency and Severe Noninfectious Systemic Inflammation. Journal of Clinical Immunology, 38, 543-545. https://doi.org/10.1007/s10875-018-0522-y

  19. 19. Petersheim, D., Massaad, M.J., Lee, S., et al. (2018) Mechanisms of Genotype-Phenotype Correlation in Autosomal Dominant Anhidrotic Ectodermal Dysplasia with Immune Deficiency. The Journal of Allergy and Clinical Immunology, 141, 1060-1073.E3. https://doi.org/10.1016/j.jaci.2017.05.030

  20. 20. Gunderman, L.M., Asano, T., Casanova, J.L., et al. (2023) Novel NF-Kappa B Inhibitor Alpha Gain-of-Function Variant in an Infant with Lymphocytosis and Recurrent Serratia Bacteremia. Journal of Clinical Immunology, 43, 1122-1126. https://doi.org/10.1007/s10875-023-01481-z

  21. 21. Lee, A.J., Moncada-VELez, M., Picard, C., et al. (2016) Severe Mycobacterial Diseases in a Patient with GOF IκBα Mutation without EDA. Journal of Clinical Immunology, 36, 12-15. https://doi.org/10.1007/s10875-015-0223-8

  22. 22. Janssen, R., Van Wengen, A., Hoeve, M.A., et al. (2004) The Same IkappaBalpha Mutation in Two Related Individuals Leads to Completely Different Clinical Syndromes. The Journal of Experimental Medicine, 200, 559-568. https://doi.org/10.1084/jem.20040773

  23. 23. Ghosh, S. and Karin, M. (2002) Missing Pieces in the NF-KappaB Puzzle. Cell, 109, S81-S96. https://doi.org/10.1016/S0092-8674(02)00703-1

  24. 24. Chen, Z., Hagler, J., Palombella, V.J., et al. (1995) Signal-Induced Site-Specific Phosphorylation Targets I Kappa B Alpha to the Ubiquitin-Proteasome Pathway. Genes & Development, 9, 1586-1597. https://doi.org/10.1101/gad.9.13.1586

  25. 25. Karin, M. and Ben-Neriah, Y. (2000) Phosphorylation Meets Ubiquitination: The Control of NF-[Kappa]B Activity. Annual Review of Immunology, 18, 621-663. https://doi.org/10.1146/annurev.immunol.18.1.621

  26. 26. Ghosh, S. and Hayden, M.S. (2008) New Regulators of NF-KappaB in Inflammation. Nature Reviews. Immunology, 8, 837-848. https://doi.org/10.1038/nri2423

  27. 27. Hayden, M.S. and Ghosh, S. (2008) Shared Principles in NF-KappaB Signaling. Cell, 132, 344-362. https://doi.org/10.1016/j.cell.2008.01.020

  28. 28. Manavalan, B., Basith, S., Choi, Y.M., et al. (2010) Structure-Function Relationship of Cytoplasmic and Nuclear IκB Proteins: An in Silico Analysis. PLOS ONE, 5, e15782. https://doi.org/10.1371/journal.pone.0015782

  29. 29. MaruYama, T. (2015) The Nuclear IκB Family of Proteins Controls Gene Regulation and Immune Homeostasis. International Immunopharmacology, 28, 836-840. https://doi.org/10.1016/j.intimp.2015.03.053

  30. 30. Mooster, J.L., Le Bras, S., Massaad, M.J., et al. (2015) Defective Lymphoid Organogenesis Underlies the Immune Deficiency Caused by a Heterozygous S32I Mutation in IκBα. The Journal of Experimental Medicine, 212, 185-202. https://doi.org/10.1084/jem.20140979

  31. 31. Itin, P.H. and Fistarol, S.K. (2004) Ectodermal Dysplasias. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 131C, 45-51. https://doi.org/10.1002/ajmg.c.30033

  32. 32. Anoop, T.M., Simi, S., Mini, P.N., et al. (2008) Hypohydrotic Ectodermal Dysplasia. The Journal of the Association of Physicians of India, 56, 268-270.

  33. 33. Demirdag, Y.Y. and Gupta, S. (2021) Update on Infections in Primary Antibody Deficiencies. Frontiers in Immunology, 12, Article ID: 634181. https://doi.org/10.3389/fimmu.2021.634181

  34. 34. Pereira, M., Durso, D.F., Bryant, C.E., et al. (2022) The IRAK4 Scaffold Integrates TLR4-Driven TRIF and MYD88 Signaling Pathways. Cell Reports, 40, Article ID: 111225. https://doi.org/10.1016/j.celrep.2022.111225

  35. 35. Capitani, M., Al-Shaibi, A.A., Pandey, S., et al. (2023) Biallelic TLR4 Deficiency in Humans. The Journal of Allergy and Clinical Immunology, 151, 783-790.E5. https://doi.org/10.1016/j.jaci.2022.08.030

  36. 36. Hsu, A.P., Zerbe, C.S., Foruraghi, L., et al. (2018) IKBKG (NEMO) 5’ Untranslated Splice Mutations Lead to Severe, Chronic Disseminated Mycobacterial Infections. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 67, 456-459. https://doi.org/10.1093/cid/ciy186

  37. 37. Yu, H.H., Hu, T.C., Lee, N.C., et al. (2019) Mycobacterium Abscessus Infection in a Boy with X-Linked Anhidrotic Ectodermal Dysplasia, Immunodeficiency. Journal of Microbiology, Immunology, and Infection, 52, 504-506. https://doi.org/10.1016/j.jmii.2018.04.009

  38. 38. Shamriz, O., Tal, Y., Talmon, A., et al. (2020) Chronic Mucocutaneous Candidiasis in Early Life: Insights into Immune Mechanisms and Novel Targeted Therapies. Frontiers in Immunology, 11, Article ID: 593289. https://doi.org/10.3389/fimmu.2020.593289

  39. 39. Ferrari, S., Giliani, S., Insalaco, A., et al. (2001) Mutations of CD40 Gene Cause an Autosomal Recessive Form of Immunodeficiency with Hyper IgM. Proceedings of the National Academy of Sciences of the United States of America, 98, 12614-12619. https://doi.org/10.1073/pnas.221456898

  40. 40. Du, X., Tang, W., Chen, X., et al. (2019) Clinical, Genetic and Immunological Characteristics of 40 Chinese Patients with CD40 Ligand Deficiency. Scandinavian Journal of Immunology, 90, E12798. https://doi.org/10.1111/sji.12798

  41. 41. Conzelmann, K.K. (2005) Transcriptional Activation of Alpha/Beta Interferon Genes: Interference by Nonsegmented Negative-Strand RNA Viruses. Journal of Virology, 79, 5241-5248. https://doi.org/10.1128/JVI.79.9.5241-5248.2005

  42. 42. Ciancanelli, M.J., Huang, S.X., Luthra, P., et al. (2015) Infectious Disease. Life-Threatening Influenza and Impaired Interferon Amplification in Human IRF7 Deficiency. Science (New York, N.Y.), 348, 448-453. https://doi.org/10.1126/science.aaa1578

  43. 43. Greten, F.R., Arkan, M.C., Bollrath, J., et al. (2007) NF-KappaB Is a Negative Regulator of IL-1Beta Secretion as Revealed by Genetic and Pharmacological Inhibition of IKKbeta. Cell, 130, 918-931. https://doi.org/10.1016/j.cell.2007.07.009

  44. 44. Carra, G., Ermondi, G., Riganti, C., et al. (2021) IκBα Targeting Promotes Oxidative Stress-Dependent Cell Death. Journal of Experimental & Clinical Cancer Research: CR, 40, Article No. 136. https://doi.org/10.1186/s13046-021-01921-x

  45. 45. Conti, F., Carsetti, R., Casanova, J.L., et al. (2020) A 23-Year Follow-Up of a Patient with Gain-of-Function IκB-Alpha Mutation and Stable Full Chimerism after Hematopoietic Stem Cell Transplantation. Journal of Clinical Immunology, 40, 927-933. https://doi.org/10.1007/s10875-020-00780-z

  46. NOTES

    *通讯作者。

期刊菜单