﻿ 短区间上权为dk (n)的ErdO¨ s-Kac型定理 An ErdO¨ s-Kac Type Theorem in Short Intervals Weighted by dk (n)

Pure Mathematics
Vol. 09  No. 09 ( 2019 ), Article ID: 33132 , 12 pages
10.12677/PM.2019.99133

An Erdös-Kac Type Theorem in Short Intervals Weighted by ${d}_{k}\left(n\right)$

Xiaofei Tong

College of Mathematics and Statistics, Qingdao University, Qingdao Shandong

Received: Nov. 1st, 2019; accepted: Nov. 18th, 2019; published: Nov. 25th, 2019

ABSTRACT

Let ${d}_{k}\left(n\right)$ be the k-fold divisor function. In this paper, we prove a weighted Erdös-Kac type theorem with weight ${d}_{k}\left(n\right)$ in short intervals. This generalizes a recent result of K. Liu and J. Wu.

Keywords:Central Limit Theorem, Short Intervals, Arithmetic Function, Dirichlet Series

${d}_{k}\left(n\right)$ 为k重除数函数。本文证明了一个短区间上权为 ${d}_{k}\left(n\right)$ 的Erdös-Kac型定理，并证明了其中的余项估计是最优的。这推广了K. Liu和J. Wu最近的一个结果。

Copyright © 2019 by author(s) and Hans Publishers Inc.

1. 介绍

${d}_{k}\left(n\right)=\frac{\left({\alpha }_{1}+k-1\right)!}{{\alpha }_{1}!\left(k-1\right)!}\cdots \frac{\left({\alpha }_{s}+k-1\right)!}{{\alpha }_{s}!\left(k-1\right)!}.$ (1)

$k=2$ 时， ${d}_{k}\left(n\right)$ 即为经典除数函数 $d\left(n\right)$

$x\ge 2$ 时，定义 ${d}_{k}\left(n\right)$ 的和函数

${D}_{k}\left(x\right):=\underset{n\le x}{\sum }{d}_{k}\left(n\right)\text{ }\text{ }.$

Landau [2] 和Voronoi [3] 证明了

${D}_{k}\left(x\right)=x{P}_{k-1}\left(x\right)+{\Delta }_{k}\left(x\right)$

${\Delta }_{k}\left(x\right){\ll }_{\epsilon }{x}^{\frac{k-1}{k+1}+\epsilon },$

${\Delta }_{k}\left(x\right)\ll {x}^{\frac{k-1}{k-2}+\epsilon }.$

$\underset{x

$k\ne 4$ 时，目前短区间上相应问题的最佳结果可由 ${D}_{k}\left(x\right)$ 的渐进公式(“长区间”)推得。

${\pi }_{l,k}\left(x,y\right):=\underset{\begin{array}{l}x

${\pi }_{l,k}\left(x,y\right)=\frac{y}{\mathrm{log}x}\frac{{\left(k\mathrm{log}\mathrm{log}x\right)}^{l-1}}{\left(l-1\right)!}\left\{\lambda \left(\frac{l-1}{k\mathrm{log}\mathrm{log}x}\right)+{O}_{B,\epsilon }\left(\frac{\mathrm{log}\mathrm{log}x}{l\mathrm{log}x}+\frac{l-1}{{\left(\mathrm{log}\mathrm{log}x\right)}^{2}}\right)\right\},$

$x\ge 2$${x}^{7/12+\epsilon }\le y\le x$$1\le l\le Bk\mathrm{log}\mathrm{log}x$ 一致成立，这里

$\lambda \left(z\right)=\frac{k}{\Gamma \left(kz+1\right)}\underset{p}{\prod }\left(1+\underset{v\ge 1}{\sum }\frac{\left(v+k-1\right)!}{v!\left(k-1\right)!{p}^{v}}z\right){\left(1-\frac{1}{p}\right)}^{kz},$

1939年，Erdös和Kac [9] 证明了 $\omega \left(n\right)$ 的概率分布，对于每一个 $\lambda \in R$，他们证明了如下的中心极限定理：

$\frac{1}{x}\underset{\begin{array}{c}n\le x\\ \omega \left(n\right)-\mathrm{log}\mathrm{log}x\le \lambda \sqrt{\mathrm{log}\mathrm{log}x}\end{array}}{\sum }1\to \Phi \left(\lambda \right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\to \infty$

$\Phi \left(\lambda \right):=\frac{1}{\sqrt{2\pi }}{\int }_{-\infty }^{\lambda }{\text{e}}^{-{\tau }^{2}/2}\text{d}\tau .$

2015年，Elliott [10] [11] 证明了如下权为 $d{\left(n\right)}^{\alpha }$ ( $\alpha \in R$ )的中心极限定理，即对每一个 $\lambda \in R$，有

$\frac{1}{{D}_{\alpha }\left(x\right)}\underset{\begin{array}{c}n\le x\\ \omega \left(n\right)-{2}^{\alpha }\mathrm{log}\mathrm{log}x\le \lambda \sqrt{{2}^{\alpha }\mathrm{log}\mathrm{log}x}\end{array}}{\sum }d{\left(n\right)}^{\alpha }\to \Phi \left(\lambda \right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}x\to \infty$

${D}_{\alpha }\left(x\right):=\underset{n\le x}{\sum }d{\left(n\right)}^{\alpha }$

$\frac{1}{D\left(x,y\right)}\underset{\begin{array}{c}x

$D\left(x,y\right):=\underset{x

O-符号中的隐含常数只依赖于 $\epsilon$，并且误差项的上界估计是最优的。

N为全体自然数集，R为全体实数集，C为全体复数集； $\Gamma \left(z\right)$ 伽马函数；Landau符号， $f\left(x\right)=O\left(g\left(x\right)\right)$$f\left(x\right)\ll g\left(x\right)$ 是指存在常数 $c>0$，使得 $|f\left(x\right)|\le cg\left(x\right)$$\underset{p}{\prod }\text{ }$ 表示p遍历所有素数并求乘积； $f\left(x\right)\sim g\left(x\right)$ 是指 $\underset{x\to \infty }{\mathrm{lim}}\frac{f\left(x\right)}{g\left(x\right)}=1$

2. 预备知识

$F\left(s\right):=\underset{n=1}{\overset{\infty }{\sum }}f\left(n\right){n}^{-s}.$

$z\in C$$\omega \in C$$\alpha >0$$\delta \ge 0$$A\ge 0$$B>0$$C>0$$M>0$ 为常数， $s=\sigma +i\tau$。如果 $F\left(s\right)$ 满足下列条件，则称其是 $P\left(z,\omega ,\alpha ,\delta ,A,B,C,M\right)$ 型的：

(a) 对于任意的 $\epsilon >0$，有

$|f\left(n\right)|{\ll }_{\epsilon }M{n}^{\epsilon }\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left(n\ge 1\right)$

$\ll$ -中的隐含常数只与 $\epsilon$ 有关。

(b) 当 $\sigma >1$ 时有

(c) Dirichlet级数

O-符号中的隐含常数只依赖于A，B，

，及一致成立，其中

(2)

，当时，函数是可乘函数，其在(p为素数，)的值可由下列公式给出

(3)

3. 定理1.1的证明

(4)

(5)

(6)

(7)

(8)

，可得

4. 定理1.2的证明

，记的特征函数，我们有

(9)

，由引理2.3，计算得到下面结果：

(10)

，我们得到

(11)

(12)

An ErdO¨ s-Kac Type Theorem in Short Intervals Weighted by dk (n)[J]. 理论数学, 2019, 09(09): 1082-1093. https://doi.org/10.12677/PM.2019.99133

1. 1. Titchmarsh, E.C. (1951) The Theory of the Riemann Zeta-Function. Oxford University Press, Oxford.

2. 2. Landau, E. (1912) Über die Anzahl der Gitterpunkte in gewissen Bereichen. Göttinger Nachrichten, 687C771.

3. 3. Voronoi, G. (1903) Sur un probleme du calcul des fonctions asymptotiques. Journal für die Reine und Angewandte Mathematik, 1903, 241-282. https://doi.org/10.1515/crll.1903.126.241

4. 4. Karatsuba, A.A. and Voronin, S.M. (1992) The Riemann Zeta-Function. Springer, Berlin, New York. https://doi.org/10.1515/9783110886146

5. 5. Krätzel, E. (1988) Lattice Points. Kluwer, Dordrecht, Boston, London.

6. 6. Ivić, A. (1985) The Riemann Zeta-Function. John Wiley and Sons, New York.

7. 7. Ivić, A., Krätzel, E., Kühleitner, M. and Nowak, W.G. (2004) Lattice Points in Large Regions and Related Arithmetic Functions: Recent Developments in a Very Classic Topic. Elementary and Analytic Number Theory, Mainz, 25 October 2004, 1-39. http://arXiv.org/pdf/math.NT/0410522

8. 8. Garaev, M.Z., Luca, F. and Nowak, W.G. (2006) The Divisor Problem for d4(n) in Short Intervals. Archiv der Mathematik, 86, 60-66. https://doi.org/10.1007/s00013-005-1447-2

9. 9. Erdös, P. and Kac, M. (1939) Gaussian Law of Errors in the Theory of Additive Functions. Proceedings of the National Academy of Sciences of the United States of America, 25, 205-207. https://doi.org/10.1073/pnas.25.4.206

10. 10. Elliott, P.D.T.A. (2015) Central Limit Theorem for Classical Cusp Forms. The Ramanujan Journal, 36, 81-98. https://doi.org/10.1007/s11139-013-9516-9

11. 11. Elliott, P.D.T.A. (2015) Corrigendum: Central Limit Theorem for Classical Cusp Forms. The Ramanujan Journal, 36, 99-102. https://doi.org/10.1007/s11139-014-9629-9

12. 12. Liu, K. and Wu, J. (2018) Weighted Erdös-Kac Theorem in Short Inter-vals.

13. 13. Tenenbaum, G. (1995) Introduction to Analytic and Probabilistic Number Theory, Translated from the Second French Edition by C. B. Thomas. Cambridge Studies in Advanced Mathematics 46, Cambridge University Press, Cambridge, xvi + 448.