Material Sciences
Vol. 11  No. 11 ( 2021 ), Article ID: 46432 , 8 pages
10.12677/MS.2021.1111136

可见光驱动的氧化锌基光催化剂研究进展

赵海涛1,高鹏1,苏鹏程1,欧玉静2,王俊峰3*

1中国水利水电第六工程局有限公司,辽宁 沈阳

2兰州理工大学石油化工学院,甘肃 兰州

3中国科学院西北生态环境资源研究院,甘肃 兰州

收稿日期:2021年10月9日;录用日期:2021年11月5日;发布日期:2021年11月12日

摘要

在光催化领域中倍受青睐的氧化锌(ZnO)具有较强的氧化还原能力、形貌多样易控制、良好的化学稳定性、低成本等优点,但电子空穴复合率高、仅在紫外区进行光催化、易发生光腐蚀等缺点,限制了其在光催化方面的应用。针对以上问题,本文主要从缺陷构建及等离子共振对ZnO光催化活性的影响进行综述,同时对改性方法/使用物质的协同作用进行陈述。最后,对ZnO基光催化剂在可见光下进行光催化反应的未来发展趋势进行了展望。

关键词

氧化锌,光催化,协同作用,可见光

Research Progress of Visible Light-Driven Zinc Oxide-Based Photocatalysts

Haitao Zhao1, Peng Gao1, Pengcheng Su1, Yujing Ou2, Junfeng Wang3*

1SinoHydro No.6 Bureau Co., Ltd., Shenyang Liaoning

2Petroleum Chemical Industry Engineering College, Lanzhou University of Technology, Lanzhou Gansu

3Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou Gansu

Received: Oct. 9th, 2021; accepted: Nov. 5th, 2021; published: Nov. 12th, 2021

ABSTRACT

Zinc oxide (ZnO), which is popular in the field of photocatalysis, has the advantages of strong redox ability, diverse and easy-to-control morphologies, good chemical stability, and low cost. However, the electron-hole recombination rate is high, the photocatalysis occurs only in the ultraviolet region, and ZnO is prone to photocorrosion. These shortcomings limit its application in the photocatalysis field. In view of the above problems, this article mainly reviews the effects of defect construction and plasmon resonance on the photocatalytic activity of ZnO, and also presents the synergy of modification methods/substances used. Finally, the future development trend of photocatalytic reaction of ZnO-based photocatalyst under visible light is forecasted.

Keywords:Zinc Oxide, Photocatalysis, Synergy, Visible Light

Copyright © 2021 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

光催化剂能够在光诱导下与待催化物质发生氧化还原反应,从而可去除废水、空气等中的有机污染物、无机污染物、细菌和病毒以及分解水产氢等。二氧化钛(TiO2)是研究最早最广泛的光催化材料,具有优良的物理化学特性及光催化活性,是光催化剂改性的明星模型。很多光催化剂的研究与开发均参考TiO2的相关研究,其中氧化锌(ZnO)由于其较强的氧化还原能力及晶体内部存在固有偶极,其电子迁移率比TiO2高10~100倍,具有更低的电阻、更高的电子转移率以及能吸收更大比例的紫外光谱,其相应的阈值为425 nm [1] [2] [3]。ZnO晶体生长较易被调控,因此成为了新的明星模型光催化材料 [3] [4]。与TiO2相似,ZnO本征带隙较宽只能吸收太阳光谱的紫外光(约占4%),从而在光催化过程起始光吸收阶段表现出较低的光电转化效率,使光催化表观速率常数较小,限制其实际应用 [5]。此外,ZnO还有易发生光腐蚀、光生载流子的复合等缺点 [6] [7] [8]。因此,提高ZnO对太阳光谱利用率、光生载流子分离效率及稳定性三大问题成为该材料研究过程中的重要课题。本文将从单一改性出发,重点论述多重改性的协同作用,并对其未来发展趋势进行展望。

2. 氧化锌改性研究进展

ZnO一般为六角纤锌矿结构,其宽禁带为3.1~3.4 eV,具有较大激子结合能(60 meV)。ZnO晶体生长可通过加入表面活性剂、封端剂、模板剂等对其颗粒尺寸及形貌进行调控 [9] [10]。较小的粒径使ZnO光响应范围变窄,但可通过提高氧化还原能力及较大比表面积提高其催化活性。形貌调控一方面可控暴露高能晶面,从而使样品具有更高的光催化活性。另一方面可通过构筑空心结构、光子晶体等手段增加光在材料内部的折射与散射,从而增强光利用率,但其本征光吸收性能没有发生改变。

目前针对ZnO本征光吸收范围的改性方法为掺杂和缺陷,而非本征光响应能力提升的改性方法有复合、等离子体共振、染料敏化。这些方法中,有一些是多功能的,如果一种以上方法联立会表现出更好的性能。其制备方法有很多,其中绿色合成法近年来备受关注。一般将生物提取物作为还原剂、稳定剂、封端剂合成ZnONPs,由于其合成路线简单、环保、无毒等优良特性。Siripireddy [11] 等人用小球藻提取物,合成了平均晶粒尺寸为11.6 nm的球形ZnONPs。Sorbiun [12] 等人用橡果壳提取物为还原剂和稳定剂合成平均粒径为34 nm ZnO和CuO NPs。K. Rambabu [13] 等人用果浆废料(DPW)提取物作为还原剂,合成球形、纳米尺寸(30 nm非团聚) ZnONPs。K. Elumalai [14] 等人以印楝叶提取物为原料合成了氧化锌,具有优异的抗菌活性。

2.1. 等离子共振改性

表面等离子体(SP)是由光子和材料界面相互作用产生的,可诱导产生电荷 [15]。适量的金属引入在氧化锌半导体光催化剂中可产生表面等离振子共振(SPR),金属纳米粒子中局部电场的产生和表面等离子激元的光学振动,可以使氧化锌在可见光区域吸收 [16]。Tan [17] 等人成功制备了具有特殊的星状和空心双金属–半导体纳米星管结构的金属晶体(CuAu-ZnO),由于Cu和Au的杂化表面等离子体激活剂的存在可使ZnO实现宽频带的太阳吸收,进而在可见光条件下表现出了优异的光催化活性。

等离子共振效应的引入,会使半导体内部产生内建电场、增强设计中空缺陷状态的光学跃迁 [18]、促进电子空穴分离、使半导体对可见光产生响应,对光催化性能的提高有很大的贡献,金属和半导体之间会形成肖特基势垒可抑制光生载流子的复合。金属引发的强电场可诱导非极性气体极化,进而可对气体的降解表现出优异的光催化活性 [19]。Halp [20] 等人制备了Ag负载的ZnO NPs,在可见光下比ZnO的电流密度远高于约5倍,Ag NPs具有局部等离子共振(LSPR),使Ag充当俘获电荷中心来提高光催化效率。Saoud [16] 等人成功合成了Ag负载的ZnO纳米颗粒。研究表明Ag纳米颗粒的表面等离振子共振,使光催化剂在可见光谱范围内吸收。Yin [21] 等人成功合成了金修饰的V2O5/ZnO三元等离子体激元光催化剂。由于V2O5的均匀涂层以及与Au和ZnO核的合适的接触界面,扩大了光吸收区域,有利于电荷的有效分离。

2.2. 缺陷改性

缺陷对光催化反应中的光吸收、电荷分离和界面的反应影响深远。缺陷往往通过引入一个新的能级,降低禁带宽度进而使氧化锌对可见光具有响应,因此构建缺陷是很重要的。缺陷分为很多种类,其中点缺陷非常重要。通常氧化锌中晶格紊乱会引起点缺陷,其包括氧间隙、氧空位、氧反位、锌间隙、锌空位、锌反位。富锌环境或还原气氛中退火通常会导致氧空位和锌间隙,而富氧环境会导致锌空位和氧间隙 [22]。缺陷浓度决定了缺陷密度、载流子浓度和界面,这极大地影响光催化反应机理进而影响光催化效率 [23] [24]。

氧空位作为浅施主可引半导体的n型电导率,而金属空位作为浅受主引起半导体的p型电导率 [25]。Pan [26] 等人制备了含有大量的锌缺陷的ZnO,研究表明由于锌空位的存在导致氧化锌的导电率为p型。Wang [27] 等人在Pan等人的基础上制备了氧化锌的p-n同质结,当100 mg的甘油酸锌和5 mg的二水醋酸锌制备的样品具有最佳的光催化活性,在甲基橙中的降解速率为10.7 min−1∙g−1,比p-ZnO和n-ZnO分别高3.1倍和5.35倍,在光电化学水分解中也表现出优异的性能。

在半导体中构建缺陷,会在半导体价带(VB)和导带(CB)之间产生中间电子和空穴陷阱,可降低了激子对产生所需的能量,进而增加材料对可见光的利用 [28]。Singh [29] 等人通过水热法合成CuO修饰的ZnO纳米片,研究表明样品中缺陷的存在,在带隙中引入了新的能级使带隙变窄,进而使氧化锌具有较高的可见光响应。制备的样品对罗丹明,甲基蓝和甲基橙染料分子的光催化性质分别比纯ZnO纳米片高1.9、1.9和2.7倍。

ZnO纳米晶体的光催化性能主要归因于合成后的ZnO纳米晶体中氧缺陷的类型和浓度。氧空位可作为电子受体,捕获光生电子,产生更多的超氧阴离子( O 2 ) [30] [31]。Wang [32] 等人成功合成具有大量氧空位(VO)的ZnO样品,制备的ZnO NR样品在可见光(λ > 420 nm)下的光催化性能增强比在紫外光(λ~254 nm)下更显着。制备氧化锌中氧缺陷的方法包括化学沉积法 [33]、等离子体处理 [34]、水热法处理 [35]、特定前驱体(如ZnO2)的热分解 [36] 等。氧空位在价带上方产生离域态,抬高了价带位置,光生空穴很容易被氧间隙(Oi)捕获,所以氧间隙充可当光生空穴的浅陷阱,产生羟基自由基(·OH)。生成的自由基与有机物反应,将其分解成二氧化碳、水和其他矿物质。目前在氧化锌光催化剂缺陷的研究中,主要以氧缺陷中的氧空位为主。Razavi-Khosroshahi [10] 等人使用高压扭转(HPT)法在6 GPa下制备了岩盐相ZnO,UV-Vis漫反射光谱表明HPT在3 GPa和6 GPa下处理的样品,它的吸收边缘分别约460和650 nm可见光区域,估计的带隙分别为2.8和1.8 eV。Zhao [37] 等人通过在缺氧环境下制备了富含氧空位的ZnO,其具有高量子产率以及对可见光具有响应。

3. 不同物质或方法对氧化锌改性的协同作用

光敏效应和等离子共振具有协同效应。Pirhashem [38] 等人将Zn(NO3)2、C6H5Na3O7、CSS、NaOH、AgNO3混合密封,在100℃下水热反应10 h合成了由Ag沉积在ZnO上包裹的碳球(Ag/ZnO@C)组成的花状三元异质结构。紫外可见漫反射分析表明由CSS引起的光敏效应和Ag的SPR效应,使样品在可见光区出现吸收波长。ZnO和Ag纳米粒子之间形成的肖特基势垒可抑制光催化反应中电子和空穴的复合。PL光谱和荧光光谱表明在Ag/ZnO@C三元异质结中,电子分别向CSS和Ag纳米粒子的电子转移,进一步提高了光生电子–空穴对的分离率。

等离子共振效应和异质结之间有协同效应。Bai [39] 等人通过超声波辐照制备了可见光驱动的ZnO/Ag/Ag2WO4复合光催化剂。研究表明,ZnO的CB和VB的计算值分别为−0.34和+2.86 eV,而Ag2WO4的计算值分别为−0.07和3.03 eV,所以它们都不能被可见光照射激发。但由于Ag的表面等离振子共振效应,在可见光照射下,激发的电子会转移到Ag2WO4和ZnO对应物的CB中。SPR和异质结的协同作用有效地抑制了光生电荷载流子的重组。制备的样品对RhB的降解活性分别是Ag/Ag2WO4和ZnO样品高95倍和19倍。对MB的降解活性分别是ZnO和Ag/Ag2WO4样品的14.8倍和11.3倍用率。

氧缺陷与其他物质复合对氧化锌的改性具有协同效应。Wang [40] 等人制备了含有氧缺陷的ZnO (ZnO1−x)和石墨烯复合光催化剂。由于石墨烯层的存在,以及ZnO中的氧缺陷,会在ZnO表面引入无序层,进而可以防止ZnO分子结构被破坏。这种无序现象可以为光生载流子提供俘获位点,阻止其快速重组。在可见光和紫外光下ZnO1−x的光电流强度分别提高了2倍和3.5倍。Liang [41] 等人合成了具有高比表面积和富氧空位的ZnO纳米片。比表面积的增加促进了表面氧空位的增加,缺陷可以作为光催化反应的活性中心,进而提高ZnO纳米片在可见光照射下的光电流和光催化活性。Alam [42] 等人通过水热法制备了多孔微球M-ZnO/CeO2 (M = Ag, Au)等离子体光催化剂。由于异质结构和氧空位缺陷的形成,降解性能和反应速率显著提高。当Ce/Zn摩尔比为3:30时,ZnO/CeO2的性能最好,反应速率达到0.00248 g−1∙min−1,是纯ZnO和CeO2的4.6倍和9.5倍。

两种物质同时掺杂对氧化锌具有协同效应。Alam [43] 等人采用超声辅助溶胶-凝胶法合成了可见光驱动的Nd和V共掺杂的ZnO,在可见光照射下,对污染物而的降解具有较好的光催化活性。Kumar [44] 等人合成了具有高可见光活性的Y-V共掺ZnO。Y的掺杂不仅大大提高了V-ZnO在可见光区域的光谱响应,而且保持了电子空穴对的分离。在可见光照射下对染料的降解有优异的光催化活性。

掺杂和异质结之间具有协同效应。ZnO中的N掺杂会影响其光吸收性能,通过在ZnO价带(VB)上方引入额外的能级,N掺杂会导致ZnO吸收边缘发生红移,并降ZnO的禁带宽度 [45]。Kumar [46] 等人成功的制备了氮掺杂的ZnO纳米片与BiVO4复合光催化剂(N-ZnO/BiVO4),在90分钟内对MB的降解效率为90%,是纯ZnO效率的1.76倍。由于在氧化锌中的氮掺杂、N-ZnO在复合体中引入了中间的锌间隙以及N-ZnO和BiVO4之间形成异质结的协同作用,降低了电荷载流子的复合速率,从而增强了纳米复合材料的光敏性可以提高对可见光的吸收。Kumar [47] 等人使用超声分散法制备了N掺杂的ZnO/g-C3N4混合核–壳纳米板。HRTEM研究证实,由于在N掺杂的ZnO/g-C3N4界面上光生载流子转移的寿命延长,大大增强的可见光光催化作用。Z型异质结构,延长N掺杂的ZnO/g-C3N4界面上电荷载流子转移的寿命,而且具有很高的光稳定性。Jow [48] 等人利用水热法制备了具有MoS2、RGO掺杂的ZnO样品。MoS2的窄带隙的掺杂增强了ZnO对可见光的吸收,抑制了光生载流子的复合,促进了电荷在ZnO-MoS2-RGO异质结上的转移,并增强了RGO纳米片的染料吸附能力。MoS2和还原氧化石墨烯(RGO)掺杂的协同作用促进了ZnO-MoS2-RGO界面上进行快速电荷转移。

两种不同物质对氧化锌的复合改性具有协同作用。Raghavan [49] 通过共沉淀法合成了氧化石墨烯(GO)负载的ZnO-g-C3N4。结果表明g-C3N4增加了复合材料对可见光的吸收。GO载体使复合材料具有优异的光催化活性和稳定性,增加对甲基蓝吸附表面积,增强了可见光吸收。Akhundi [50] 通过两步溶剂热法制备还原态石墨烯–氧化物/二氧化钛/氧化锌(rGO/TiO2/ZnO)三元光催化剂体系。TiO2导带上的光生电子经ZnO转移到了还原氧化石墨烯上,而空穴集中到了TiO2上,极大的提高了光生载流子的利用率。在120 min内,rGO/TiO2/ZnO、rGO/TiO2和TiO2的降解率分别为92%、68%和47%。Pirhashemi [51] 等人成功合成了可见光驱动新型光催化剂的三元g-C3N4/ZnO/AgCl纳米复合材料。样品中的光生电子从g-C3N4的CB分别转移到ZnO和AgCl的CB从而有效地分离了光生载流子。制备的样品比g-C3N4,g-C3N4/ZnO和g-C3N4/AgCl样品高约9.5、7.5和6倍。在270 min的光照射下,在g-C3N4,g-C3N4/ZnO,g-C3N4/AgCl和g-C3N4/ZnO/上,将近39%,46%,58%和99%的RhB分子被降解。Golzad-Nonakaran [52] 等人合成了ZnO/AgBr/Ag2CO3纳米复合材料。紫外可见漫反射光谱表明,制备的样品在整个可见光区域都具有光响应吸收波长。

4. 结语

综上所述,本文主要介绍了通过构建缺陷、等离子共振效应以及多种方法或物质共同改性氧化锌,使氧化锌对可见光具有光响应,进而提高对太阳能谱的利用率。氧化锌具有廉价、优良稳定的物化性质,所以制备高效稳定的氧化锌光催化剂并大量应用于工业是必不可少的。总的来说,对氧化锌的改性目前主要以提升光生载流子的分离效率为主,对拓宽氧化锌的太阳能谱的利用率,使其对可见光具有光响应还没有引起足够的重视。到目前为止,单一方法对氧化锌的改性已经研究的相对成熟,但只通过单一手段对提升氧化锌的光生载流子的分离效率或拓宽其光响应范围有限。值得注意的是,用多种方法或物种共同改性氧化锌可通过从多种方面提升氧化锌的光催化活性及拓宽氧化锌的光响应范围,而且具有协同作用,这使提高氧化锌光催化效率有了很大提升空间。

文章引用

赵海涛,高 鹏,苏鹏程,欧玉静,王俊峰. 可见光驱动的氧化锌基光催化剂研究进展
Research Progress of Visible Light-Driven Zinc Oxide-Based Photocatalysts[J]. 材料科学, 2021, 11(11): 1171-1178. https://doi.org/10.12677/MS.2021.1111136

参考文献

  1. 1. Mohamed, M.A., Zain, M.F., Jeffery, M.L., et al. (2019) Revealing the Role of Kapok Fibre as Bio-Template for In-Situ Construction of C-Doped g-C3N4@C,N Co-Doped TiO2 Core-Shell Heterojunction Photocatalyst and Its Photocatalytic Hydrogen Production Performance. Applied Surface Science, 476, 205-220. https://doi.org/10.1016/j.apsusc.2019.01.080

  2. 2. Lin, Y., Wang, Q., Ma, M., et al. (2021) Enhanced Optical Absorption and Photocatalytic Water Splitting of g-C3N4/ TiO2 Heterostructure through C&B Codoping: A Hybrid DFT Study. International Journal of Hydrogen Energy, 46, 9417-9432. https://doi.org/10.1016/j.ijhydene.2020.12.114

  3. 3. Shinde, S.S., Shinde, P.S., Bhosale, C.H., et al. (2011) Zinc Oxide Mediated Heterogeneous Photocatalytic Degradation of Organic Species under Solar Radiation. Journal of Photo-chemistry & Photobiology, B, 104, 425-433. https://doi.org/10.1016/j.jphotobiol.2011.04.010

  4. 4. Yu, W., Zhang, J. and Peng, T. (2016) New Insight into the Enhanced Photocatalytic Activity of N-, C- and S-Doped ZnO Photocatalysts. Applied Catalysis B: Environmental, 181, 220-227. https://doi.org/10.1016/j.apcatb.2015.07.031

  5. 5. Vahdat, V.H., Masoudpanah, S.M., Adeli, M., et al. (2019) Mesoporous Honeycomb-Like ZnO as Ultraviolet Photocatalyst Synthesized via Solution Combustion Method. Materials Research Bulletin, 117, 72-77. https://doi.org/10.1016/j.materresbull.2019.04.024

  6. 6. Murali, A., Sarswat, P.K. and Free, M.L. (2020) Minimizing Electron-Hole Pair Recombination through Band-Gap Engineering in Novel ZnO-CeO2-rGO Ternary Nanocomposite for Photoelectrochemical and Photocatalytic Applications. Environmental Science and Pollution Research (International), 27, 25042-25056. https://doi.org/10.1007/s11356-020-08990-z

  7. 7. Dutta, M., Ghosh, T. and Basak, D. (2009) N Doping and Al-N Co-Doping in Sol-Gel ZnO Films: Studies of Their Structural, Electrical, Optical, and Photoconductive Properties. Jour-nal of Electronic Materials, 38, 2335-2342. https://doi.org/10.1007/s11664-009-0908-y

  8. 8. Kim, D. and Yong, K. (2021) Boron Doping Induced Charge Transfer Switching of a C3N4/ZnO Photocatalyst from Z- Scheme to Type II to Enhance Photocatalytic Hydrogen Production. Applied Catalysis B: Environmental, 282, Article ID: 119538. https://doi.org/10.1016/j.apcatb.2020.119538

  9. 9. Noman, M.T., Petru, M., Militky, J., et al. (2019) One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials (Basel), 13, 14. https://doi.org/10.3390/ma13010014

  10. 10. Razavi-Khosroshahi, H., Edalati, K., Wu, J., et al. (2017) High-Pressure Zinc Oxide Phase as Visible-Light-Active Photocatalyst with Narrow Band Gap. Journal of Materials Chemistry A, 5, 20298-20303. https://doi.org/10.1039/C7TA05262F

  11. 11. Siripireddy, B. and Mandal, B.K. (2017) Facile Green Synthesis of Zinc Oxide Nanoparticles by Eucalyptus globulus and Their Photocatalytic and Antioxidant Activity. Advanced Powder Technology, 28, 785-797. https://doi.org/10.1016/j.apt.2016.11.026

  12. 12. Sorbiun, M., Shayegan, M.E., Ramazani, A., et al. (2018) Green Synthesis of Zinc Oxide and Copper Oxide Nanoparticles Using Aqueous Extract of Oak Fruit Hull (Jaft) and Comparing Their Photocatalytic Degradation of Basic Violet 3. International Journal of Environmental Research, 12, 29-37. https://doi.org/10.1007/s41742-018-0064-4

  13. 13. Rambabu, K., Bharath, G., Banat, F., et al. (2021) Green Synthesis of Zinc Oxide Nanoparticles Using Phoenix dactylifera Waste as Bioreductant for Effective Dye Degradation and Antibacterial Performance in Wastewater Treatment. Journal of Hazardous Materials, 402, Article ID: 123560. https://doi.org/10.1016/j.jhazmat.2020.123560

  14. 14. Elumalai, K. and Velmurugan, S. (2015) Green Synthesis, Characterization and Antimicrobial Activities of Zinc Oxide Nanoparticles from the Leaf Extract of Azadirachta indica (L.). Applied Surface Science, 345, 329-336. https://doi.org/10.1016/j.apsusc.2015.03.176

  15. 15. Qin, G., Sun, X., Xiao, Y., et al. (2019) Rational Fabrication of Plasmonic Responsive N-Ag-TiO2-ZnO Nanocages for Photocatalysis under Visible Light. Journal of Alloys and Compounds, 772, 885-899. https://doi.org/10.1016/j.jallcom.2018.09.190

  16. 16. Saoud, K., Alsoubaihi, R., Bensalah, N., et al. (2015) Synthesis of Supported Silver Nano-Spheres on Zinc Oxide Nanorods for Visible Light Photocatalytic Applications. Materials Research Bulletin, 63, 134-140. https://doi.org/10.1016/j.materresbull.2014.12.001

  17. 17. Tan, C.F., Su, S.U., Zin, A.K., Chen, Z., et al. (2018) Inverse Stellation of CuAu-ZnO Multimetallic-Semiconductor Nanostartube for Plasmon-Enhanced Photocatalysis. ACS Nano, 12, 4512-4520. https://doi.org/10.1021/acsnano.8b00770

  18. 18. Ma, X., Dai, Y., Yu, L., et al. (2014) Electron-Hole Pair Generation of the Visible-Light Plasmonic Photocatalyst Ag@AgCl: Enhanced Optical Transitions Involving Midgap Defect States of AgCl. The Journal of Physical Chemistry C, 118, 12133-12140. https://doi.org/10.1021/jp5023604

  19. 19. Murali, A., Sarswat, P.K., Perez, J.P.L., et al. (2020) Synergetic Effect of Surface Plasmon Resonance and Schottky Junction in Ag-AgX-ZnO-rGO (X = Cl & Br) Nanocomposite for Enhanced Visible-Light Driven Photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 595, Article ID: 124684. https://doi.org/10.1016/j.colsurfa.2020.124684

  20. 20. Halp, P., Vinh, T.H.T., Thuy, N.T.B., et al. (2021) Visible-Light-Driven Photocatalysis of Anisotropic Silver Nanoparticles Decorated on ZnO Nanorods: Synthesis and Characterizations. Journal of Environmental Chemical Engineering, 9, Article ID: 105103. https://doi.org/10.1016/j.jece.2021.105103

  21. 21. Yin, H., Yu, K., Song, C., et al. (2014) Synthesis of Au-Decorated V2O5@ZnO Heteronanostructures and Enhanced Plasmonic Photocatalytic Activity. ACS Applied Materials & Interfaces, 6, 14851-14860. https://doi.org/10.1021/am501549n

  22. 22. Liu, D., Lv, Y., Zhang, M., et al. (2014) Defect-Related Photoluminescence and Photocatalytic Properties of Porous ZnO Nanosheets. Journal of Materials Chemistry A, 2, 14851-14860. https://doi.org/10.1039/C4TA02678K

  23. 23. Liu, X., Wu, X., Cao, H., et al. (2004) Growth Mechanism and Properties of ZnO Nanorods Synthesized by Plasma- Enhanced Chemical Vapor Deposition. Journal of Applied Physics, 95, 3141-3147. https://doi.org/10.1063/1.1646440

  24. 24. Nana, L.G., Santosh, B.B., Abhijit, N.K., et al. (2017) Fabrication of M@CuxO/ZnO (M = Ag, Au) Heterostructured Nanocomposite with Enhanced Photocatalytic Performance under Sunlight. Industrial & Engineering Chemistry Research, 56, 14489-14501. https://doi.org/10.1021/acs.iecr.7b03168

  25. 25. Morgan, B.J. and Watson, G.W. (2009) Polaronic Trapping of Elec-trons and Holes by Native Defects in Anatase TiO2. Physical Review B, 80, Article ID: 233102. https://doi.org/10.1103/PhysRevB.80.233102

  26. 26. Pan, L., Wang, S., Mi, W., et al. (2014) Undoped ZnO Abun-dant with Metal Vacancies. Nano Energy, 9, 71-79. https://doi.org/10.1016/j.nanoen.2014.06.029

  27. 27. Wang, S., Huang, C.Y., Pan, L., et al. (2019) Controllable Fabrication of Homogeneous ZnO p-n Junction with Enhanced Charge Separation for Efficient Photocatalysis. Catalysis Today, 335, 151-159. https://doi.org/10.1016/j.cattod.2018.10.059

  28. 28. Bora, T., Sathe, P., Laxman, K., et al. (2017) Defect Engineered Visible Light Active ZnO Nanorods for Photocatalytic Treatment of Water. Catalysis Today, 284, 11-18. https://doi.org/10.1016/j.cattod.2016.09.014

  29. 29. Singh, J. and Soni, R.K. (2020) Controlled Synthesis of CuO Decorated Defect Enriched ZnO Nanoflakes for Improved Sunlight-Induced Photocatalytic Degradation of Organic Pollutants. Applied Surface Science, 521, Article ID: 146420. https://doi.org/10.1016/j.apsusc.2020.146420

  30. 30. Liu, H., Zeng, F., Lin, Y., et al. (2013) Correlation of Oxygen Vacancy Variations to Band Gap Changes in Epitaxial ZnO Thin Films. Applied Physics Letters, 102, Article ID: 181908. https://doi.org/10.1063/1.4804613

  31. 31. Asok, A., Gandhi, M.N. and Kulkarni, A.R. (2012) Enhanced Visible Photoluminescence in ZnO Quantum Dots by Promotion of Oxygen Vacancy Formation. Nanoscale, 4, 4943-4946. https://doi.org/10.1039/c2nr31044a

  32. 32. Wang, J., Chen, R., Xia, Y., et al. (2017) Cost-Effective Large-Scale Synthesis of Oxygen-Defective ZnO Photocatalyst with Superior Activities under UV and Visible Light. Ceramics International, 43, 1870-1879. https://doi.org/10.1016/j.ceramint.2016.10.146

  33. 33. Wang, S.L., Jia, X., Jiang, P., et al. (2010) Large-Scale Preparation of Chestnut-Like ZnO and Zn-ZnO Hollow Nanostructures by Chemical Vapor Deposition. Journal of Alloys and Compounds, 502, 118-122. https://doi.org/10.1016/j.jallcom.2010.04.042

  34. 34. Liu, F., Leung, Y.H., Djurišić, A.B., et al. (2014) Effect of Plasma Treatment on Native Defects and Photocatalytic Activities of Zinc Oxide Tetrapods. The Journal of Physical Chemistry C, 118, 22760-22767. https://doi.org/10.1021/jp506468r

  35. 35. Fan, H.Y., Yi, G.Y., Zhang, Z.T., et al. (2021) Binary TiO2/RGO Photocatalyst for Enhanced Degradation of Phenol and Its Application in Underground Coal Gasification Wastewater Treatment. Optical Materials, 120, Article ID: 111482. https://doi.org/10.1016/j.optmat.2021.111482

  36. 36. Wang, J., Wang, Z., Huang, B., et al. (2012) Oxygen Vacancy Induced Band-Gap Narrowing and Enhanced Visible Light Photocatalytic Activity of ZnO. ACS Applied Materials & Interfaces, 4, 4024-4030. https://doi.org/10.1021/am300835p

  37. 37. Zhao, X., Su, S., Wu, G., et al. (2017) Facile Synthesis of the Flower-Like Ternary Heterostructure of Ag/ZnO Encapsulating Carbon Spheres with Enhanced Photocatalytic Performance. Applied Surface Science, 406, 254-264. https://doi.org/10.1016/j.apsusc.2017.02.155

  38. 38. Pirhashemi, M. and Habibi-Yangjeh, A. (2017) Ultrason-ic-Assisted Preparation of Plasmonic ZnO/Ag/Ag2WO4 Nanocomposites with High Visible-Light Photocatalytic Perfor-mance for Degradation of Organic Pollutants. Journal of Colloid and Interface Science, 491, 216-229. https://doi.org/10.1016/j.jcis.2016.12.044

  39. 39. Bai, X., Wang, L., Zong, R., et al. (2013) Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization. Langmuir, 29, 3097-30105. https://doi.org/10.1021/la4001768

  40. 40. Wang, J., Xia, Y., Dong, Y., et al. (2016) Defect-Rich ZnO Nanosheets of High Surface Area as an Efficient Visible- Light Photocatalyst. Applied Catalysis B: Environmental, 192, 8-16. https://doi.org/10.1016/j.apcatb.2016.03.040

  41. 41. Liang, X., Wang, P., Gao, Y., et al. (2020) Design and Synthesis of Porous M-ZnO/CeO2 Microspheres as Efficient Plasmonic Photocatalysts for Nonpolar Gaseous Molecules Oxidation: Insight into the Role of Oxygen Vacancy Defects and M = Ag, Au Nanoparticles. Applied Catalysis B: Envi-ronmental, 260, Article ID: 118151. https://doi.org/10.1016/j.apcatb.2019.118151

  42. 42. Alam, U., Shah, T.A., Khan, A., et al. (2019) One-Pot Ultrasonic Assisted Sol-Gel Synthesis of Spindle-Like Nd and V Codoped ZnO for Efficient Photocatalytic Degradation of Organic Pollutants. Separation and Purification Technology, 212, 427-437. https://doi.org/10.1016/j.seppur.2018.11.048

  43. 43. Alam, U., Khan, A., Raza, W., et al. (2017) Highly Efficient Y and V Co-Doped ZnO Photocatalyst with Enhanced Dye Sensitized Visible Light Photocatalytic Activity. Catalysis To-day, 284, 169-178. https://doi.org/10.1016/j.cattod.2016.11.037

  44. 44. Kumar, S., Reddy, N.L., Kumar, A., et al. (2018) Two Dimen-sional N-Doped ZnO-Graphitic Carbon Nitride Nanosheets Heterojunctions with Enhanced Photocatalytic Hydrogen Evolution. International Journal of Hydrogen Energy, 43, 3988-4002. https://doi.org/10.1016/j.ijhydene.2017.09.113

  45. 45. Singh, S., Sharma, R. and Mehta, B.R. (2017) Enhanced Sur-face Area, High Zn Interstitial Defects and Band Gap Reduction in N-Doped ZnO Nanosheets Coupled with BiVO4 Leads to Improved Photocatalytic Performance. Applied Surface Science, 411, 321-330. https://doi.org/10.1016/j.apsusc.2017.03.189

  46. 46. Kumar, S., Baruah, A., Tonda, S., et al. (2014) Cost-Effective and Eco-Friendly Synthesis of Novel and Stable N-Doped ZnO/g-C3N4 Core-Shell Nanoplates with Excellent Visi-ble-Light Responsive Photocatalysis. Nanoscale, 6, 4830-4842. https://doi.org/10.1039/c3nr05271k

  47. 47. Kumar, S., Sharma, V., Bhattacharyya, K., et al. (2016) Synergetic Effect of MoS2-RGO Doping to Enhance the Photocatalytic Performance of ZnO Nanoparticles. New Journal of Chemistry, 40, 5185-5197. https://doi.org/10.1039/C5NJ03595C

  48. 48. Jow, K. and Clament Sagaya Selvam, N. (2015) Enhanced Visible Light-Driven Photocatalytic Performance of ZnO- g-C3N4 Coupled with Graphene Oxide as a Novel Ternary Nanocomposite. Journal of Hazardous Materials, 299, 462- 470. https://doi.org/10.1016/j.jhazmat.2015.07.042

  49. 49. Raghavan, N., Thangavel, S. and Venugopal, G. (2015) Enhanced Photocatalytic Degradation of Methylene Blue by Reduced Graphene-Oxide/Titanium Dioxide/Zinc Oxide Ternary Nanocomposites. Materials Science in Semiconductor Processing, 30, 321-329. https://doi.org/10.1016/j.mssp.2014.09.019

  50. 50. Akhundi, A. and Habibi-Yangjeh, A. (2015) Ternary g-C3N4/ZnO/AgCl Nanocomposites: Synergistic Collaboration on Visible-Light-Driven Activity in Photodegradation of an Organic Pollutant. Applied Surface Science, 358, 261-269. https://doi.org/10.1016/j.apsusc.2015.08.149

  51. 51. Pirhashemi, M. and Habibi-Yangjeh, A. (2016) Photosensitization of ZnO by AgBr and Ag2CO3: Nanocomposites with Tandem n-n Heterojunctions and Highly Enhanced Visible-Light Photocatalytic Activity. Journal of Colloid and Interface Science, 474, 103-113. https://doi.org/10.1016/j.jcis.2016.04.022

  52. 52. Golzad-Nonakaran, B. and Habibi-Yangjeh, A. (2016) Photosensi-tization of ZnO with Ag3VO4 and AgI Nanoparticles: Novel Ternary Visible-Light-Driven Photocatalysts with Highly Enhanced Activity. Advanced Powder Technology, 27, 1427-1437. https://doi.org/10.1016/j.apt.2016.05.001

  53. NOTES

    *通讯作者。

期刊菜单