Advances in Psychology
Vol. 10  No. 02 ( 2020 ), Article ID: 34238 , 11 pages
10.12677/AP.2020.102019

Serotonin and Dopamine Modulate Maternal Behavior

Ruoting Qing

Faculty of Psychology, Southwest University, Chongqing

Received: Jan. 28th, 2020; accepted: Feb. 12th, 2020; published: Feb. 19th, 2020

ABSTRACT

Maternal behavior is a kind of social behavior driven by maternal motivation and needs a series of actions to organize. Maternal behavior requires maternal responses to off springs in terms of executive function, emotion, and maternal motivation. In recent years, it has been found that both the dopamine system and the 5-HT system can regulate maternal behavior. Firstly, the normal expression of dopamine D2 receptors is important for maternal behavior and maternal motivation. Secondly, the activation of both 5-HT 2A and 2C receptors can disrupt maternal behavior, and they interactively regulate maternal behavior. Finally, 5-HT 2A receptors interact with dopamine D2 receptors to regulate maternal behavior, and 5-HT 2C receptors interact with the dopamine system to regulate maternal behavior. This review can provide insights into the regulation mechanism of dopamine system and 5-HT system in maternal behavior. Besides, the dopamine D2 receptors and 5-HT 2A receptors are important targets for antipsychotics, so the review can also provide insights into the effects of antipsychotics on maternal behavior.

Keywords:Maternal Behavior, Dopamine D2 Receptors, 5-HT 2A Receptors, 5-HT 2C Receptors

5-羟色胺系统和多巴胺系统对 母性行为的调控

卿若婷

西南大学心理学部,重庆

收稿日期:2020年1月28日;录用日期:2020年2月12日;发布日期:2020年2月19日

摘 要

母性行为是一种由母性动机驱动,并且需要一系列动作组织的社会行为。母性行为需要母亲在执行功能、情感和动机方面对后代的反应。近年来发现多巴胺系统和5-羟色胺系统都能调节母性行为,首先,多巴胺D2受体的正常表达对母性行为和母性动机都很重要;其次,5-羟色胺2A受体和2C受体的激动都会破坏母性行为,它们还能够交互调节母性行为。最后,5-羟色胺2A受体可以和多巴胺D2受体交互调节母性行为,5-羟色胺2C受体也能和多巴胺系统交互调节母性行为。本综述可以对母性行为的多巴胺系统和5-羟色胺受体的调控机制提供思路,其中涉及的多巴胺D2受体和5-羟色胺2A受体是抗精神病药的重要靶点,也能为抗精神病对母性行为的影响提供启示。

关键词 :母性行为,多巴胺D2受体,5-羟色胺2A受体,5-羟色胺2C受体

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

1. 引言

母性行为是一种由母性动机驱动,并且需要一系列动作组织的社会行为。一般在围产期间随着后代的出生,母性行为自然产生。母性行为需要母亲在执行功能、情感和动机方面对幼崽的反应(Numan & Young, 2016)。母性行为需要母亲具有母性动机,并与后代产生情感联结,根据环境变化和幼崽的状态表达出合适的照料后代的行为(Olazabal et al., 2013)。母性动机有多种表现形式,如产后母鼠能按压杠杆从而可以获得接触幼崽的机会(Lee, Clancy, & Fleming, 2000),在高架十字迷宫上克服对高度的恐惧去衔回幼崽(Pereira, Uriarte, Agrati, Zuluaga, & Ferreira, 2005)。并且,母亲在产后与其后代发展出强烈的社会和情感联结,如在与幼崽短暂分离后,增加舔舐幼崽和对其弓背哺乳的时间。母性行为还需要良好的执行功能,才能完成一系列连续的动作从而实现对幼崽的照料。

本综述探讨了5-羟色胺和多巴胺系统对母性行为的调控机制。分为三大部分:首先介绍了多巴胺系统对母性行为的调控,主要是多巴胺D2受体的正常表达对母性行为和母性动机都很重要;其次是5-羟色胺系统对母性行为的调控,其中5-羟色胺2A受体和2C受体的激动都会破坏母性行为,它们还能够交互调节母性行为。最后介绍了多巴胺系统和5-羟色胺系统交互调控母性行为,其中5-羟色胺2A受体可以和多巴胺D2受体交互调节母性行为,5-羟色胺2C受体也能和多巴胺系统交互调节母性行为。本综述多引用行为药理学研究,可以对母性行为的多巴胺系统和5-羟色胺系统的调控机制提供思路,其中涉及的多巴胺D2受体和5-羟色胺2A受体是抗精神病药的重要靶点,也能为抗精神病对母性行为的影响提供启示。

2. 多巴胺系统对母性行为的调控

2.1. 母性行为需要多巴胺D2受体的正常表达

多巴胺系统的平衡,对母性行为的正常表达至关重要,如多巴胺释放增多对母性行为有破坏作用(Kinsley et al., 1994)。母亲与幼崽接触并与其形成情感联结,并形成对幼崽的强烈偏好,也能对幼崽相关的线索表现出强烈偏好。过去研究发现幼崽对于母亲这样强烈的吸引力,可能是由中脑边缘和中脑皮质的与奖赏相关的多巴胺系统所调节的(Numan, 2007)。

多巴胺D2受体的正常表达对母性行为很重要。多巴胺D2受体的激动剂quinpirole和多巴胺D2受体的拮抗剂haloperidol都能破坏母性行为(Zhao & Li, 2010),可能多巴胺D2受体的激动和拮抗以不同的方式对母性行为产生影响。过去研究发现在其他行为中,quinpirole和haloperidol发挥相反的作用,如运动性(Paulus & Geyer, 1991),注意力(Agnoli, Mainolfi, Invernizzi, & Carli, 2013)和联想学习任务(Loskutova, Kostyunina, & Dubrovina, 2010)。在母性行为中,这两者的调控作用也不同,quinpirole能破坏弓背哺乳(Zhao & Li, 2010),但haloperidol似乎对弓背哺乳没有影响(Giordano, Johnson, & Rosenblatt, 1990),甚至有研究发现haloperidol可以增加雌性大鼠对幼崽的弓背哺乳的时间(Stern, 1991)。可能因为haloperidol主要抑制母性动机,quinpirole主要影响执行功能,这两者调控的母性行为的成分不一样。quinpirole破坏弓背哺乳,可能主要是对弓背哺乳所需要的一系列行为组织的破坏,而haloperidol不影响或者增加弓背哺乳,可能因为弓背哺乳较少涉及母性动机。

重要的是,同时注射quinpirole和haloperidol,反而能抵消各自单独使用时对母性行为的破坏,恢复正常的母性行为(Zhao & Li, 2010),可能同时使用能互相抵消对D2受体的作用。quinpirole能激动突触后的D2受体,增加多巴胺的释放(Koller, Herbster, Anderson, Wack, & Gordon, 1987);但haloperidol能抑制突触后的D2受体,减少多巴胺的释放(Bunney & Grace, 1978)。进一步说明多巴胺D2受体的正常表达对良好母性行为的重要作用。

中脑皮层路径,如腹侧被盖区-内侧前额叶,对母性行为的执行控制很重要(Afonso, Sison, Lovic, & Fleming, 2007)。内侧前额叶中的多巴胺D2受体对执行功能有调控作用,特别是在面对厌恶刺激时(Floresco & Magyar, 2006),并且产前的母亲对婴儿线索的加工可能是厌恶的,围产期间对婴儿线索的加工转变为奖赏性质的。兴奋性毒性损毁内侧前额叶会破坏幼崽衔回,舔舐(Afonso et al., 2007)。所以内侧前额叶的D2受体可能调节执行功能和对婴儿线索的加工。

上调多巴胺D2受体的表达能减少动机(Carvalho Poyraz et al., 2016),增加焦虑(Pertile et al., 2017),破坏执行功能(Floresco & Magyar, 2006)。产后母鼠注射quinpirole,在高架十字迷宫中,会减少幼崽衔回得分(反映执行功能),减少幼崽衔回数量,延长衔回第一只幼崽的潜伏期,减少在开放臂上的时间(反映母性焦虑),并减少运动距离(Nie et al., 2018)。所以,quinpirole可能调控母性动机,母性焦虑和执行功能。并且,quinpirole可能在不同脑区对母性行为发挥的调控作用不一样。在腹侧被盖区中,quinpirole可能作用于D2自受体,从而降低幼崽的奖赏价值(Liu, Shin, & Ikemoto, 2008)。而在内侧前额叶,quinpirole可能作用于突触后的D2受体上,从而破坏母性行为中的执行功能成分(Wang, Vijayraghavan, & Goldman-Rakic, 2004)。

产后母鼠注射haloperidol,只能破坏在饲养笼内母性行为测试中的表现,不影响幼崽偏好(Gao et al., 2019)。虽然过去发现haloperidol能够抑制母性动机(Zhao & Li, 2010),因为haloperidol对母性行为的破坏,可以被4小时的母婴分离而恢复(Zhao & Li, 2009)。但是haloperidol对母性行为的影响是剂量依赖性的,在低剂量(<0.2 mg/kg),不会影响运动性,主要影响母性动机。0.05 mg/kg的haloperidol对幼崽衔回没有影响,但能减少母性动机(Stern & Keer, 1999)。0.2 mg/kg的haloperidol能抑制母性动机,但是产后母鼠的摄食相关行为不受影响(Giordano et al., 1990)。

2.2. 多巴胺D2受体调节母性动机

多巴胺D2受体对母性动机有重要调控作用(Silva, Bernardi, & Felicio, 2001),过去研究发现药理抑制多巴胺D2受体会破坏母性动机(Yang et al., 2015)。D2受体对母性行为的调节作用不仅仅局限于对运动性的破坏,而是母性动机。首先,注射0.2 mg/kg haloperidol后,仍然能够把食物颗粒衔回巢穴(Giordano et al., 1990),说明 haloperidol对幼崽衔回和筑巢的破坏不是因为运动性的缺陷。其次,0.1 mg/kg haloperidol不引起全身僵硬(Wadenberg, Kapur, Soliman, Jones, & Vaccarino, 2000),说明haloperidol对母性行为的破坏不是因为全身僵硬。第三,0.2 mg/kg haloperidol在没有母婴分离的情况下会破坏幼崽衔回(Giordano et al., 1990),但是4小时的母婴分离,这会增加母性动机,可以反转0.2 mg/kg haloperidol的破坏作用,恢复正常的幼崽衔回(Stern, 1991)。母婴分离超过3小时,能显著增加母性动机,并促进腹侧纹状体的多巴胺释放(Hansen, Bergvall, & Nyiredi, 1993)。0.05 mg/kg haloperidol不能够影响幼崽衔回,但能破坏母性动机,在某研究中表现为为了与幼崽进行身体接触持续推动物体(Stern & Keer, 1999)。并且, haloperidol对母性行为的破坏,可以在接触到已经母婴分离12小时的幼崽(能够引起高的母性动机)所反转(Pereira & Ferreira, 2006)。

中脑边缘多巴胺系统,如腹侧被盖区-伏隔核对母性行为的正常表达很重要,特别是在母性动机中有关键调控作用。比如,纹状体注射haloperidol能破坏母性动机(Pereira & Ferreira, 2006)。给产后母鼠注射quinpirole,在幼鼠偏好测试中能减少探索幼崽的时间,增加探索物体的时间,降低对幼崽的偏好,也会破坏饲养笼内母性行为测试中的表现(Gao, Chen, & Li, 2019)。quinpirole可能降低幼崽对母鼠的奖赏价值,过去发现注射quinpirole到后内侧腹侧被盖区导致对食物的条件性位置厌恶,并且减少食物的摄入量,降低腹内侧纹状体的多巴胺浓度。这可能是抑制了中脑的多巴胺神经元,从而减少食物的奖赏价值,抑制食物带来的正性情感奖赏(Liu et al., 2008)。quinpirole注射到后内侧VTA中,能减少多巴胺神经元的细胞放电(Beckstead, Grandy, Wickman, & Williams, 2004)。基于quinpirole对动机和中脑多巴胺系统的抑制作用,所以产后母鼠在注射quinpirole后,可能降低了母性动机,降低幼崽对母鼠的奖赏价值,从而减少偏好测试中对幼崽的探索时间。

3. 5-羟色胺系统对母性行为的调控

3.1. 激动5-羟色胺2A受体破坏母性行为

5-羟色胺2A受体的激动能破坏母性行为,但是拮抗2A对母性行为的影响较小。通过外周注射TCB-2来激动2A,会剂量依赖性地抑制饲养笼内母性行为;但是外周注射MDL 100907来拮抗2A,不影响母性行为(Gao, Nie, Li, & Li, 2020)。TCB-2的抑制作用可以被MDL 100907反转,说明5-羟色胺2A受体确实对母性行为起作用(Gao, Wu, Davis, & Li, 2018)。TCB-2可能作用于终纹床核,中央杏仁核和中缝背核,因为这些脑区在TCB-2外周注射后被强烈激活(Gao et al., 2018)。

TCB-2外周注射能够破坏饲养笼内母性行为和幼崽偏好(Gao et al., 2019),过去研究发现TCB-2似乎不破坏母性动机或运动性,而是影响执行功能,从而减少母性行为的,首先,TCB-2对母性行为的破坏,不会因为母婴分离而改变(Gao et al., 2018)。第二,产后母鼠在注射TCB-2后,在偏好测试中与幼崽接触的时间会增加,与雄性大鼠接触的时间会减少(Wu, Davis, & Li, 2018)。可能是TCB-2可以抑制对雄性大鼠的母性攻击,因为过去发现2A的激动能抑制母性攻击(Olivier, Mos, van Oorschot, & Hen, 1995),所以TCB-2减少了探索了雄鼠的时间可能是因为母性攻击的减少。所以,TCB-2不会抑制母性动机,可能还会增加幼崽的奖赏价值。可能TCB-2通过破坏执行功能,从而破坏产后母鼠在饲养笼内母性行为和幼崽偏好中的表现(Wu et al., 2018)。有研究发现2A受体的激动和执行功能有关,如注意,工作记忆和行为抑制(Aznar & Hervig Mel, 2016)。一些致幻剂,药理学上可以激动2A受体,可以破坏行为反应的组织(Gonzalez-Maeso et al., 2007)。过去发现TCB-2对在旷场中的运动性没有破坏作用(Fox, French, LaPorte, Blackler, & Murphy, 2010),甚至在对母性行为有破坏作用的剂量(1.0~10.0 mg/kg)能增加运动性,运动性的增加反映了TCB-2作为迷幻剂的功能(Halberstadt, Powell, & Geyer, 2013)。因此TCB-2可能改变母亲的精神状态,从而影响母性行为的执行(Aznar & Hervig Mel, 2016)。另一个2A受体的激动剂DOI可能也是破坏执行功能来调节母性行为(Zhao & Li, 2010)。所以,TCB-2可能是转移母鼠的注意力或者使母鼠更容易对被无关环境线索所分心,破坏行为的组织来影响母性行为。

在腹侧被盖区,有大量的5-羟色胺2A受体的表达(Howell & Cunningham, 2015),中缝背核可以投射到腹侧被盖区(McDevitt et al., 2014),腹侧被盖区中2A对母性行为中的执行功能有调节作用(Gao et al., 2020)。在内侧视前区中注射TCB-2来药理激动2A,不影响母性行为;并且注射TCB-2后,也没有发现内侧视前区处的激活增多(Gao et al., 2018),所以内侧视前区中的2A受体根据目前的研究来说,似乎不调节母性行为。

在内侧前额叶中注射TCB-2,会破坏幼崽衔回(Gao et al., 2018)。内侧前额叶跟母性行为相关(Afonso et al., 2007),在内侧前额叶,有大量的5-羟色胺2A和2C受体的表达(Celada, Puig, & Artigas, 2013)。内侧前额叶能够投射到中缝核(raphe nuclei) (Celada, Puig, Casanovas, Guillazo, & Artigas, 2001),而内侧前额叶在过去的研究中发现对执行功能有重要调控作用,而 2A的激动和执行功能有关,如注意,工作记忆和行为抑制(Aznar & Hervig Mel, 2016),所以内侧前额叶中2A可能主要参与执行功能。虽然内侧前额叶分布着2A和2C,但是在这里2A的数量是最多的(Lopez-Gimenez, Vilaro, Palacios, & Mengod, 2013),所以应该是内侧前额叶中的2A对母性行为中的执行功能有调节作用(Gao et al., 2020)。产后抑郁的母亲,其前额叶中2A的表达增加(Bhagwagar et al., 2006)。她们,包括很多抑郁症患者都使用血清素再摄取抑制剂(SSRIs),有研究发现SSRIs的慢性使用能上调2A的表达(Hamon & Blier, 2013; Massou et al., 1997)。因为发现内侧前额叶中的2A表达上调会破坏母性行为,所以SSRIs的慢性使用可能对母性行为的质量有负面影响。

3.2. 激动5-羟色胺2C受体破坏母性行为

5-羟色胺2C受体的激动能破坏母性行为,但拮抗2C受体对母性行为的影响较小。通过外周注射MK212来激动2C受体,会剂量依赖性地抑制母性行为(Chen et al., 2014);但是外周注射SB242084来拮抗2C受体,不影响母性行为(Gao et al., 2018)。并且,预处理SB242084可以减弱MK212对母性行为的破坏,说明2C确实对母性行为有调控作用(Wu, Gao, Chou, Davis, & Li, 2016)。2C受体的激动对母性行为的破坏可能是通过对母性动机的破坏,因为4小时的母婴分离可以减弱MK212对幼崽衔回的破坏(Wu et al., 2016)。

腹侧被盖区中的2C受体的激动会抑制动机(Fletcher, Chintoh, Sinyard, & Higgins, 2004),尤其是母性动机(Gao et al., 2020)。但是,注射2C的激动剂MK212到内侧前额叶,伏隔核壳区和内侧视前区都不影响母性行为(Wu et al., 2016)。

3.3. 5-羟色胺2A和2C受体对母性行为的交互调控

5-羟色胺可能主要通过2A和2C受体调控母性行为。例如,非典型抗精神病药(如氯氮平,奥氮平和利培酮)都能强烈地拮抗2A和2C受体,并且能破坏母性行为(Zhao & Li, 2010)。其次,DOI (一种非选择性的2A和2C受体激动剂),也能对母性行为有破坏作用(Zhao & Li, 2009)。并且,预处理DOI可以反转氯氮平对母性行为的破坏作用,说明2A和2C受体确实在母性行为中发挥调控作用(Zhao & Li, 2009)。2A和2C都是G蛋白偶联受体,有高度的序列同源性,以及类似的细胞信号通路(Becamel et al., 2004)。2A和2C对多巴胺系统的影响似乎是相反的(Ichikawa, Dai, & Meltzer, 2001),对很多行为的调控作用是也是相反的,如性动机(Popova & Amstislavskaya, 2002)和冲动反应(Robinson et al., 2008)。

通过外周注射TCB-2来激动5-羟色胺2A受体,会剂量依赖性地抑制饲养笼内母性行为,无论是注射2C受体拮抗剂SB242084 还是2C受体激动剂 MK212,都能加剧激动TCB-2对母性行为的破坏(Gao et al., 2018)。可能因为TCB-2可以增加内侧前额叶和伏隔核中多巴胺释放,促进腹侧被盖区的细胞放电,SB240084可以加剧这个效应,从而影响母性行为(Di Giovanni, Di Matteo, & Esposito, 2002; Ichikawa et al., 2001)。

在内侧前额叶中,2A和2C在运动冲动性上发挥相反的调控作用(Anastasio et al., 2015)。内侧视前区中的谷氨酸能神经元上主要表达2A受体,而γ-氨基丁酸能中间神经元主要表达2C受体(Nocjar et al., 2015)。因此,TCB-2可能主要作用于内侧前额叶中的2A受体来破坏母性行为,而MK212可能作用于γ-氨基丁酸中间神经元上的2C受体,从而抑制内侧前额叶中的谷氨酸神经元,从而增加TCB-2对母性行为的破坏作用。未来可以更精确地探究内侧前额叶中2A和2C的交互作用的机制。

4. 多巴胺系统和5-羟色胺系统交互调节母性行为

4.1. 5-羟色胺2A受体和多巴胺D2受体交互调控母性行为

5-羟色胺对母性行为的调节是通过中脑边缘和中脑皮层的多巴胺系统。5-羟色胺2A受体和多巴胺D2受体存在异聚体,并且有功能上的交互作用(Albizu, Holloway, Gonzalez-Maeso, & Sealfon, 2011)。D2受体在中脑边缘系统大量分布(McMahon, Filip, & Cunningham, 2001),2A也在中脑边缘系统大量分布(Azmitia & Segal, 1978),为它们的相互作用提供神经解剖学上的证据。激动2A受体能促进多巴胺系统的活动,增加多巴胺的释放(Howell & Cunningham, 2015)。腹侧被盖区中,有部分2A受体分布在多巴胺神经元上(Doherty & Pickel, 2000),注射2A的激动剂DOI到腹侧被盖区会增加大鼠的自发活动,用病毒过表达2A受体会增加可卡因引起的自发活动增加(Herin et al., 2013)。2A可以在腹侧被盖区中直接影响多巴胺神经元(Cornea-Hebert et al., 2002),或通过γ-氨基丁酸神经元(Doherty & Pickel, 2000),甚至是内侧前额叶的锥体神经元(Nocjar et al., 2015),从而影响多巴胺系统。

TCB-2注射会破坏产后大鼠对幼崽的偏好,但是haloperidol能减弱这种破坏作用,即拮抗多巴胺D2受体能减少激动5-羟色胺2A受体对母性行为的破坏(Gao et al., 2019)。过去对抗精神病药的研究发现,haloperidol可以对5-羟色胺2A受体产生反向激动剂的作用(Weiner et al., 2001)。用quinpirole激动多巴胺D2受体能破坏饲养笼内母性行为和母性动机,但是预处理TCB-2对quinpirole的破坏作用没有影响,可能是由于天花板效应(Gao et al., 2019)。TCB-2对饲养笼内母性行为的破坏,可能是影响了中脑边缘和中脑皮层的多巴胺系统。因为激动2A可以增加腹侧被盖区中的多巴胺神经元的活动性,促进内侧前额叶和伏隔核中的多巴胺释放(Howell & Cunningham, 2015)。所以,5-羟色胺2A受体的激动可能是引起多巴胺神经递质系统的不平衡,太高或者太低,从而破坏母性行为(Zhao & Li, 2010)。

MDL100907 (5-羟色胺2A受体拮抗剂)对quinpirole (D2激动剂)的影响根据环境和行为而变。给产后母鼠注射quinpirole,能破坏饲养笼内的母性行为和母性偏好,MDL100907预处理不影响quinpirole对母性行为的破坏(Gao et al., 2019)。过去发现quinpirole注射到大鼠上可以引起旋转,但是预处理 MDL100907不会产生影响(Taylor, Bishop, Ullrich, Rice, & Walker, 2006)。但是在高架十字迷宫的幼崽衔回测试中,这能测试焦虑环境下的母性动机和执行功能,quinpirole能破坏幼崽衔回,MDL100907能加剧这种破坏(Nie et al., 2018)。可能是因为quinpirole和MDL100907都调节执行功能,所以可以加剧quinpirole对执行功能的破坏。quinpirole能增加腹侧被盖区神经元的细胞放电和多巴胺释放,MDL100907会抑制这种现象(Olijslagers et al., 2004),所以5-羟色胺2A受体可能主要调节相位性多巴胺释放。

过去发现MDL100907和haloperidol之间的交互作用是复杂的,有三种:加强,减弱,不影响。产后母鼠注射haloperidol,只能破坏在饲养笼内母性行为测试中的表现,不影响幼崽偏好,MDL100907预处理不影响haloperidol对母性行为的破坏(Gao et al., 2019)。haloperidol也能破坏幼崽衔回,但MDL100907对此无影响(Nie et al., 2018),可能是因为MDL100907不影响母性动机,而haloperidol影响母性动机。过去发现MDL100907预处理能加强haloperidol在条件性躲避反应中的抑制作用(Wadenberg, Browning, Young, & Hicks, 2001);haloperidol能提高奖赏阈限,减少奖赏价值,MDL100907能减少这种作用(Benaliouad, Kapur, & Rompre, 2007);haloperidol能引起运动障碍,MDL100907对此无影响(Creed-Carson, Oraha, & Nobrega, 2011)。所以,MDL100907和haloperidol之间的交互作用可能因行为不同而有不同的机制。

外周注射MDL100907来拮抗2A,不影响饲养笼内母性行为和母性偏好(Nie et al., 2018)。这可能因为不影响边缘系统的多巴胺释放(Bortolozzi, Diaz-Mataix, Scorza, Celada, & Artigas, 2005),MDL100907在不同脑区对多巴胺系统的调控作用不一样,在内侧前额叶中能持续促进多巴胺释放的增加(Schmidt & Fadayel, 1995),但是对纹状体中的多巴胺外流不产生影响(Schmidt, Fadayel, Sullivan, & Taylor, 1992)。并且,抑制位于内侧前额叶中的谷氨酸锥体神经元上的5-羟色胺2A受体,会增加多巴胺的释放(Howell & Cunningham, 2015)。

4.2. 5-羟色胺2C受体和多巴胺系统交互调控母性行为

激动5-羟色胺2C受体一般会减少多巴胺系统的活动,并减少行为的动机(Manvich, Kimmel,& Howell, 2012)。腹侧被盖区中2C受体有超过一半分布于多巴胺神经元上,或是γ-氨基丁酸中间神经元,其中部分是投射到伏隔核的γ-氨基丁酸神经元上(Bubar & Cunningham, 2007)。腹侧被盖区中,5-羟色胺2C受体的激动会抑制多巴胺系统的活动,主要表现为抑制多巴胺细胞的放电,并减少释放到伏隔核的多巴胺(Howell & Cunningham, 2015),这种调控作用主要是通过激动腹侧被盖区中的γ-氨基丁酸神经元(Bubar, Stutz, & Cunningham, 2011)。但是,腹侧被盖区中激动在多巴胺神经元上表达的2C受体,会产生去极化(Sheldon & Aghajanian, 1991),增加多巴胺神经元的细胞放电和多巴胺的释放(Bubar & Cunningham, 2007)。

5. 总结与展望

第一,多巴胺系统跟母性动机紧密相关,其中多巴胺D2受体可以调节母性行为,激动或者拮抗多巴胺D2受体都会破坏母性行为。未来可分别深入探究多巴胺D2受体表达的上调和下调对母性行为影响的机制,尤其是信号转导通路方面的机制。

第二,5-羟色胺2A或者2C受体,单独被激动时能破坏母性行为,但单独被拮抗时对母性行为的影响较小,未来可探究此现象背后的机制。此外,激动2A受体能破坏母性行为,无论是激动或者拮抗2C受体都能加剧2A受体对母性行为的破坏作用,这背后的机制也非常值得探索。

第三,多巴胺系统和5-羟色胺系统能交互调控母性行为,其中拮抗多巴胺D2受体能减少激动5-羟色胺2A受体对母性行为的破坏,拮抗5-羟色胺2A受体和激动D2受体对母性行为的影响根据环境和测试条件不同而改变,未来可探究这背后的机制。

致谢

感谢高军老师对我的指导与帮助。

文章引用

卿若婷. 5-羟色胺系统和多巴胺系统对母性行为的调控
Serotonin and Dopamine Modulate Maternal Behavior[J]. 心理学进展, 2020, 10(02): 145-155. https://doi.org/10.12677/AP.2020.102019

参考文献

  1. 1. Afonso, V. M., Sison, M., Lovic, V., & Fleming, A. S. (2007). Medial Prefrontal Cortex Lesions in the Female Rat Affect Sexual and Maternal Behavior and Their Sequential Organization. Behavioral Neuroscience, 121, 515-526. https://doi.org/10.1037/0735-7044.121.3.515

  2. 2. Agnoli, L., Mainolfi, P., Invernizzi, R. W., & Carli, M. (2013). Dopamine D1-Like and D2-Like Receptors in the Dorsal Striatum Control Different Aspects of Attentional Performance in the Five-Choice Serial Reaction Time Task under a Condition of Increased Activity of Corticostriatal Inputs. Neurop-sychopharmacology, 38, 701-714. https://doi.org/10.1038/npp.2012.236

  3. 3. Albizu, L., Holloway, T., Gonzalez-Maeso, J., & Sealfon, S. C. (2011). Functional Crosstalk and Heteromerization of Serotonin 5-HT2A and Dopamine D2 Receptors. Neuropharmacology, 61, 770-777. https://doi.org/10.1016/j.neuropharm.2011.05.023

  4. 4. Anastasio, N. C., Stutz, S. J., Fink, L. H., Swinford-Jackson, S. E., Sears, R. M., DiLeone, R. J., Cunningham, K. A. et al. (2015). Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity. ACS Chemical Neuros-cience, 6, 1248-1258. https://doi.org/10.1021/acschemneuro.5b00094

  5. 5. Azmitia, E. C., & Segal, M. (1978). An Autoradiographic Analysis of the Differential Ascending Projections of the Dorsal and Median Raphe Nuclei in the Rat. Journal of Comparative Neurology, 179, 641-667. https://doi.org/10.1002/cne.901790311

  6. 6. Aznar, S., & Hervig Mel, S. (2016). The 5-HT2A Serotonin Receptor in Executive Function: Implications for Neuropsychiatric and Neurodegenerative Diseases. Neuroscience & Biobehavioral Reviews, 64, 63-82. https://doi.org/10.1016/j.neubiorev.2016.02.008

  7. 7. Becamel, C., Gavarini, S., Chanrion, B., Alonso, G., Galeotti, N., Dumuis, A., Marin, P. et al. (2004). The Serotonin 5-HT2A and 5-HT2C Receptors Interact with Specific Sets of PDZ Proteins. The Journal of Biological Chemistry, 279, 20257-20266. https://doi.org/10.1074/jbc.M312106200

  8. 8. Beckstead, M. J., Grandy, D. K., Wickman, K., & Williams, J. T. (2004). Vesicular Dopamine Release Elicits an Inhibitory Postsynaptic Current in Midbrain Dopamine Neurons. Neuron, 42, 939-946. https://doi.org/10.1016/j.neuron.2004.05.019

  9. 9. Benaliouad, F., Kapur, S., & Rompre, P. P. (2007). Blockade of 5-HT2a Receptors Reduces Haloperidol-Induced Attenuation of Reward. Neuropsychopharmacology, 32, 551-561. https://doi.org/10.1038/sj.npp.1301136

  10. 10. Bhagwagar, Z., Hinz, R., Taylor, M., Fancy, S., Cowen, P., & Grasby, P. (2006). Increased 5-HT(2A) Receptor Binding in Euthymic, Medication-Free Patients Recovered from Depres-sion: A Positron Emission Study with [(11)C]MDL 100,907. American Journal of Psychiatry, 163, 1580-1587. https://doi.org/10.1176/ajp.2006.163.9.1580

  11. 11. Bortolozzi, A., Diaz-Mataix, L., Scorza, M. C., Celada, P., & Arti-gas, F. (2005). The Activation of 5-HT Receptors in Prefrontal Cortex Enhances Dopaminergic Activity. Journal of Neu-rochemistry, 95, 1597-1607. https://doi.org/10.1111/j.1471-4159.2005.03485.x

  12. 12. Bubar, M. J., & Cunningham, K. A. (2007). Distribution of Serotonin 5-HT2C Receptors in the Ventral Tegmental Area. Neuroscience, 146, 286-297. https://doi.org/10.1016/j.neuroscience.2006.12.071

  13. 13. Bubar, M. J., Stutz, S. J., & Cunningham, K. A. (2011). 5-HT(2C) Receptors Localize to Dopamine and GABA Neurons in the Rat Mesoaccumbens Pathway. PLoS ONE, 6, e20508. https://doi.org/10.1371/journal.pone.0020508

  14. 14. Bunney, B. S., & Grace, A. A. (1978). Acute and Chronic Haloperidol Treatment: Comparison of Effects on Nigral Dopaminergic Cell Activity. Life Sciences, 23, 1715-1727. https://doi.org/10.1016/0024-3205(78)90471-X

  15. 15. Carvalho Poyraz, F., Holzner, E., Bailey, M. R., Meszaros, J., Kenney, L., Kheirbek, M. A., Kellendonk, C. et al. (2016). Decreasing Striatopallidal Pathway Function Enhances Moti-vation by Energizing the Initiation of Goal-Directed Action. Journal of Neuroscience, 36, 5988-6001. https://doi.org/10.1523/JNEUROSCI.0444-16.2016

  16. 16. Celada, P., Puig, M. V., & Artigas, F. (2013). Serotonin Modulation of Cortical Neurons and Networks. Frontiers in Integrative Neuroscience, 7, 25. https://doi.org/10.3389/fnint.2013.00025

  17. 17. Celada, P., Puig, M. V., Casanovas, J. M., Guillazo, G., & Artigas, F. (2001). Control of Dorsal Raphe Serotonergic Neurons by the Medial Prefrontal Cortex: Involvement of Serotonin-1A, GABA(A), and Glutamate Receptors. Journal of Neuroscience, 21, 9917-9929. https://doi.org/10.1523/JNEUROSCI.21-24-09917.2001

  18. 18. Chen, W., Zhang, Q., Su, W., Zhang, H., Yang, Y., Qiao, J., Li, M. et al. (2014). Effects of 5-Hydroxytryptamine 2C Receptor Agonist MK212 and 2A Receptor Antagonist MDL100907 on Maternal Behavior in Postpartum Female Rats. Pharmacology Biochemistry and Behavior, 117, 25-33. https://doi.org/10.1016/j.pbb.2013.11.034

  19. 19. Cornea-Hebert, V., Watkins, K. C., Roth, B. L., Kroeze, W. K., Gau-dreau, P., Leclerc, N., & Descarries, L. (2002). Similar Ultrastructural Distribution of the 5-HT(2A) Serotonin Receptor and Microtubule-Associated Protein MAP1A in Cortical Dendrites of Adult Rat. Neuroscience, 113, 23-35. https://doi.org/10.1016/S0306-4522(02)00146-X

  20. 20. Creed-Carson, M., Oraha, A., & Nobrega, J. N. (2011). Effects of 5-HT(2A) and 5-HT(2C) Receptor Antagonists on Acute and Chronic Dyskinetic Effects Induced by Haloperidol in Rats. Behavioural Brain Research, 219, 273-279. https://doi.org/10.1016/j.bbr.2011.01.025

  21. 21. Di Giovanni, G., Di Matteo, V., & Esposito, E. (2002). Seroto-nin/Dopamine Interaction—Focus on 5-HT2C Receptor, a New Target of Psychotropic Drugs. Indian Journal of Experi-mental Biology, 40, 1344-1352.

  22. 22. Doherty, M. D., & Pickel, V. M. (2000). Ultrastructural Localization of the Seroto-nin 2A Receptor in Dopaminergic Neurons in the Ventral Tegmental Area. Brain Research, 864, 176-185. https://doi.org/10.1016/S0006-8993(00)02062-X

  23. 23. Fletcher, P. J., Chintoh, A. F., Sinyard, J., & Higgins, G. A. (2004). Injection of the 5-HT2C Receptor Agonist Ro60-0175 into the Ventral Tegmental Area Reduces Cocaine-Induced Locomotor Activity and Cocaine Self-Administration. Neuropsychopharmacology, 29, 308-318. https://doi.org/10.1038/sj.npp.1300319

  24. 24. Floresco, S. B., & Magyar, O. (2006). Mesocortical Dopamine Modula-tion of Executive Functions: Beyond Working Memory. Psychopharmacology (Berl), 188, 567-585. https://doi.org/10.1007/s00213-006-0404-5

  25. 25. Fox, M. A., French, H. T., LaPorte, J. L., Blackler, A. R., & Mur-phy, D. L. (2010). The Serotonin 5-HT(2A) Receptor Agonist TCB-2: A Behavioral and Neurophysiological Analysis. Psychopharmacology (Berl), 212, 13-23. https://doi.org/10.1007/s00213-009-1694-1

  26. 26. Gao, J., Chen, L., & Li, M. (2019). 5-HT2A Receptors Modulate Dopamine D2-Mediated Maternal Effects. Pharmacology Biochemistry and Behavior, 180, 32-43. https://doi.org/10.1016/j.pbb.2019.03.003

  27. 27. Gao, J., Nie, L., Li, Y., & Li, M. (2020). Serotonin 5-HT2A and 5-HT2C Receptors Regulate Rat Maternal Behavior through Distinct Behavioral and Neural Mechanisms. Neuropharma-cology, 162, Article ID: 107848. https://doi.org/10.1016/j.neuropharm.2019.107848

  28. 28. Gao, J., Wu, R., Davis, C., & Li, M. (2018). Activation of 5-HT2A Receptor Disrupts Rat Maternal Behavior. Neuropharmacology, 128, 96-105. https://doi.org/10.1016/j.neuropharm.2017.09.037

  29. 29. Giordano, A. L., Johnson, A. E., & Rosenblatt, J. S. (1990). Haloperidol-Induced Disruption of Retrieval Behavior and Reversal with Apomorphine in Lactating Rats. Physiology & Behavior, 48, 211-214. https://doi.org/10.1016/0031-9384(90)90288-F

  30. 30. Gonzalez-Maeso, J., Weisstaub, N. V., Zhou, M., Chan, P., Ivic, L., Ang, R., Gingrich, J. A. et al. (2007). Hallucinogens Recruit Specific Cortical 5-HT(2A) Receptor-Mediated Signaling Pathways to Affect Behavior. Neuron, 53, 439-452. https://doi.org/10.1016/j.neuron.2007.01.008

  31. 31. Halberstadt, A. L., Powell, S. B., & Geyer, M. A. (2013). Role of the 5-HT(2)A Receptor in the Locomotor Hyperactivity Produced by Phenylalkylamine Hallucinogens in Mice. Neuro-pharmacology, 70, 218-227. https://doi.org/10.1016/j.neuropharm.2013.01.014

  32. 32. Hamon, M., & Blier, P. (2013). Monoamine Neurocircuitry in Depression and Strategies for New Treatments. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 45, 54-63. https://doi.org/10.1016/j.pnpbp.2013.04.009

  33. 33. Hansen, S., Bergvall, A. H., & Nyiredi, S. (1993). Interac-tion with Pups Enhances Dopamine Release in the Ventral Striatum of Maternal Rats: A Microdialysis Study. Pharma-cology Biochemistry and Behavior, 45, 673-676. https://doi.org/10.1016/0091-3057(93)90523-V

  34. 34. Herin, D. V., Bubar, M. J., Seitz, P. K., Thomas, M. L., Hillman, G. R., Tarasenko, Y. I., Cunningham, K. A. et al. (2013). Elevated Expression of Serotonin 5-HT(2A) Receptors in the Rat Ventral Tegmental Area Enhances Vulnerability to the Behavioral Effects of Cocaine. Front Psychiatry, 4, 2. https://doi.org/10.3389/fpsyt.2013.00002

  35. 35. Howell, L. L., & Cunningham, K. A. (2015). Serotonin 5-HT2 Re-ceptor Interactions with Dopamine Function: Implications for Therapeutics in Cocaine Use Disorder. Pharmacological Reviews, 67, 176-197. https://doi.org/10.1124/pr.114.009514

  36. 36. Ichikawa, J., Dai, J., & Meltzer, H. Y. (2001). DOI, a 5-HT2A/2C Receptor Agonist, Attenuates Clozapine-Induced Cortical Dopamine Release. Brain Research, 907, 151-155. https://doi.org/10.1016/S0006-8993(01)02596-3

  37. 37. Kinsley, C. H., Turco, D., Bauer, A., Beverly, M., Wellman, J., & Graham, A. L. (1994). Cocaine Alters the Onset and Maintenance of Maternal Behavior in Lactating Rats. Pharmacology Biochemistry and Behavior, 47, 857-864. https://doi.org/10.1016/0091-3057(94)90288-7

  38. 38. Koller, W., Herbster, G., Anderson, D., Wack, R., & Gordon, J. (1987). Quinpirole Hydrochloride, a Potential Anti-Parkinsonism Drug. Neuropharmacology, 26, 1031-1036. https://doi.org/10.1016/0028-3908(87)90245-0

  39. 39. Lee, A., Clancy, S., & Fleming, A. S. (2000). Mother Rats Bar-Press for Pups: Effects of Lesions of the Mpoa and Limbic Sites on Maternal Behavior and Operant Responding for Pup-Reinforcement. Behavioural Brain Research, 108, 215-231. https://doi.org/10.1016/S0166-4328(99)00170-9

  40. 40. Liu, Z. H., Shin, R., & Ikemoto, S. (2008). Dual Role of Medial A10 Dopamine Neurons in Affective Encoding. Neuropsychopharmacology, 33, 3010-3020. https://doi.org/10.1038/npp.2008.4

  41. 41. Lopez-Gimenez, J. F., Vilaro, M. T., Palacios, J. M., & Mengod, G. (2013). Multiple Conformations of 5-HT2A and 5-HT2C Receptors in Rat Brain: An Autoradiographic Study with [125I](+/−)DOI. Experimental Brain Research, 230, 395-406. https://doi.org/10.1007/s00221-013-3636-8

  42. 42. Loskutova, L. V., Kostyunina, N. V., & Dubrovina, N. I. (2010). Involvement of Different Types of Dopamine Receptors in the Formation of Latent Inhibition of a Conditioned Passive Avoidance Reaction in Rats. Neuroscience and Behavioral Physiology, 40, 483-487. https://doi.org/10.1007/s11055-010-9285-5

  43. 43. Manvich, D. F., Kimmel, H. L., & Howell, L. L. (2012). Effects of Serotonin 2C Receptor Agonists on the Behavioral and Neurochemical Effects of Cocaine in Squirrel Monkeys. Journal of Pharmacology and Experimental Therapeutics, 341, 424-434. https://doi.org/10.1124/jpet.111.186981

  44. 44. Massou, J. M., Trichard, C., Attar-Levy, D., Feline, A., Corruble, E., Beaufils, B., & Martinot, J. L. (1997). Frontal 5-HT2A Re-ceptors Studied in Depressive Patients during Chronic Treatment by Selective Serotonin Reuptake Inhibitors. Psycho-pharmacology (Berl), 133, 99-101. https://doi.org/10.1007/s002130050377

  45. 45. McDevitt, R. A., Tiran-Cappello, A., Shen, H., Balderas, I., Britt, J. P., Marino, R. A. M., Bonci, A. et al. (2014). Serotonergic versus Nonserotonergic Dorsal Raphe Projection Neurons: Differential Participation in Reward Circuitry. Cell Reports, 8, 1857-1869. https://doi.org/10.1016/j.celrep.2014.08.037

  46. 46. McMahon, L. R., Filip, M., & Cunningham, K. A. (2001). Diffe-rential Regulation of the Mesoaccumbens Circuit by Serotonin 5-Hydroxytryptamine (5-HT)2A and 5-HT2C Receptors. Journal of Neuroscience, 21, 7781-7787. https://doi.org/10.1523/JNEUROSCI.21-19-07781.2001

  47. 47. Nie, L., Di, T., Li, Y., Cheng, P., Li, M., & Gao, J. (2018). Blockade of Serotonin 5-HT2A Receptors Potentiates Dopamine D2 Activation-Induced Disruption of Pup Re-trieval on an Elevated Plus Maze, But Has No Effect on D2 Blockade-Induced One. Pharmacology Biochemistry and Be-havior, 171, 74-84. https://doi.org/10.1016/j.pbb.2018.06.004

  48. 48. Nocjar, C., Alex, K. D., Sonneborn, A., Abbas, A. I., Roth, B. L., & Pehek, E. A. (2015). Serotonin-2C and -2A Receptor Co-Expression on Cells in the Rat Medial Prefron-tal Cortex. Neuroscience, 297, 22-37. https://doi.org/10.1016/j.neuroscience.2015.03.050

  49. 49. Numan, M. (2007). Motivational Systems and the Neural Circuitry of Maternal Behavior in the Rat. Developmental Psychobiology, 49, 12-21. https://doi.org/10.1002/dev.20198

  50. 50. Numan, M., & Young, L. J. (2016). Neural Mechanisms of Mother-Infant Bonding and Pair Bonding: Similarities, Differences, and Broader Implications. Hormones and Behavior, 77, 98-112. https://doi.org/10.1016/j.yhbeh.2015.05.015

  51. 51. Olazabal, D. E., Pereira, M., Agrati, D., Ferreira, A., Fleming, A. S., Gonzalez-Mariscal, G., Uriarte, N. et al. (2013). New Theoretical and Experimental Approaches on Maternal Motivation in Mammals. Neuroscience & Biobehavioral Reviews, 37, 1860-1874. https://doi.org/10.1016/j.neubiorev.2013.04.003

  52. 52. Olijslagers, J. E., Werkman, T. R., McCreary, A. C., Siarey, R., Kruse, C. G., & Wadman, W. J. (2004). 5-HT2 Receptors Differentially Modulate Dopamine-Mediated Auto-Inhibition in A9 and A10 Midbrain Areas of the Rat. Neuropharmacology, 46, 504-510. https://doi.org/10.1016/j.neuropharm.2003.10.003

  53. 53. Olivier, B., Mos, J., van Oorschot, R., & Hen, R. (1995). Se-rotonin Receptors and Animal Models of Aggressive Behavior. Pharmacopsychiatry, 28, 80-90. https://doi.org/10.1055/s-2007-979624

  54. 54. Paulus, M. P., & Geyer, M. A. (1991). A Scaling Approach to Find Or-der Parameters Quantifying the Effects of Dopaminergic Agents on Unconditioned Motor Activity in Rats. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 15, 903-919. https://doi.org/10.1016/0278-5846(91)90018-V

  55. 55. Pereira, M., & Ferreira, A. (2006). Demanding Pups Improve Maternal Behavioral Impairments in Sensitized and Haloperidol-Treated Lactating Female Rats. Behavioural Brain Re-search, 175, 139-148. https://doi.org/10.1016/j.bbr.2006.08.013

  56. 56. Pereira, M., Uriarte, N., Agrati, D., Zuluaga, M. J., & Ferreira, A. (2005). Motivational Aspects of Maternal Anxiolysis in Lactating Rats. Psychopharmacology (Berl), 180, 241-248. https://doi.org/10.1007/s00213-005-2157-y

  57. 57. Pertile, R. A. N., Corvino, M. E., Marchette, R. C. N., Pa-vesi, E., Cavalli, J., Ramos, A., & Izidio, G. S. (2017). The Quinpirole Hypolocomotive Effects Are Strain and Route of Administration Dependent in SHR and SLA16 Isogenic Rats. Behavior Genetics, 47, 552-563. https://doi.org/10.1007/s10519-017-9865-z

  58. 58. Popova, N. K., & Amstislavskaya, T. G. (2002). 5-HT2A and 5-HT2C Serotonin Receptors Differentially Modulate Mouse Sexual Arousal and the Hypothalamo-Pituitary-Testicular Response to the Presence of a Female. Neuroendocrinology, 76, 28-34. https://doi.org/10.1159/000063681

  59. 59. Robinson, E. S., Dalley, J. W., Theobald, D. E., Glennon, J. C., Pezze, M. A., Murphy, E. R., & Robbins, T. W. (2008). Opposing Roles for 5-HT2A and 5-HT2C Receptors in the Nucleus Accumbens on Inhibitory Response Control in the 5-Choice Serial Reaction Time Task. Neuropsychopharmacology, 33, 2398-2406. https://doi.org/10.1038/sj.npp.1301636

  60. 60. Schmidt, C. J., & Fadayel, G. M. (1995). The Selective 5-HT2A Receptor Antagonist, MDL 100,907, Increases Dopamine Efflux in the Prefrontal Cortex of the Rat. European Journal of Pharmacology, 273, 273-279. https://doi.org/10.1016/0014-2999(94)00698-7

  61. 61. Schmidt, C. J., Fadayel, G. M., Sullivan, C. K., & Taylor, V. L. (1992). 5-HT2 Receptors Exert a State-Dependent Regulation of Dopaminergic Function: Studies with MDL 100,907 and the Amphetamine Analogue, 3,4-Methylenedioxymethamphetamine. European Journal of Pharmacology, 223, 65-74. https://doi.org/10.1016/0014-2999(92)90819-P

  62. 62. Sheldon, P. W., & Aghajanian, G. K. (1991). Excitatory Res-ponses to Serotonin (5-HT) in Neurons of the Rat Piriform Cortex: Evidence for Mediation by 5-HT1C Receptors in Py-ramidal Cells and 5-HT2 Receptors in Interneurons. Synapse, 9, 208-218. https://doi.org/10.1002/syn.890090307

  63. 63. Silva, M. R., Bernardi, M. M., & Felicio, L. F. (2001). Effects of Dopa-mine Receptor Antagonists on Ongoing Maternal Behavior in Rats. Pharmacology Biochemistry and Behavior, 68, 461-468. https://doi.org/10.1016/S0091-3057(01)00471-3

  64. 64. Stern, J. M. (1991). Nursing Posture Is Elicited Ra-pidly in Maternally Naive, Haloperidol-Treated Female and Male Rats in Response to Ventral Trunk Stimulation from Active Pups. Hormones and Behavior, 25, 504-517. https://doi.org/10.1016/0018-506X(91)90017-C

  65. 65. Stern, J. M., & Keer, S. E. (1999). Maternal Motivation of Lactating Rats Is Disrupted by Low Dosages of Haloperidol. Behavioural Brain Research, 99, 231-239. https://doi.org/10.1016/S0166-4328(98)00108-9

  66. 66. Taylor, J. L., Bishop, C., Ullrich, T., Rice, K. C., & Walker, P. D. (2006). Serotonin 2A Receptor Antagonist Treatment Reduces Dopamine D1 Receptor-Mediated Rotational Behavior But Not L-DOPA-Induced Abnormal Involuntary Movements in the Unilateral Dopamine-Depleted Rat. Neuropharma-cology, 50, 761-768. https://doi.org/10.1016/j.neuropharm.2005.12.004

  67. 67. Wadenberg, M. G., Browning, J. L., Young, K. A., & Hicks, P. B. (2001). Antagonism at 5-HT(2A) Receptors Potentiates the Effect of Haloperidol in a Conditioned Avoidance Re-sponse Task in Rats. Pharmacology Biochemistry and Behavior, 68, 363-370. https://doi.org/10.1016/S0091-3057(00)00483-4

  68. 68. Wadenberg, M. L., Kapur, S., Soliman, A., Jones, C., & Vac-carino, F. (2000). Dopamine D2 Receptor Occupancy Predicts Catalepsy and the Suppression of Conditioned Avoidance Response Behavior in Rats. Psychopharmacology (Berl), 150, 422-429. https://doi.org/10.1007/s002130000466

  69. 69. Wang, M., Vijayraghavan, S., & Goldman-Rakic, P. S. (2004). Selective D2 Receptor Actions on the Functional Circuitry of Working Memory. Science, 303, 853-856. https://doi.org/10.1126/science.1091162

  70. 70. Weiner, D. M., Burstein, E. S., Nash, N., Croston, G. E., Currier, E. A., Vanover, K. E., Brann, M. R. et al. (2001). 5-Hydroxytryptamine 2A Receptor Inverse Agonists as Antipsychotics. Jour-nal of Pharmacology and Experimental Therapeutics, 299, 268-276.

  71. 71. Wu, R., Davis, C., & Li, M. (2018). Behavioral Mechanisms Underlying the Maternal Disruptive Effect of Serotonin 5-HT2A Receptor Activation in Sprague-Dawley Rats. Journal of Neural Transmission (Vienna), 125, 1065-1075. https://doi.org/10.1007/s00702-018-1878-0

  72. 72. Wu, R., Gao, J., Chou, S., Davis, C., & Li, M. (2016). Behavioral, Pharmacological and Neuroanatomical Analysis of Serotonin 2C Receptor Agonism on Maternal Behavior in Rats. Psy-choneuroendocrinology, 73, 252-262. https://doi.org/10.1016/j.psyneuen.2016.08.017

  73. 73. Yang, Y., Qin, J., Chen, W., Sui, N., Chen, H., & Li, M. (2015). Behavioral and Pharmacological Investigation of Anxiety and Maternal Responsiveness of Postpartum Female Rats in a Pup Elevated plus Maze. Behavioural Brain Research, 292, 414-427. https://doi.org/10.1016/j.bbr.2015.07.010

  74. 74. Zhao, C., & Li, M. (2009). The Receptor Mechanisms Underlying the Disruptive Effects of Haloperidol and Clozapine on Rat Maternal Behavior: A Double Dissociation between Dopamine D(2) and 5-HT(2A/2C) Receptors. Pharmacology Biochemistry and Behavior, 93, 433-442. https://doi.org/10.1016/j.pbb.2009.06.005

  75. 75. Zhao, C., & Li, M. (2010). c-Fos Identification of Neuroanatomical Sites Associated with Haloperidol and Clozapine Disruption of Maternal Behavior in the Rat. Neuroscience, 166, 1043-1055. https://doi.org/10.1016/j.neuroscience.2010.01.023

期刊菜单