Advances in Clinical Medicine
Vol. 14  No. 04 ( 2024 ), Article ID: 84309 , 8 pages
10.12677/acm.2024.1441067

大肠杆菌K1与血脑屏障细胞致病机制研究进展

包金平*,杨光路#

内蒙古医科大学附属医院儿科,内蒙古 呼和浩特

收稿日期:2024年3月11日;录用日期:2024年4月4日;发布日期:2024年4月11日

摘要

细菌性脑膜炎是严重危害人类健康的公共健康卫生问题,尤其在儿童甚至是新生儿发病较多,且容易引发神经系统后遗症。大肠杆菌作为细菌性脑膜炎的主要致病病原体,其引起细菌性脑膜炎的发病机制仍未完全明确,病原体与宿主相互作用机制仍有许多学者研究探讨。血脑屏障作为大脑的保护屏障,其通透性改变进而引起血脑屏障结构破坏,大肠杆菌继续定植在脑膜甚至脑实质繁殖引发一系列免疫炎症反应,以此来致病。血脑屏障组成细胞种类较多,并且细胞间也会存在信号分子的交流作用,因此,大肠杆菌细菌性脑膜炎的发病机制极其复杂,理清分子生物水平的作用水平,并提出针对性的预防及治疗手段有非常深远的意义。

关键词

大肠杆菌K1,细菌性脑膜炎,血脑屏障,脑微血管内皮细胞,星形胶质细胞,小胶质细胞,巨噬细胞

Research Progress on the Pathogenic Mechanism of Escherichia coli K1 and Blood-Brain Barrier Cells

Jinping Bao*, Guanglu Yang#

Department of Pediatrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot Inner Mongolia

Received: Mar. 11th, 2024; accepted: Apr. 4th, 2024; published: Apr. 11th, 2024

ABSTRACT

Bacterial meningitis is a public health problem that seriously endangers human health, especially in children and even neonates, and is prone to cause neurological sequelae. As the main pathogen of bacterial meningitis, the pathogenesis of Escherichia coli is still not fully understood, and the pathogen-host interaction mechanism is still being studied by many scholars. As a protective barrier of the brain, the permeability of the blood-brain barrier changes and then causes the destruction of the blood-brain barrier structure, and Escherichia coli continues to colonize the meninges and even the brain parenchyma to multiply, triggering a series of immune and inflammatory responses, so as to cause disease. Therefore, the pathogenesis of bacterial meningitis of E. coli is extremely complex, and it is of far-reaching significance to clarify the level of action at the molecular biological level and propose targeted prevention and treatment methods.

Keywords:Escherichia coli K1, Bacterial Meningitis, Blood-Brain Barrier (BBB), Human Brain Microvascular Endothelial Cells (HBMEC), Astrocyte, Microglia, Macrophage Cell

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

细菌性脑膜炎是细菌引起的脑膜炎症,是全球性的健康卫生问题,发病率约0.9~80/100,000,幸存者约20%~60%预后不良,引发慢性神经系统后遗症 [1] ,该病可引起较重的并发症,如脑水肿、脑室管膜炎、脑出血、脑梗塞等,也会导致较为严重的神经功能缺陷,如视力障碍、行为异常、认知障碍、癫痫等 [2] 。Ouchenir L.等人的病例研究中,63例确诊脑膜炎的患者中37.33%为大肠杆菌 [3] ,在我国,廖等学者在44例确诊细菌性脑膜炎分离出18例(40.91%)大肠杆菌感染 [4] ,回顾新生儿十年病例分析发现,大肠杆菌病原体在细菌性脑膜炎的致病占比有逐年增多趋势 [5] ,目前已知的大肠杆菌的毒力因子有OmpA、IbeA、IbeB、yijiP、TraJ、aslA和CNF-1等,大肠杆菌引起细菌性脑膜炎的在血液中形成菌血症后关键一步就是跨过血脑屏障,血脑屏障的各个细胞组成共同参与其中,大肠杆菌的毒力因子也会与血液中的中性粒细胞、巨噬细胞等产生相互作用。

血脑屏障(blood-brain barrier, BBB)由单层内皮细胞组成,周细胞覆盖,星形胶质细胞的末端覆盖基底膜,最外围由基底膜加固 [6] 。BBB参与调节血液与大脑之间的信号交流、物质交换,维持中枢神经系统稳态 [7] 。血脑屏障将大脑与循环血液分开,血脑屏障完整性的破坏是细菌性脑膜炎病理生理学中的标志性事件 [8] 。血源性细菌可以使用需要病原体内化的跨细胞机制和/或需要紧密连接破坏的细胞旁机制。细菌与脑内皮细胞的粘附是通过细胞旁或跨细胞机制交叉血脑屏障的先决条件 [9] 。当然,中枢神经系统的保护屏障除了血脑屏障还有脉络丛细胞等,但是有学者的研究表明,大肠杆菌已经侵入血脑屏障时,脉络丛内还尚无大肠杆菌 [10] ,因此,经血脑屏障的感染途径先于脉络丛,因此,对于大肠杆菌穿过血脑屏障的发病机制有更重要的研究意义。

穿过血脑屏障的过程中需要复杂的宿主–病原体相互作用机制参与 [11] 。但是关于大肠杆菌引起细菌性脑膜炎的发病机制仍然没有研究完全,并且没有特异性的疫苗预防,并且还存在抗生素耐药的突变株等,本综述旨在于探讨目前的关于大肠杆菌与宿主细胞的相互作用机制以及目前的治疗方法的研究进展以便于更多的了解大肠杆菌的致病机制。

1.1. 脑微血管细胞

脑微血管内皮细胞是血脑屏障重要组成之一,还是血脑屏障物质交换的第一层细胞屏障,其参与大肠杆菌致细菌性脑膜炎的分子机制有较多学者研究,主要分析如下:HB细胞膜上的α7nAChR受体受到大肠杆菌毒力作用后会激活α7nAChR/JAK2/STAT5信号通路,诱导了对血脑屏障的破坏,同时通过α7nAChR激动剂及抑制剂进一步验证了该受体的作用 [12] 。另外,大肠杆菌k1感染还会促进SLURP1的分泌,这是α7nAChR的配体,激活信号通路后会引起大肠杆菌侵袭以及中性粒细胞募集,引发更复杂的炎症反应 [13] 。其中FimH毒力因子也可以通过CD48和α7nAChR复合物来侵袭并募集中性粒细胞,其中涉及HB肌动蛋白等细胞骨架结构的破坏相关 [14] 。同时,大肠杆菌的转录调节因子YbdO也会激活大肠杆菌K1荚膜的毒力效应来加重对HB的侵袭 [15] 。而且,RpoE是可直接调控ompA、cnf1、fimB、ibeA、kpsM和kpsF等致病靶基因,提高了对宿主细胞的适应能力 [16] 。Rho GTP酶增加了巨噬细胞对大肠杆菌的吞噬作用,Rho家族的小GTP酶(Rho、Rac1和cdc42)可以促进大肠杆菌K1入侵,使HB的肌动蛋白募集,这与PAK1和PI3K激活,AKT磷酸化相关 [17] [18] 。细胞骨架中间丝的缺失也会使大肠杆菌侵袭减少,中间丝与α7nAChR具有相关性,中间丝敲除会引起α7nAChR下调,这整体的结果导致了血脑屏障破坏 [19] 。OmpA和Ecgp96之间的相互作用下调人脑微血管内皮细胞中的过氧化物酶体增殖物激活受体γ (PPAR-γ)和葡萄糖转运蛋白1 (GLUT-1)水平,导致屏障完整性破坏和葡萄糖摄取抑制 [20] 。同时有学者研究烟草烟雾中的尼古丁会减低宿主细胞自噬能力使大肠杆菌侵袭增多,这也与PI3K/Akt/ mTOR信号通路的激活相关 [21] 。

1.2. 神经胶质细胞——星形胶质细胞、小胶质细胞

关于星形胶质细胞、小胶质细胞与大肠杆菌K1直接侵袭的研究与血管内皮细胞相比较少,但是脑微血管内皮细胞与星形胶质细胞、小胶质细胞之间也存在复杂的信息传递,共同作用导致血脑屏障结构破坏。

大肠杆菌K1分泌的OMVs刺激小胶质细胞释放促炎因子TNF-α激活星形胶质细胞释放趋化因子CXCL1,进一步促进中性粒细胞表达,中性粒细胞的CXC家族趋化因子受体CXCR1和CXCR2,中性粒细胞通过细胞旁和跨细胞途径外渗进入感染部位 [22] 。脂多糖处理的小胶质细胞组与小胶质细胞联合星形胶质细胞培养组比较,与星形胶质细胞共培养产生的炎症因子更多。小胶质细胞促炎介质诱导反应性星形胶质细胞增生,并且星形胶质细胞也可以通过衍生因子调节小胶质细胞的表型和功能 [23] ,这两种细胞的相互作用在神经血管单元的结构组成中同样占有重要作用,胶质细胞之间的双向调节作用有助于血管的发育与屏障结构的完整性。CXCR1-CXCR2轴会引起会引起血脑屏障通透性升高,促进中性粒细胞滞留及跨细胞 [24] 。小胶质细胞是大脑的免疫哨兵,细菌穿过血脑屏障脂多糖等细菌产物会被小胶质细胞的模式识别受体识别 [25] ,小胶质细胞释放的因子NO会导致神经元损伤,通过Activin A激活素可以减少NO的释放,减轻神经元的损伤 [26] 。星形胶质细胞受到小胶质细胞分泌的Il-1α、TNFα和C1q诱导后会出现功能变化,A1型星形胶质细胞会产生神经毒性,对部分神经元和少量少突胶质细胞具有杀伤作用,减少A1反应性星形胶质细胞的产生有可能会减轻神经系统带的神经毒性作用 [27] 。同时,有学者找到了一种急性期蛋白ORM2参与星形胶质细胞和小胶质细胞之间的新型相互调节介质,ORM2在反应性星形胶质细胞中高度表达,并且调节小胶质细胞的活化迁移来发挥炎症作用 [28] 。

1.3. 周细胞

周细胞与内皮细胞、星形胶质细胞等共同分泌衍生的层粘连蛋白等与基底膜等共同形成血脑屏障 [29] ,如γ-谷氨酰转肽酶,仅在周细胞分泌,受内皮细胞和星形胶质细胞的调节参与调控渗透性 [30] 。在体外血脑屏障模型构建中,周细胞的加入提高了血脑屏障的跨内皮电阻,降低了神经血管单元结构的通透性 [31] [32] [33] 。周细胞还会分泌中性粒细胞趋化因子和黏附分子等多种分子,可以募集中性粒细胞,并与星形胶质细胞、小胶质细胞等相互作用促进炎症反应 [34] [35] ,并且周细胞可以介导星形胶质细胞等附着血脑屏障使结构完整 [36] 。有关周细胞与大肠杆菌K1相互作用机制目前研究较少,已报道的在牛原代视网膜周细胞、HBMEC体外模型中,大肠杆菌K1的感染会使周细胞的覆盖减少 [37] ,但并没有明确大肠杆菌K1对周细胞产生黏附、侵袭。也有文献说明,流感嗜血杆菌不会对周细胞直接作用,是首先在大肠杆菌对内皮细胞作用后产生腺苷使周细胞收缩脱失 [38] ,此外有关寨卡病毒和HIV-1病毒直接穿透脉络丛周细胞,并增殖进入脑实质的报道 [39] [40] 。由此可见,周细胞在大肠杆菌致细菌性脑膜炎的致病机制仍有进一步研究空间。

1.4. 巨噬细胞、中性粒细胞

中性粒细胞、巨噬细胞都属于白细胞,参与机体的免疫及防御作用,在中枢神经系统感染尤其是细菌性脑膜炎的发病机制中,中性粒细胞与巨噬细胞也参与其中,并且与血脑屏障细胞有相互作用参与炎症反应,大肠杆菌的细菌性脑膜炎发病机制中也同样有白细胞的参与。

大肠杆菌的脂蛋白(LPP)会降低Flic毒力因子,Flic减少使中性粒细胞NADPH酶活化减低,中性粒细胞不能被激活会使大肠杆菌逃逸,引起更严重的菌血症穿过血脑屏障形成细菌性脑膜炎 [41] 。大肠杆菌的cglD诱导中性粒细胞释放趋化因子CXCL1、CXCL6和CXCL8以及粘附分子E-选择素黏附HB,诱导NF-κB通路激活,促进了中性粒细胞对脑微血管内皮细胞的黏附和跨细胞迁移 [42] 。大肠杆菌K1荚膜是一种PSA聚集物,与唾液酸结合免疫球蛋白样凝集素(Siglecs)相互作用,在巨噬细胞发挥作用,诱导促炎细胞因子产生,包括TNF-α、IL-8、MCP-1和IL-1β [43] ,巨噬细胞和小胶质细胞共同参与信号转导的保护作用,NO水平增加抑制了IL-1的分泌,抑制了本通路对细菌性脑膜炎的保护作用 [44] 。但是大肠杆菌的CNF1毒力因子通过对肌动蛋白丝的抑制来限制细菌内化到巨噬细胞,对侵袭巨噬细胞具有抑制作用 [45] 。但是大肠杆菌K1 OmpA (外膜蛋白A)利用Fc-γ受体I(CD64)结合并进入巨噬细胞,使大肠杆菌在巨噬细胞内存活、繁殖,最终逃逸到血液内,穿过血脑屏障进入中枢神经系统 [46] [47] 。

2. 治疗新进展

目前诸多学者致力于大肠杆菌细菌性脑膜炎的治疗及预防,大肠杆菌K1的减毒菌株删掉了较严重的毒力因子后,保留了跨血脑屏障的能力,并且Lu J等学者验证了减毒株的安全性,灭活菌株注射后72 h的bEnd3细胞血常规、血生化等指标均在正常范围内,有望成为治疗手段之一 [48] 。同样,无脂多糖大肠杆菌K1仿生组装纳米颗粒也是由此启发,利用了外膜蛋白A和gp96之间的相互作用介导的转胞吞作用跨细胞运输,有望为药物跨血脑屏障运输至大脑内提供一条途径,以重组蛋白OmpAVac(Vo)PLGA为主要模式的纳米颗粒也有相关研究 [49] [50] ,纳米颗粒的抗菌机制可能是阻断了大肠杆菌K1中细胞膜的破坏、氧化应激和代谢 [51] 。也有学者Gu H等针对OmpA毒力因子探讨OmpAVac疫苗的预防大肠杆菌致细菌性脑膜炎的预防性治疗作用 [52] 。另外针对大肠杆菌PNAG毒力因子也设计出了PNAG相关的全人源IgG1单克隆抗体F598,已进入1期和2期人体试验,是预防的关键治疗方法 [53] 。

另外,有一些药物作用于信号分子相互作用的位点起到了阻断干扰的作用,减少了大肠杆菌穿过血脑屏障。Caspr1作为HB表达的跨膜蛋白,与大肠杆菌K1的IbeA之间相互作用,该团队学者通过类似Caspr1结构的诱导化合物口袋式拦截,干扰其穿过血脑屏障,但是不能起到杀死细菌的作用,但是这一过程明显减轻了中枢神经系统的炎症反应,有助于控制住病情,阻止向更严重的方向进展 [54] 。鼠李糖乳杆菌上清液(LGG-CM)通过抑制NF-κB通路激活、阻断E. coli K1侵袭和中性粒细胞迁移及维护血脑屏障完整性来预防E. coli K1引起的细菌性脑炎 [55] 。美金刚是宿主细胞α7nAChR的阻断剂,可以明显阻断大肠杆菌在HB中的存活,同时有利有弊,因为是阻断细胞受体,不能够杀死细胞外的细菌,但是并不会像抗生素一样导致大肠杆菌的耐药性 [56] 。血管紧张素II型受体1型(AT1R)与内皮细胞gp96相关,gp96是HBMEC中大肠杆菌外膜蛋白A的受体,替米沙坦是一种血管紧张素II型受体1型(AT1R)阻滞剂,有效的阻止了大肠杆菌K1侵袭HB,预防脑膜炎的发作并抑制大脑中性粒细胞浸润和神经胶质细胞迁移 [57] 。

3. 总结与展望

综上所述,大肠杆菌K1细菌性脑膜炎的致病机制十分复杂,需要血液内白细胞如中性粒细胞、巨噬细胞的参与,更需要跨过血脑屏障,尤其是脑微血管内皮细胞,神经胶质细胞的小胶质细胞作为中枢神经系统的免疫哨兵更是参与了重要的免疫应答,引发炎症反应,星形胶质细胞、周细胞也会产生免疫应答,他们共同发挥作用导致血脑屏障通透性增高,使免疫逃逸的大肠杆菌穿过血脑屏障,他们可以通过跨细胞途径如穿过脑微血管内皮细胞,也会通过这些炎症反应破坏细胞间的紧密连接蛋白,使血脑屏障通透性改变,通过细胞旁途径侵袭。同样,目前针对已明确的致病机制都有了相应的阻断剂、疫苗、纳米材料等应用,正如PNAG相关的全人源IgG1单克隆抗体F598,已进入1期和2期人体试验,相信在不久的将来,有关于大肠杆菌细菌性脑膜炎的预防及治疗手段都会有一个质的飞跃。

基金项目

癫痫大鼠模型中Sema3F与VEGF相关性研究(国家自然科学基金)。

文章引用

包金平,杨光路. 大肠杆菌K1与血脑屏障细胞致病机制研究进展
Research Progress on the Pathogenic Mechanism of Escherichia coli K1 and Blood-Brain Barrier Cells[J]. 临床医学进展, 2024, 14(04): 607-614. https://doi.org/10.12677/acm.2024.1441067

参考文献

  1. 1. Bundy, L.M., Rajnik, M. and Noor, A. (2013) Neonatal Meningitis. StatPearls, Treasure Island.

  2. 2. Baud, O. and Aujard, Y. (2013) Neonatal Bacterial Meningitis. Handbook of Clinical Neurology, 112, 1109-1113. https://doi.org/10.1016/B978-0-444-52910-7.00030-1

  3. 3. Ouchenir, L., Renaud, C., Khan, S., et al. (2017) The Epidemiology, Management, and Outcomes of Bacterial Meningitis in Infants. Pediatrics, 140, e20170476. https://doi.org/10.1542/peds.2017-0476

  4. 4. 廖镇宇, 常淑婷, 肖勇, 等. 早产儿细菌性脑膜炎临床分析[J]. 中国感染控制杂志, 2022, 21(10): 1006-1014.

  5. 5. Zhai, Q., Li, S., Zhang, L., et al. (2022) Changes in Pathogens of Neonatal Bacterial Meningitis over the Past 12 Years: A Single-Center Retrospective Study. Translational Pediatrics, 11, 1595-1603. https://doi.org/10.21037/tp-22-103

  6. 6. Ueno, M., Chiba, Y., Murakami, R., et al. (2016) Blood-Brain Barrier and Blood-Cerebrospinal Fluid Barrier in Normal and Pathological Conditions. Brain Tumor Pathology, 33, 89-96. https://doi.org/10.1007/s10014-016-0255-7

  7. 7. Gawdi, R., Shumway, K.R. and Emmady, P.D. (2023) Physiology, Blood Brain Barrier. StatPearls, Treasure Island.

  8. 8. Kim, B.J., Hancock, B.M., Bermudez, A., et al. (2015) Bacterial Induction of Snail1 Contributes to Blood-Brain Barrier Disruption. Journal of Clinical Investigation, 125, 2473-83. https://doi.org/10.1172/JCI74159

  9. 9. Deshayes De Cambronne, R., Fouet, A., Picart, A., et al. (2021) CC17 Group B Streptococcus Exploits Integrins for Neonatal Meningitis Development. Journal of Clinical Investigation, 131, e136737. https://doi.org/10.1172/JCI136737

  10. 10. Zhu, N., Liu, W., Prakash, A., et al. (2020) Targeting E. coli Invasion of the Blood-Brain Barrier for Investigating the Pathogenesis and Therapeutic Development of E. coli Meningitis. Cellular Microbiology, 22, e13231. https://doi.org/10.1111/cmi.13231

  11. 11. Doran, K.S., Fulde, M., Gratz, N., et al. (2016) Host-Pathogen Interactions in Bacterial Meningitis. Acta Neuropathologica, 131, 185-209. https://doi.org/10.1007/s00401-015-1531-z

  12. 12. Gong, Z., Gao, X., Li, Y., et al. (2022) α7 Nicotinic Acetylcholine Receptor Antagonists Prevent Meningitic Escherichia coli-Induced Blood-Brain Barrier Disruptions by Targeting the CISH/JAK2/STAT5b Axis. Biomedicines, 10, Article 2358. https://doi.org/10.3390/biomedicines10102358

  13. 13. He, X., Wang, L., Liu, L., et al. (2021) Endogenous α7 NAChR Agonist SLURP1 Facilitates Escherichia coli K1 Crossing the Blood-Brain Barrier. Frontiers in Immunology, 12, Article 745854. https://doi.org/10.3389/fimmu.2021.745854

  14. 14. Liu, R., Wu, C., Li, L., et al. (2019) CD48 and α7 Nicotinic Acetylcholine Receptor Synergistically Regulate FimH-Mediated Escherichia coli K1 Penetration and Neutrophil Transmigration across Human Brain Microvascular Endothelial Cells. The Journal of Infectious Diseases, 219, 470-479. https://doi.org/10.1093/infdis/jiy531

  15. 15. Fan, Y., Sun, H., Yang, W., et al. (2022) YbdO Promotes the Pathogenicity of Escherichia coli K1 by Regulating Capsule Synthesis. International Journal of Molecular Sciences, 23, Article 5543. https://doi.org/10.3390/ijms23105543

  16. 16. Fan, Y., Bai, J., Xi, D. and Yang, B. (2022) RpoE Facilitates Stress-Resistance, Invasion, and Pathogenicity of Escherichia coli K1. Microorganisms, 10, Article 879. https://doi.org/10.3390/microorganisms10050879

  17. 17. Loh, L.N., McCarthy, E.M.C., Narang, P., et al. (2017) Escherichia coli K1 Utilizes Host Macropinocytic Pathways for Invasion of Brain Microvascular Endothelial Cells. Traffic, 18, 733-746. https://doi.org/10.1111/tra.12508

  18. 18. Chambers, C.A., Dadelahi, A.S., Moley, C.R., et al. (2022) Nucleotide Receptors Mediate Protection against Neonatal Sepsis and Meningitis Caused by α-Hemolysin Expressing Escherichia coli K1. The FASEB Journal, 36, e22197. https://doi.org/10.1096/fj.202101485R

  19. 19. Huang, S.H., Chi, F., Peng, L., et al. (2016) Vimentin, a Novel NF-κB Regulator, Is Required for Meningitic Escherichia coli K1-Induced Pathogen Invasion and PMN Transmigration across the Blood-Brain Barrier. PLOS ONE, 11, e0162641. https://doi.org/10.1371/journal.pone.0162641

  20. 20. Krishnan, S., Chang, A.C., Stoltz, B.M. and Prasadarao, N.V. (2016) Escherichia coli K1 Modulates Peroxisome Proliferator-Activated Receptor γ and Glucose Transporter 1 at the Blood-Brain Barrier in Neonatal Meningitis. The Journal of Infectious Diseases, 214, 1092-1104. https://doi.org/10.1093/infdis/jiw306

  21. 21. Wu, C., Yang, M., Liu, R., et al. (2020) Nicotine Reduces Human Brain Microvascular Endothelial Cell Response to Escherichia coli K1 Infection by Inhibiting Autophagy. Frontiers in Cellular and Infection Microbiology, 10, Article 484. https://doi.org/10.3389/fcimb.2020.00484

  22. 22. Liu, P., Wang, X., Yang, Q., et al. (2022) Collaborative Action of Microglia and Astrocytes Mediates Neutrophil Recruitment to the CNS to Defend Against Escherichia coli K1 Infection. International Journal of Molecular Sciences, 23, Article 6540. https://doi.org/10.3390/ijms23126540

  23. 23. Jha, M.K., Jo, M., Kim, J.H., et al. (2019) Microglia-Astrocyte Crosstalk: An Intimate Molecular Conversation. Neuroscientist, 25, 227-240. https://doi.org/10.1177/1073858418783959

  24. 24. Michael, B.D., Bricio-Moreno, L., Sorensen, E.W., et al. (2020) Astrocyte-and Neuron-Derived CXCL1 Drives Neutrophil Transmigration and Blood-Brain Barrier Permeability in Viral Encephalitis. Cell Reports, 32, Article ID: 108150. https://doi.org/10.1016/j.celrep.2020.108150

  25. 25. Thorsdottir, S., Henriques-Normark, B. and Iovino, F. (2019) The Role of Microglia in Bacterial Meningitis: Inflammatory Response, Experimental Models and New Neuroprotective Therapeutic Strategies. Frontiers in Microbiology, 10, Article 576. https://doi.org/10.3389/fmicb.2019.00576

  26. 26. Diesselberg, C., Ribes, S., Seele, J., Kaufmann, A., et al. (2018) Activin a Increases Phagocytosis of Escherichia coli K1 by Primary Murine Microglial Cells Activated by Toll-Like Receptor Agonists. Journal of Neuroinflammation, 15, Article No. 175. https://doi.org/10.1186/s12974-018-1209-2

  27. 27. Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., et al. (2017) Neurotoxic Reactive Astrocytes Are Induced by Activated Microglia. Nature, 541, 481-487. https://doi.org/10.1038/nature21029

  28. 28. Jo, M., Kim, J.H., Song, G.J., et al. (2017) Astrocytic Orosomucoid-2 Modulates Microglial Activation and Neuroinflammation. Journal of Neuroscience, 37, 2878-2894. https://doi.org/10.1523/JNEUROSCI.2534-16.2017

  29. 29. Molino, Y., Jabès, F., Lacassagne, E., et al. (2014) Setting-Up an in Vitro Model of Rat Blood-Brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-Mediated Transport. Journal of Visualized Experiments, 88, e51278. https://doi.org/10.3791/51278

  30. 30. Bohannon, D.G., Long, D. and Kim, W.K. (2021) Understanding the Heterogeneity of Human Pericyte Subsets in Blood-Brain Barrier Homeostasis and Neurological Diseases. Cells, 10, Article 890. https://doi.org/10.3390/cells10040890

  31. 31. Heymans, M., Figueiredo, R., Dehouck, L., et al. (2020) Contribution of Brain Pericytes in Blood-Brain Barrier Formation and Maintenance: A Transcriptomic Study of Cocultured Human Endothelial Cells Derived from Hematopoietic Stem Cells. Fluids and Barriers of the CNS, 17, Article No. 48. https://doi.org/10.1186/s12987-020-00208-1

  32. 32. Kim, J., Lee, K.T., Lee, J.S., et al. (2021) Fungal Brain Infection Modelled in a Human-Neurovascular-Unit-on-a-Chip with a Functional Blood-Brain Barrier. Nature Biomedical Engineering, 5, 830-846. https://doi.org/10.1038/s41551-021-00743-8

  33. 33. Abbott, N.J., Dolman, D.E., Drndarski, S., et al. (2012) An Improved in Vitro Blood-Brain Barrier Model: Rat Brain Endothelial Cells Co-Cultured with Astrocytes. Methods in Molecular Biology, 814, 415-430. https://doi.org/10.1007/978-1-61779-452-0_28

  34. 34. Gil, E., Venturini, C., Stirling, D., et al. (2022) Pericyte Derived Chemokines Amplify Neutrophil Recruitment across the Cerebrovascular Endothelial Barrier. Methods in Molecular Biology, 13, Article 935798. https://doi.org/10.3389/fimmu.2022.935798

  35. 35. Jansson, D., Rustenhoven, J., Feng, S., et al. (2014) A Role for Human Brain Pericytes in Neuroinflammation. Journal of Neuroinflammation, 11, Article No. 104. https://doi.org/10.1186/1742-2094-11-104

  36. 36. Armulik, A., Genové, G., Mäe, M., et al. (2010) Pericytes Regulate the Blood-Brain Barrier. Nature, 468, 557-561. https://doi.org/10.1038/nature09522

  37. 37. Salmeri, M., Motta, C., Anfuso, C.D., et al. (2013) VEGF Receptor-1 Involvement in Pericyte Loss Induced by Escherichia coli in an in Vitro Model of Blood Brain Barrier. Cellular Microbiology, 15, 1367-1384. https://doi.org/10.1111/cmi.12121

  38. 38. Caporarello, N., Olivieri, M., Cristaldi, M., et al. (2018) Blood-Brain Barrier in a Haemophilus influenzae Type A in Vitro Infection: Role of Adenosine Receptors A2A and A2B. Molecular Neurobiology, 55, 5321-5336. https://doi.org/10.1007/s12035-017-0769-y

  39. 39. Kim, J., Alejandro, B., Hetman, M., et al. (2020) Zika Virus Infects Pericytes in the Choroid Plexus and Enters the Central Nervous System through the Blood-Cerebrospinal Fluid Barrier. PLOS Pathogens, 16, e1008204. https://doi.org/10.1371/journal.ppat.1008204

  40. 40. Kurlansky, P.A., Sadeghi, A.M., Michler, R.E., et al. (1986) Role of the Carrier Solution in Cyclosporine Pharmacokinetics in the Baboon. The Journal of Heart and Lung Transplantation, 5, 312-316.

  41. 41. Zhang, X.W., An, M.X., Huang, Z.K., et al. (2023) Lpp of Escherichia coli K1 Inhibits Host ROS Production to Counteract Neutrophil-Mediated Elimination. Redox Biology, 59, Article ID: 102588. https://doi.org/10.1016/j.redox.2022.102588

  42. 42. Zhang, K., Shi, M.J., Niu, Z., et al. (2019) Activation of Brain Endothelium by Escherichia coli K1 Virulence Factor CglD Promotes Polymorphonuclear Leukocyte Transendothelial Migration. Medical Microbiology and Immunology, 208, 59-68. https://doi.org/10.1007/s00430-018-0560-3

  43. 43. Yang, J., Ma, W., Wu, Y., et al. (2021) O-Acetylation of Capsular Polysialic Acid Enables Escherichia coli K1 Escaping from Siglec-Mediated Innate Immunity and Lysosomal Degradation of E. coli-Containing Vacuoles in Macrophage-Like Cells. Microbiology Spectrum, 9, e0039921. https://doi.org/10.1128/spectrum.00399-21

  44. 44. Chambers, C.A., Lacey, C.A., Brown, D.C., et al. (2021) Nitric Oxide Inhibits Interleukin-1-Mediated Protection against Escherichia coli K1-Induced Sepsis and Meningitis in a Neonatal Murine Model. Immunology & Cell Biology, 99, 596-610. https://doi.org/10.1111/imcb.12445

  45. 45. Chang, A.C., Krishnan, S. and Prasadarao, N.V. (2016) The Effects of Cytotoxic Necrotizing Factor 1 Expression in the Uptake of Escherichia coli K1 by Macrophages and the Onset of Meningitis in Newborn Mice. Virulence, 7, 806-818. https://doi.org/10.1080/21505594.2016.1192730

  46. 46. Shanmuganathan, M.V., Krishnan, S., Fu, X. and Prasadarao, N.V. (2014) Escherichia coli K1 Induces Pterin Production for Enhanced Expression of Fcγ Receptor I to Invade RAW 264.7 Macrophages. Microbes and Infection, 16, 134-141. https://doi.org/10.1016/j.micinf.2013.10.013

  47. 47. Krishnan, S., Liu, F., Abrol, R., et al. (2014) The Interaction of N-Glycans in Fcγ Receptor I α-Chain with Escherichia coli K1 Outer Membrane Protein A for Entry into Macrophages: Experimental and Computational Analysis. Journal of Biological Chemistry, 289, 30937-30949. https://doi.org/10.1074/jbc.M114.599407

  48. 48. Lu, J., Ding, J., Chu, B., et al. (2023) Inactive Trojan Bacteria as Safe Drug Delivery Vehicles Crossing the Blood-Brain Barrier. Nano Letters, 23, 4326-4333. https://doi.org/10.1021/acs.nanolett.3c00563

  49. 49. Chen, H., Zhou, M., Zeng, Y., et al. (2022) Biomimetic Lipopolysaccharide-Free Bacterial Outer Membrane-Functionalized Nanoparticles for Brain-Targeted Drug Delivery. Advanced Science, 9, e2105854. https://doi.org/10.1002/advs.202105854

  50. 50. Zhang, J., Sun, H., Gao, C., et al. (2021) Development of a Chitosan-Modified PLGA Nanoparticle Vaccine for Protection against Escherichia coli K1 Caused Meningitis in Mice. Journal of Nanobiotechnology, 19, Article No. 69. https://doi.org/10.1186/s12951-021-00812-9

  51. 51. Masri, A., Khan, N.A., Zoqratt, M.Z.H.M., et al. (2021) Transcriptome Analysis of Escherichia coli K1 after Therapy with Hesperidin Conjugated with Silver Nanoparticles. BMC Microbiology, 21, Article No. 51. https://doi.org/10.1186/s12866-021-02097-2

  52. 52. Gu, H., Liao, Y., Zhang, J., et al. (2018) Rational Design and Evaluation of an Artificial Escherichia coli K1 Protein Vaccine Candidate Based on the Structure of OmpA. Frontiers in Cellular and Infection Microbiology, 8, Article 172. https://doi.org/10.3389/fcimb.2018.00172

  53. 53. Pons, S., Frapy, E., Sereme, Y., et al. (2023) A High-Throughput Sequencing Approach Identifies Immunotherapeutic Targets for Bacterial Meningitis in Neonates. eBioMedicine, 88, Article ID: 104439. https://doi.org/10.1016/j.ebiom.2023.104439

  54. 54. Xu, X., Zhang, L., Cai, Y., et al. (2020) Inhibitor Discovery for the E. coli Meningitis Virulence Factor IbeA from Homology Modeling and Virtual Screening. Journal of Computer-Aided Molecular Design, 34, 11-25. https://doi.org/10.1007/s10822-019-00250-8

  55. 55. Zeng, Q., He, X.L., Xiao, H.S., et al. (2017) Lactobacillus rhamnosus GG Conditioned Medium Prevents E. coli Meningitis by Inhibiting Nuclear Factor-κB Pathway. Journal of Southern Medical University, 37, 24-29.

  56. 56. Yu, J.Y., Zhang, B., Peng, L., et al. (2015) Repositioning of Memantine as a Potential Novel Therapeutic Agent against Meningitic E. coli-Induced Pathogenicities through Disease-Associated α7 Cholinergic Pathway and RNA Sequencing-Based Transcriptome Analysis of Host Inflammatory Responses. PLOS ONE, 10, e0121911. https://doi.org/10.1371/journal.pone.0121911

  57. 57. Krishnan, S., Shanmuganathan, M.V., Behenna, D., et al. (2014) Angiotensin II Receptor Type 1—A Novel Target for Preventing Neonatal Meningitis in Mice by Escherichia coli K1. The Journal of Infectious Diseases, 209, 409-419. https://doi.org/10.1093/infdis/jit499

  58. NOTES

    *第一作者。

    #通讯作者。

期刊菜单