﻿ 浅析应用光学中的传递矩阵 Concise Remarks on Transfer Matrix of Applied Optics

Vol.06 No.05(2016), Article ID:18676,6 pages
10.12677/AE.2016.65035

Concise Remarks on Transfer Matrix of Applied Optics

Long Jin

School of Science, Hubei University of Automotive Technology, Shiyan Hubei

Received: Sep. 11th, 2016; accepted: Sep. 27th, 2016; published: Sep. 30th, 2016

ABSTRACT

In applied optics teaching, matrix analysis method possesses the characteristic of clear, simple physical model and need not deliberately stress the symbols relationship of the object plane and image plane. For large optical path and the paraxial imaging system calculation, using this method can get twice the result with the half effort. In this paper, we use traditional light path calculation and matrix optics method to calculate the spherical optical system of image plane position and image plane size, making a brief explanation to the imaging regulation, and expound the advantage of matrix optics and the aspects for attention.

Keywords:Teaching Reform, Applied Optics, Transfer Matrix

1. 引言

2. 基本理论

(1)

(2)

(3)

(4)

(5)

(6)

2.1. 均匀介质的传递矩阵

(7)

(8)

(9)

(10)

2.2. 折射球面的传递矩阵

(11)

(12)

Figure 1. The principle diagram of the light wave propagation in homogeneous medium

(13)

2.3. 光学系统共轭面间的传递矩阵

(14)

3. 传统光路计算和矩阵光学方法对比

3.1. 传统方法

(15)

(16)

3.2. 矩阵方法

(17)

(18)

4. 教学心得体会

5. 结束语

Concise Remarks on Transfer Matrix of Applied Optics[J]. 教育进展, 2016, 06(05): 235-240. http://dx.doi.org/10.12677/AE.2016.65035

1. 1. 郭仁慧, 高志山. 谈应用光学的改进方法[J]. 高教论坛, 2009(1): 90-92.

2. 2. 石顺祥, 王学恩. 物理光学与应用光学[M]. 西安: 电子科技大学出版社, 2014: 359-360, 384-387.

3. 3. 程云鹏, 张凯院. 矩阵论[M]. 西安: 西北工业大学出版社, 2013: 1-10.

4. 4. Ghatak, A. (2008) Optics. Higher Education Press, Beijing, 67-68.

5. 5. 周炳琨, 高以智. 激光原理[M]. 北京: 国防工业出版社, 2014: 33-38.

6. 6. 张以谟. 应用光学[M]. 北京: 电子工业出版社, 2008: 65-70.