Hans Journal of Biomedicine
Vol. 14  No. 01 ( 2024 ), Article ID: 79850 , 9 pages
10.12677/HJBM.2024.141009

基于肠道微生态治疗糖尿病肾病的研究进展

纪新建1,张志芳2*,祁乐1,刘雅倩1,闫鑫媛1,张欣雨1,陈明昊1

1内蒙古医科大学中医学院,内蒙古 呼和浩特

2内蒙古医科大学方剂学教研室,内蒙古 呼和浩特

收稿日期:2023年12月6日;录用日期:2024年1月18日;发布日期:2024年1月25日

摘要

肠道微生态在糖尿病肾病(DKD)进展中的作用越来越受到关注。一方面,肾功能下降会增加循环尿毒症毒素,影响肠道菌群的组成和功能。另一方面,肠道菌群失调会破坏上皮屏障,导致内毒素暴露增加,诱发微生态炎症级联反应,包括抑制黏附分子、趋化因子、细胞因子、免疫细胞和细胞内信号通路的表达,从而加剧肾脏损伤。本综述主要总结了肠–肾轴在糖尿病肾病进展中的证据,以期为糖尿病肾病的临床治疗提供新的思路。

关键词

肠道菌群,肠肾轴,糖尿病肾病

Research Progress in the Treatment of Diabetic Nephropathy Based on Intestinal Microecology

Xinjian Ji1, Zhifang Zhang2*, Le Qi1, Yaqian Liu1, Xinyuan Yan1, Xinyu Zhang1, Minghao Chen1

1College of Traditional Chinese Medicine, Inner Mongolia Medical University, Hohhot Inner Mongolia

2Prescription Science Teaching and Research Section of Inner Mongolia Medical University, Hohhot Inner Mongolia

Received: Dec. 6th, 2023; accepted: Jan. 18th, 2024; published: Jan. 25th, 2024

ABSTRACT

The role of intestinal microecology in the progression of diabetic nephropathy (DKD) has attracted more and more attention. On the one hand, decreased renal function will increase circulating uremic toxins and affect the composition and function of intestinal flora. On the other hand, the imbalance of intestinal flora can destroy the epithelial barrier, lead to increased endotoxin exposure, and induce microecological inflammatory cascade reactions, including inhibition of the expression of adhesion molecules, chemokines, cytokines, immune cells and intracellular signal pathways, thus aggravating renal damage. This review mainly summarizes the evidence of enterorenal axis in the progression of diabetic nephropathy, in order to provide new ideas for the clinical treatment of diabetic nephropathy.

Keywords:Intestinal Flora, Enterorenal Axis, Diabetic Nephropathy

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

人体拥有数量众多的微生物群,尤其胃肠道中菌群基因编码数量是人类基因总量150倍,被认为是人类“第二个”基因组。这些微生物组调节人类基因组的相互作用影响人体的生理代谢,并发挥结构和组织学功能 [1] 。人体内环境代谢、免疫、内分泌等主要功能与肠道菌群有密切联系 [2] 。在正常情况下,肠道菌群相对稳定,在肠道中保持共生和拮抗关系。当肠道菌群的组成发生变化时,在营养状况、病态等因素发生变化的情况下,微生物群的平衡被打破,即细菌群落的生态失调 [3] [4] 。肠道菌群失调可影响胰岛素抵抗(IR)、胆汁酸(BA)代谢、炎症反应和肠道通透性增加,这些慢性低度炎症状态被认为是糖尿病及其并发症如糖尿病肾病(diabetic nephropathy, DKD)的标志 [5] [6] [7] 。因此,维持肠道菌群的多样性和平衡对于调节宿主的健康维持和稳态至关重要。

糖尿病肾病(DKD)是慢性肾脏病(chronic kidkdey disease, CKD)的一种,是糖尿病(diabetes mellitus, DM)的常见并发症之一,是大多数国家和地区导致终末期肾病(end-stage renal disease, ESRD)的主要原因 [8] 。在过去十年中,中国DKD发病率和患病率显著上升,估计DKD人口为2430万。值得注意的是,1型糖尿病(T1D)和2型糖尿病(T2D)均在一定程度上发生DKD,其中T1D出现的可能性更大,但由于临床上T2D患者基数更多,导致由T2D发展成的DKD患者人数占比更多 [9] 。DKD的临床症状为蛋白尿增加、GFR进行性降低、持续性肾小管损伤或内皮微血管损伤。然而,DKD的机制尚未完全阐明 [10] 。尽管传统的治疗方法以细致的血糖和血压调节为重点,DKD不可避免地向相关死亡率较高如终末期肾病(ESRD)的发展仍然没有减少 [11] 。这种现象不仅可以归因于受扰的葡萄糖代谢和活性氧物种(ROS)的产生,还可以归因于慢性低度炎症的潜在状态 [12] 。调节肠道菌群失调导致的微生态炎症级联反应,包括抑制黏附分子、趋化因子、细胞因子、免疫细胞和细胞内信号通路,具有关键意义 [7] 。相关系列报道表明,DKD患者肠道中菌群大量死亡,来自细菌死亡时脱落的内毒素LPS可被toll样受体-4识别,并通过MyD88触发信号转导,激活NF-κB和丝裂原活化蛋白激酶,从而促进肾脏炎症 [13] 。除了上述和目前已知的分子信号传导外,微生物群衍生的代谢物,如短链脂肪酸(SCFAs)、次级胆汁酸(BAs)和其他尿毒症毒素也可能参与其中 [14] 。

因此,为了阐明DKD的发病机制,我们将首先总结肠肾轴理论,包括DKD进展中肾屏障和肠道通透性以及肠道菌群组成的变化。然后,将讨论微生物群衍生代谢物(如SCFAs、LPS和尿毒症毒素)对DKD进展的影响。

2. 肠–肾轴

在过去几年中,人们提出了肠道和肾脏之间的密切联系,称为肠-肾轴,强调双向交互作用 [15] 。肾损伤与尿毒症毒素在肠道中的积聚和肠道通透性增加有关。DKD患者胃肠道中尿素含量高于正常水平,含尿素酶的细菌可将其转化为氢氧化氨,从而升高肠腔pH值,导致与肠屏障功能密切相关的肠细胞紧密连接蛋白ZO-1丢失和黏液蛋白MUC2产生减少造成肠黏膜破坏,加重全身炎症反应及肾脏损伤 [16] [17] 。另一方面,DKD患者后期肾功能严重损害,许多含氮产物通过肠道释放可能导致肠道病原体大量增殖,加重肠道菌群的紊乱 [18] 。

同时,菌群失调和肠道屏障功能受损也可能通过微生物群的内毒素和代谢产物诱发全身炎症,导致肾功能恶化 [19] 。在肾脏疾病患者中,携带对甲酚和吲哚形成酶的肠道细菌过度生长,并促进酪氨酸和色氨酸的发酵,从而增加循环中尿毒症毒素如吲哚酚硫酸盐、对甲酚和对甲酚硫酸盐的水平 [20] 。这些尿毒症毒素通过OATs进入肾小管细胞,它们可以刺激TGF-β1、趋化因子和氧化自由基的产生,在肾小管和肾小球室中诱导氧化应激和炎症,导致肾脏间质纤维化和硬化。肠道通透性增加可能导致脂多糖(lipopolysaccharide, LPS)持续浸润到门静脉,导致代谢性内毒素血症和炎性细胞因子水平升高,从而加速DKD的进展 [21] 。LPS是革兰氏阴性菌的表面抗原,通过TLR2和TLR4相关通路介导宿主炎症 [22] 。研究表明,TLR2和TLR4通过诱导肿瘤坏死因子——α (TNF-α)、白细胞介素-1 (IL-1)和IL-6等促炎细胞因子的释放,以及核因子-κB (NF-κB)介导的炎症级联反应的激活,参与DKD的持续炎症反应过程 [23] 。

综上所述,胃肠道和肾脏双方的变化会通过肠黏膜、菌群、免疫炎症等方面影响另一方,导致不良后果。

3. DKD患者肠道微生态变化

1、DKD的肠黏膜屏障通透性变化

胃肠道是人体连接内部和外部环境的主要纽带,是营养物质和药物通过渗透的限制障碍。因此,其屏障的完整性至关重要。

紧密连接蛋白(Recombinant Tight Junction Protein, TJP)连接吸收肠细胞并分离其顶端和基底外侧膜。TJP蛋白通过调控细胞旁途径 [24] [25] 、营养吸收、废物清除 [26] 、肠道稳态 [27] 和防御病原体入侵来调节上皮通透性 [28] 。TJP蛋白由四种跨膜蛋白(如闭塞蛋白(occluding, OCLN)、claudins (claudins, CLDKD))和支架蛋白如闭合带蛋白-1 (zonula occludens-1, ZO-1)和闭合带蛋白-2 (zonula occludens-2, ZO-2)组成,它们结合跨膜蛋白并将其与细胞骨架肌动蛋白连接 [29] 。TJP复合蛋白是动态结构,由包括细菌和细菌产物在内的刺激而发生突变 [30] 。各种研究表明,肠道通透性紊乱与TJP的表达和易位降低有关。因此,肠道屏障TJP结构缺陷可能是以肠肾轴为支点的DKD患者肾脏进一步损伤的关键因素之一 [24] [31] 。

DKD患者肠道菌群组成和功能的改变导致肠上皮屏障受损,肠道通透性增加 [32] 。具体而言,由于DKD患者肾滤过率降低,大量尿素水解导致氨的重吸收增加,随后尿素在肝脏中重新合成,导致跨上皮电阻(transepithelial electrical resistance, TER)显著降低,并导致关键的紧密连接蛋白丢失,如claudin-1、occludin和zonula occludens-1 (zonula occludens-1, ZO-1) [16] 。氨还可转化为氢氧化氨,从而引起肠道pH值升高,加重肠黏膜损伤,导致上皮屏障结构和功能障碍 [17] 。此外,肠上皮紧密连接的破坏导致微生物成分进入下面的组织室,引发局部炎症过程,进而导致肠道屏障损伤的持续存在 [33] 。甲酚、吲哚酚、LPS和其他毒素随后被转移到血液中,从而诱发全身炎症,进一步促进DKD的发病机制 [34] 。

2、DKD的肠道菌群失调

人体肠道中有大量的微生物组,主要由拟杆菌门、厚壁菌门、变形菌门和放线菌门组成。肠道微生物组可以调节营养物质的消化和吸收,并为肠上皮细胞提供能量 [35] 。同时,为了避免肠道微生物组引起的有害免疫反应,宿主和肠道微生物组通过双向交流相互合作进化和适应,并逐渐建立互利关系 [36] 。人体免疫系统已经开发出一系列进化策略来抑制微生物群,在稳态条件下限制细菌易位和组织炎症,包括黏液、免疫球蛋白A的大量产生、调节反应的诱导和抗菌肽的合成 [37] 。

DKD患者肠道微生物群处于紊乱状态。如益生菌(如双歧杆菌、乳酸杆菌和普雷沃氏菌)相对丰度的下降以及致病菌(如共原杆菌和去磺酰基杆菌)数量的增加证实了DKD与肠道菌群的内在联系 [38] 。Li等 [39] 发现Allobaculum和厌氧孢子杆菌会加重DKD患者的肾功能恶化,而Blautia可能在小鼠中起保护作用。在急性肾损伤AKI小鼠中也发现了类似的变化 [40] [41] 。此外,在肾病患者中也可以检测到与尿毒症毒素相关的微生物群变化,以厌氧革兰氏阳性菌科Christensenellaceae、Lachnospiraceae和Ruminococcaceae为代表 [42] 。产丁酸盐细菌Roseburia和粪杆菌与患者的肾功能呈负相关 [43] [44] 。最近的一项研究表明,与健康受试者相比,糖尿病肾病患者的肠道微生物组丰富度降低;具体而言,Coriobacteriaceae在DKD受试者中富集,而Prevotellaceae是健康个体中含量最高的细菌。研究人员还发现,通过分析糖尿病患者、DKD患者和健康对照者之间的微生物差异,Prevotella_9水平可以准确预测糖尿病患者。与无肾脏并发症的糖尿病患者相比,DKD患者可以通过大肠杆菌–志贺氏菌和Prevotella_9变量准确区分,前者显著升高,后者显著降低 [45] 。其他研究报告称,肠杆菌科细菌在DKD患者中比在健康个体中更丰富 [46] 。此外,肠杆菌科的相对丰度增加也可能与炎症反应有关,因为它们表达有效的免疫兴奋剂,如LPS和肽聚糖(PGN)。

另一方面,DKD小鼠模型显示厚壁菌门/拟杆菌门(F/B)比值下降 [39] ,厚壁菌门水平与DKD的肾损伤程度呈负相关,这似乎与目前认为F/B比值增加表明健康状况较差的观点相矛盾 [47] 。健康哺乳动物的F/B比值相对稳定,F/B比值的增加或减少可能代表疾病状态。然而,是否是疾病状态,已经不能仅仅根据F/B的比例来判断,需要更多的数据来明确F/B的确切作用。尽管动物模型不能充分代表人类的疾病进展,但这些发现为肠道微生物群在糖尿病神经病变中不可或缺的作用提供了大量证据。

4. 肠道菌群衍生物对DKD影响

4.1. LPS

LPS是失调的肠道菌群死亡、溶解产生的一种肠道内毒素,位于大多数革兰氏阴性菌细胞壁外层。此外,由于DKD肠漏综合征的形成,LPS易位导致LPS的高循环水平,一种称为“内毒素血症”的疾病,刺激免疫系统细胞,尤其是巨噬细胞和内皮细胞。Salguero等 [48] 揭示了DKD患者革兰氏阴性菌的生态失调。与对照组相比,DKD患者肠道包括变形菌门、疣菌门和梭杆菌的相对丰度增加、LPS浓度升高以及由C反应蛋白(CRP)、TNF-α和IL-6组成的炎症生物标志物的积累状态。此外,LPS通过TLR4介导的MyD88和MD2信号激活IL-1R相关激酶(IRAK),随后诱导TNF受体相关因子6 (TRAF6)与IRAK和其他蛋白结合形成大型复合物,催化TRAF6的Lys 63连接的多泛素链的合成,最终导致活化的转录因子NF-κB和排出的促炎细胞因子 [49] ,已知这在DKD的发病机制中十分重要 [50] 。

4.2. SCFS

短链脂肪酸是肠道微生物群发酵膳食多糖的最终产物,包括乙酸盐、丙酸盐、丁酸盐、戊酸和异丁酸 [51] 。SCFA的功能通常与跨膜G蛋白偶联受体(GPR)的激活和组蛋白乙酰化(HDAC)的抑制有关 [52] ,以及通过GPR刺激增加胰高血糖素样肽-1(GLP-1)和GLP-2的产生,以及胰岛素表达升高和随之而来的胰岛素敏感性和胰腺细胞增殖的增强。有趣的是,葡萄糖稳态和饱腹感都受到肠道微生物群成分(如双歧杆菌和乳酸菌)的调节,这些成分可增强GLP-1的分泌 [53] 。此外,短链脂肪酸可以抑制高糖和LPS诱导的肾小球系膜细胞的氧化应激和炎症 [54] ,并改善肠道屏障功能 [55] 。丁酸钠治疗显著降低血浆中葡萄糖、肌酐和尿素的水平,减弱组织学变化,包括纤维化和胶原沉积,并抑制糖尿病肾脏中HDACs、eNOS、iNOS、纤连蛋白、TGF-β1、NF-κB、细胞凋亡和DKDA损伤的活性 [56] 。然而,并非所有短链脂肪酸的补救措施都显示出良好的效果。Lu等 [57] 发现,与对照组相比,DM大鼠肠道菌群异常,血浆醋酸盐水平升高,蛋白尿升高,GBM增厚,肾足细胞足突丢失。此外,DM大鼠肾脏中血管紧张素II、血管紧张素转换酶和血管紧张素II.1型受体的含量增加,表明肠道菌群紊乱产生的多余乙酸可能通过激活肾脏中的RAAS而引起肾脏损伤。据推测,短链脂肪酸研究的这些差异可能是由于不同疾病的不同动物模型以及短链脂肪酸的组别、浓度和应用时间造成的。

4.3. 其他代谢产物

支链氨基酸(BCAA)是由肠道菌群合成的必需氨基酸,包括缬氨酸、异亮氨酸和亮氨酸。支链氨基酸调节蛋白质合成、葡萄糖/脂质代谢、胰岛素抵抗和免疫力,以及维持体内平衡 [58] 。多胺,如精胺,腐胺,多胺氧化酶和丙烯醛,通过改变肠道微生物群的代谢参与肾脏疾病的发展 [59] 。

肠道菌群的失调促进了细菌衍生的尿毒症毒素的产生,如硫酸吲哚酚(IS)、内毒素、TMAO和对甲酚硫酸盐(PCS),这些毒素增加了肠道通透性,并通过受损的肠道屏障转移到体循环中。尿毒症毒素在肾脏中的积累可能导致肾功能不全 [60] 。TMAO是一种肠道微生物群衍生的代谢物,与1型糖尿病的死亡率和肾脏结局有关 [61] 。较高的血清TMAO水平增加了血液透析患者腹主动脉风险 [62] 。硫酸苯酯(PS)导致足细胞损伤和白蛋白尿,并被证明与DKD的进展有关 [63] 。丙酸咪唑是一种由通过肠道微生物群分解组氨酸产生的代谢物,在2型糖尿病中增加,影响宿主炎症和代谢 [64] 。PS和TMAO都可能通过分泌相关衰老表型和慢性低度炎症参与DKD的发生 [65] 。IS和PCS通过激活炎症和氧化应激导致肾脏病和心血管毒性 [67] 。此外,尿素、TMAO、PCS和3-羧酸4-甲基-5-丙基-2-呋喃丙酸(CMPF)等几种尿毒症毒素与葡萄糖稳态异常和糖尿病发病率有关 [67] 。

5. 结论与展望

综上所述,肠道菌群失调与DKD密切相关,肠道菌群失调和肾脏损害导致有益菌株的丧失、大量尿毒症毒素的积累和尿路感染的发病率增加,加速了DKD的进展。基于肠道菌群的治疗可能是未来预防和治疗DKD的一种有前途的策略。

然而,在确定微生物群来源或宿主与本身的某些代谢物的潜在因果关系方面,仍有一些复杂性难题需要克服。高质量的微生物组分析工作流程对于获得可靠且可重复的结果十分重要。因此,宏基因组学与代谢组学的结合有助于研究不同细菌和代谢物介导的信号和效应,以及探索细菌群落在治疗相关疾病中的合理应用。肠道微生物群衍生的代谢物可作为DKD的生物标志物,用于筛查、诊断和预后DKD,以及探索DKD涉及的分子机制或途径,促进个体化的预防和治疗 [68] 。同时,目前大多数数据仅限于啮齿动物模型,需要更可靠的临床试验来阐明DKD发病机制中的关键途径和特定菌株。针对肠道菌群的治疗策略在未来具有巨大的潜力,将为DKD治疗开辟新的视角和方向。

基金项目

内蒙古自然基金(2021MS08089);内蒙古自治区高等学校科学研究项目(NJZY21616)。

文章引用

纪新建,张志芳,祁 乐,刘雅倩,闫鑫媛,张欣雨,陈明昊. 基于肠道微生态治疗糖尿病肾病的研究进展
Research Progress in the Treatment of Diabetic Nephropathy Based on Intestinal Microecology[J]. 生物医学, 2024, 14(01): 81-89. https://doi.org/10.12677/HJBM.2024.141009

参考文献

  1. 1. Shine, E.E. and Crawford, J.M. (2021) Molecules from the Microbiome. Annual Review of Biochemistry, 90, 789-815. https://doi.org/10.1146/annurev-biochem-080320-115307

  2. 2. Amato, K.R., Arrieta, M.C., Azad, M.B., Bailey, M.T., Broussard, J.L., Bruggeling, C.E., Claud, E.C., et al. (2021) The Human Gut Microbiome and Health Inequities. Proceedings of the National Academy of Sciences of the United States of America, 118, e2017947118. https://doi.org/10.1146/annurev-biochem-080320-115307

  3. 3. Kriss, M., Hazleton, K.Z., Nusbacher, N.M., Martin, C.G. and Lozupone, C.A. (2018) Low Diversity Gut Microbiota Dysbiosis: Drivers, Functional Implications and Recovery. Current Opinion in Microbiology, 44, 34-40. https://doi.org/10.1016/j.mib.2018.07.003

  4. 4. Trebicka, J., Macnaughtan, J., Schnabl, B., Shawcross, D.L. and Bajaj, J.S. (2021) The Microbiota in Cirrhosis and Its Role in Hepatic Decompensation. Journal of Hepatology, 75, S67-S81. https://doi.org/10.1016/j.jhep.2020.11.013

  5. 5. Dabke, K., Hendrick, G. and Devkota, S. (2019) The Gut Microbiome and Metabolic Syndrome. Journal of Clinical Investigation, 129, 4050-4057. https://doi.org/10.1172/JCI129194

  6. 6. He, F. and Li, Y. (2020) Role of Gut Microbiota in the Development of Insulin Resistance and the Mechanism Underlying Polycystic Ovary Syndrome: A Review. Journal of Ovarian Research, 13, Article No. 73. https://doi.org/10.1186/s13048-020-00670-3

  7. 7. Niewczas, M.A., Pavkov, M.E., Skupien, J., Smiles, A., Md Dom, Z.I., Wilson, J.M., Park, J., et al. (2019) A Signature of Circulating Inflammatory Proteins and Development of End-Stage Renal Disease in Diabetes. Nature Medicine, 25, 805-813. https://doi.org/10.1038/s41591-019-0415-5

  8. 8. Boughton, C.K., Tripyla, A., Hartnell, S., Daly, A., Herzig, D., Wilinska, M.E., Czerlau, C., et al. (2021) Fully Automated Closed-Loop Glucose Control Compared with Standard Insulin Therapy in Adults with Type 2 Diabetes Requiring Dialysis: An Open-Label, Randomized Crossover Trial. Nature Medicine, 27, 1471-1476. https://doi.org/10.1038/s41591-021-01453-z

  9. 9. Papadopoulou-Marketou, N., Paschou, S.A., Marketos, N., Adamidi, S., Adamidis, S. and Kanaka-Gantenbein, C. (2018) Diabetic Nephropathy in Type 1 Diabetes. Minerva Medica, 109, 218-228. https://doi.org/10.23736/S0026-4806.17.05496-9

  10. 10. Zhang, W.R. and Parikh, C.R. (2019) Biomarkers of Acute and Chronic Kidney Disease. Annual Review of Physiology, 81, 309-333. https://doi.org/10.1146/annurev-physiol-020518-114605

  11. 11. Lin, J.R., Wang, Z.T., Sun, J.J., Yang, Y.Y., Li, X.X., Wang, X.R., et al. (2022) Gut Microbiota and Diabetic Kidney Diseases: Pathogenesis and Therapeutic Perspectives. World Journal of Diabetes, 13, 308-318. https://doi.org/10.4239/wjd.v13.i4.308

  12. 12. Maiti, A.K. (2021) Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. International Journal of Molecular Sciences, 22, Article No. 9985. https://doi.org/10.3390/ijms22189985

  13. 13. Zhong, C., Dai, Z., Chai, L., Wu, L., Li, J., Guo, W., et al. (2021) The Change of Gut Microbiota-Derived Short-Chain Fatty Acids in Diabetic Kidney Disease. Journal of Clinical Laboratory Analysis, 35, e24062. https://doi.org/10.1002/jcla.24062

  14. 14. Cai, K., Ma, Y., Cai, F., Huang, X., Xiao, L., Zhong, C., et al. (2022) Changes of Gut Microbiota in Diabetic Nephropathy and Its Effect on the Progression of Kidney Injury. Endocrine, 76, 294-303. https://doi.org/10.1007/s12020-022-03002-1

  15. 15. Huang, W., Zhou, L., Guo, H., Xu, Y. and Xu, Y. (2019) The Role of Short-Chain Fatty Acids in Kidney Injury Induced by Gut-Derived Inflammatory Response. Metabolism, 68, 20-30. https://doi.org/10.1016/j.metabol.2016.11.006

  16. 16. Vaziri, N.D., Yuan, J. and Norris, K. (2023) Role of Urea in Intestinal Barrier Dysfunction and Disruption of Epithelial Tight Junction in Chronic Kidney Disease. American Journal of Nephrology, 37, 1-6. https://doi.org/10.1159/000345969

  17. 17. Khan, I., Huang, Z., Liang, L., Li, N., Ali, Z., Ding, L., Hong, M., et al. (2021) Ammonia Stress Influences Intestinal Histomorphology, Immune Status and Microbiota of Chinese Striped-Neck Turtle (Mauremys sinensis). Ecotoxicology and Environmental Safety, 222, Article ID: 112471. https://doi.org/10.1016/j.ecoenv.2021.112471

  18. 18. Fernandez-Prado, R., Esteras, R., Perez-Gomez, M., Gracia-Iguacel, C., Gonzalez-Parra, E., Sanz, A., Ortiz, A., et al. (2019) Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients, 9, Article No. 489. https://doi.org/10.3390/nu9050489

  19. 19. Mao, Z.-H., Gao, Z.-X., Liu, D.-W., Liu, Z.-S., Wu, P., et al. (2023) Gut Microbiota and Its Metabolites-Molecular Mechanisms and Management Strategies in Diabetic Kidney Disease. Frontiers in Immunology, 14, Article ID: 1124704. https://doi.org/10.3389/fimmu.2023.1124704

  20. 20. Heaney, L.M., Davies, O.G. and Selby, N.M. (2019) Gut Microbial Metabolites as Mediators of Renal Disease: Do Short-Chain Fatty Acids Offer Some Hope? Future Science OA, 5, FSO384. https://doi.org/10.4155/fsoa-2019-0013

  21. 21. Ramezani, A., Massy, Z.A., Meijers, B., Evenepoel, P., Vanholder, R. and Raj, D.S. (2020) Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. American Journal of Kidney Diseases, 67, 483-498. https://doi.org/10.1053/j.ajkd.2015.09.027

  22. 22. Zhang, F., Qi, L., Feng, Q., Zhang, B., Li, X., Liu, C., Li, W., et al. (2021) HIPK2 Phosphorylates HDAC3 for NF-κB Acetylation to Ameliorate Colitis-Associated Colorectal Carcinoma and Sepsis. Proceedings of the National Academy of Sciences of the United States of America, 118, e2021798118. https://doi.org/10.1073/pnas.2021798118

  23. 23. Hu, X., Li, S., Fu, Y. and Zhang, N. (2019) Targeting Gut Microbiota as a Possible Therapy for Mastitis. European Journal of Clinical Microbiology & Infectious Diseases, 38, 1409-1423. https://doi.org/10.1007/s10096-019-03549-4

  24. 24. Benson, K., Cramer, S. and Galla, H.-J. (2023) Impedance-Based Cell Monitoring: Barrier Properties and Beyond. Fluids and Barriers of the CNS, 10, 5. https://doi.org/10.1186/2045-8118-10-5

  25. 25. Odijk, M., van der Meer, A.D., Levner, D., Kim, H.J., van der Helm, M.W., Segerink, L.I., Frimat, J.-P., Hamilton, G.A., Ingber, D.E. and van den Berg, A. (2019) Measuring Direct Current Trans-Epithelial Electrical Resistance in Organ-on- a-Chip Microsystems. Lab on a Chip, 15, 745-752. https://doi.org/10.1039/C4LC01219D

  26. 26. Groschwitz, K.R. and Hogan, S.P. (2019) Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. Journal of Allergy and Clinical Immunology, 124, 3-20. https://doi.org/10.1016/j.jaci.2009.05.038

  27. 27. Gareau, M.G., Sherman, P.M. and Walker, W.A. (2020) Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nature Reviews Gastroenterology & Hepatology, 7, 503-514. https://doi.org/10.1038/nrgastro.2010.117

  28. 28. LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D. and Ventura, M. (2023) Bacteria as Vitamin Suppliers to Their Host: A Gut Microbiota Perspective. Current Opinion in Biotechnology, 24, 160-168. https://doi.org/10.1016/j.copbio.2012.08.005

  29. 29. Hagihara, M., Kuroki, Y., Ariyoshi, T., Higashi, S., Fukuda, K., Yamashita, R., Matsumoto, A., Mori, T., Mimura, K., Yamaguchi, M., et al. (2020) Clostridium Butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience, 23, Article ID: 100772. https://doi.org/10.1016/j.isci.2019.100772

  30. 30. Nusrat, A., Turner, J.R. and Madara, J.L. (2020) Molecular Physiology and Pathophysiology of Tight Junctions. IV. Regulation of Tight Junctions by Extracellular Stimuli: Nutrients, Cytokines, and Immune Cells. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 279, G851-G857. https://doi.org/10.1152/ajpgi.2000.279.5.G851

  31. 31. Arrieta, M.C., Bistritz, L. and Meddings, J.B. (2018) Alterations in Intestinal Permeability. Gut, 55, 1512-1520. https://doi.org/10.1136/gut.2005.085373

  32. 32. Mahmoodpoor, F., Rahbar Saadat, Y., Barzegari, A., Ardalan, M. and Zununi Vahed, S. (2017) The Impact of Gut Microbiota on Kidney Function and Pathogenesis. Biomedicine & Pharmacotherapy, 93, 412-419. https://doi.org/10.1016/j.biopha.2017.06.066

  33. 33. de Andrade, L.S., Ramos, C.I. and Cuppari, L. (2019) The Cross-Talk between the Kidney and the Gut: Implications for Chronic Kidney Disease. Nutrire, 42, 2-14. https://doi.org/10.1186/s41110-017-0054-x

  34. 34. Soleimani, A., Zarrati Mojarrad, M., Bahmani, F., Taghizadeh, M., Ramezani, M., Tajabadi-Ebrahimi, M., Jafari, P., et al. (2021) Probiotic Supplementation in Diabetic Hemodialysis Patients Has Beneficial Metabolic Effects. Kidney International, 91, 435-442. https://doi.org/10.1016/j.kint.2016.09.040

  35. 35. Honda, K. and Littman, D.R. (2021) The Microbiota in Adaptive Immune Homeostasis and Disease. Nature, 535, 75-84. https://doi.org/10.1038/nature18848

  36. 36. Brown, E.M., Kenny, D.J. and Xavier, R.J. (2019) Gut Microbiota Regulation of T Cells during Inflammation and Autoimmunity. Annual Review of Immunology, 37, 599-624. https://doi.org/10.1146/annurev-immunol-042718-041841

  37. 37. Zheng, D., Liwinski, T. and Elinav, E. (2020) Interaction between Microbiota and Immunity in Health and Disease. Cell Research, 30, 492-506. https://doi.org/10.1038/s41422-020-0332-7

  38. 38. Cai, H.D., Su, S.L., Guo, J.M. and Duan, J.A. (2021) Effect of Salviae Miltiorrhizae Radix et Rhizoma on Diversity of Intestinal Flora in Diabetic Nephropathy Rats. China Journal of Chinese Materia Medica, 46, 426-435.

  39. 39. Li, Y., Su, X., Gao, Y., Lv, C., Gao, Z., Liu, Y., Wang, Y., et al. (2020) The Potential Role of the Gut Microbiota in Modulating Renal Function in Experimental Diabetic Nephropathy Murine Models Established in Same Environment. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1866, Article ID: 165764. https://doi.org/10.1016/j.bbadis.2020.165764

  40. 40. Yang, J., Kim, C.J., Go, Y.S., Lee, H.Y., Kim, M.G., Oh, S.W., Cho, W.Y., et al. (2020) Intestinal Microbiota Control Acute Kidney Injury Severity by Immune Modulation. Kidney International, 98, 932-946. https://doi.org/10.1016/j.kint.2020.04.048

  41. 41. Nakade, Y., Iwata, Y., Furuichi, K., Mita, M., Hamase, K., Konno, R., Miyake, T., et al. (2018) Gut Microbiota-Derived D-Serine Protects against Acute Kidney Injury. JCI Insight, 3, e97957. https://doi.org/10.1172/jci.insight.97957

  42. 42. Barrios, C., Beaumont, M., Pallister, T., Villar, J., Goodrich, J.K., Clark, A., Pascual, J., et al. (2022) Gut-Microbiota- Metabolite Axis in Early Renal Function Decline. PLOS ONE, 10, e0134311. https://doi.org/10.1371/journal.pone.0134311

  43. 43. Jiang, S., Xie, S., Lv, D., Zhang, Y., Deng, J., Zeng, L. and Chen, Y. (2021) A Reduction in the Butyrate Producing Species Roseburia spp. and Faecalibacterium prausnitzii Is Associated with Chronic Kidney Disease Progression. Antonie van Leeuwenhoek, 109, 1389-1396. https://doi.org/10.1007/s10482-016-0737-y

  44. 44. Jiang, S., Xie, S., Lv, D., Wang, P., He, H., Zhang, T., Zhou, Y., et al. (2017) Alteration of the Gut Microbiota in Chinese Population with Chronic Kidney Disease. Scientific Reports, 7, Article No. 2870. https://doi.org/10.1038/s41598-017-02989-2

  45. 45. Tao, S., Li, L., Li, L., Liu, Y., Ren, Q., Shi, M., Liu, J., et al. (2019) Understanding the Gut-Kidney Axis among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition. Acta Diabetologica, 56, 581-592. https://doi.org/10.1007/s00592-019-01316-7

  46. 46. Stanford, J., Charlton, K., Stefoska-Needham, A., Ibrahim, R. and Lambert, K. (2020) The Gut Microbiota Profile of Adults with Kidney Disease and Kidney Stones: A Systematic Review of the Literature. BMC Nephrology, 21, Article No. 215. https://doi.org/10.1186/s12882-020-01805-w

  47. 47. Spychala, M.S., Venna, V.R., Jandzinski, M., Doran, S.J., Durgan, D.J., Ganesh, B.P., Ajami, N.J., et al. (2018) Age‐Related Changes in the Gut Microbiota Influence Systemic Inflammation and Stroke Outcome. Annals of Neurology, 84, 23-36. https://doi.org/10.1002/ana.25250

  48. 48. Salguero, M.V., Al-Obaide, M.A.I., Singh, R., Siepmann, T. and Vasylyeva, T.L. (2019) Dysbiosis of Gram-Negative Gut Microbiota and the Associated Serum Lipopolysaccharide Exacerbates Inflammation in Type 2 Diabetic Patients with Chronic Kidney Disease. Experimental and Therapeutic Medicine, 18, 3461-3469. https://doi.org/10.3892/etm.2019.7943

  49. 49. Takeda, K. and Akira, S. (2022) TLR Signaling Pathways. Seminars in Immunology, 16, 3-9. https://doi.org/10.1016/j.smim.2003.10.003

  50. 50. Mudaliar, H., Pollock, C. and Panchapakesan, U. (2022) Role of Toll-Like Receptors in Diabetic Nephropathy. Clinical Science (London), 126, 685-694. https://doi.org/10.1042/CS20130267

  51. 51. Mueller, N.T., Zhang, M., Juraschek, S.P., Miller, E.R. and Appel, L.J. (2020) Effects of High-Fiber Diets Enriched with Carbohydrate, Protein, or Unsaturated Fat on Circulating Short Chain Fatty Acids: Results from the OmniHeart Randomized Trial. The American Journal of Clinical Nutrition, 111, 545-554. https://doi.org/10.1093/ajcn/nqz322

  52. 52. Lin, M.Y., de Zoete, M.R., van Putten, J.P. and Strijbis, K. (2023) Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Frontiers in Immunology, 6, Article No. 554. https://doi.org/10.3389/fimmu.2015.00554

  53. 53. Aoki, R., Kamikado, K., Suda, W., Takii, H., Mikami, Y., Suganuma, N., Hattori, M. and Koga, Y. (2017) A Proliferative Probiotic Bifidobacterium Strain in the Gut Ameliorates Progression of Metabolic Disorders via Microbiota Modulation and Acetate Elevation. Scientific Reports, 7, Article No. 43522. https://doi.org/10.1038/srep43522

  54. 54. Huang, W., Guo, H.L., Deng, X., Zhu, T.T., Xiong, J.F., Xu, Y.H. and Xu, Y. (2017) Short-Chain Fatty Acids Inhibit Oxidative Stress and Inflammation in Mesangial Cells Induced by High Glucose and Lipopolysaccharide. Experimental and Clinical Endocrinology & Diabetes, 125, 98-105. https://doi.org/10.1055/s-0042-121493

  55. 55. Chen, T., Kim, C.Y., Kaur, A., Lamothe, L., Shaikh, M., Keshavarzian, A. and Hamaker, B.R. (2017) Dietary Fibre-Based SCFA Mixtures Promote Both Protection and Repair of Intestinal Epithelial Barrier Function in a Caco-2 Cell Model. Food & Function, 8, 1166-1173. https://doi.org/10.1039/C6FO01532H

  56. 56. Khan, S. and Jena, G. (2022) Sodium Butyrate, a HDAC Inhibitor Ameliorates eNOS, iNOS and TGF-β1-Induced Fibrogenesis, Apoptosis and DNA Damage in the Kidney of Juvenile Diabetic Rats. Food and Chemical Toxicology, 73, 127-139. https://doi.org/10.1016/j.fct.2014.08.010

  57. 57. Lu,C.C., Hu, Z.B., Wang, R., Hong, Z.H., Lu, J., Chen, P.P., Zhang, J.X., et al. (2020) Gut Microbiota Dysbiosis-Induced Activation of the Intrarenal Renin-Angiotensin System Is Involved in Kidney Injuries in Rat Diabetic Nephropathy. Acta Pharmacologica Sinica, 41, 1111-1118. https://doi.org/10.1038/s41401-019-0326-5

  58. 58. Tajiri, K. and Shimizu, Y. (2018) Branched-Chain Amino Acids in Liver Diseases. Translational Gastroenterology and Hepatology, 3, 47. https://doi.org/10.21037/tgh.2018.07.06

  59. 59. Feng, Y.-L., Cao, G., Chen, D.-Q., Vaziri, N.D., Chen, L., Zhang, J., et al. (2019) Microbiome-Metabolomics Reveals Gut Microbiota Associated with Glycine-Conjugated Metabolites and Polyamine Metabolism in Chronic Kidney Disease. Cellular and Molecular Life Sciences, 76, 4961-4978. https://doi.org/10.1007/s00018-019-03155-9

  60. 60. Nallu, A., Sharma, S., Ramezani, A., Muralidharan, J. and Raj, D. (2017) Gut Microbiome in Chronic Kidney Disease: Challenges and Opportunities. Translational Research, 179, 24-37. https://doi.org/10.1016/j.trsl.2016.04.007

  61. 61. Winther, S.A., Øllgaard, J.C., Tofte, N., Tarnow, L., Wang, Z., Ahluwalia, T.S., et al. (2019) Utility of Plasma Concentration of Trimethylamine n-Oxide in Predicting Cardiovascular and Renal Complications in Individuals with Type 1 Diabetes. Diabetes Care, 42, 1512-1520. https://doi.org/10.2337/dc19-0048

  62. 62. He, L., Yang, W., Yang, P., Zhang, X. and Zhang, A. (2022) Higher Serum Trimethylamine-n-Oxide Levels Are Associated with Increased Abdominal Aortic Calcification in Hemodialysis Patients. Renal Failure, 44, 2019-2027. https://doi.org/10.1080/0886022X.2022.2145971

  63. 63. Kikuchi, K., Saigusa, D., Kanemitsu, Y., Matsumoto, Y., Thanai, P., Suzuki, N., et al. (2019) Gut Microbiome-Derived Phenyl Sulfate Contributes to Albuminuria in Diabetic Kidney Disease. Nature Communications, 10, Article No. 1835.

  64. 64. Molinaro, A., Lassen, P.B., Henricsson, M., Wu, H., Adriouch, S., Belda, E., et al. (2020) Imidazole Propionate Is Increased in Diabetes and Associated with Dietary Patterns and Altered Microbial Ecology. Nature Communications, 11, Article No. 5881.

  65. 65. Fernandes, R., Viana, S.D., Nunes, S. and Reis, F. (2019) Diabetic Gut Microbiota Dysbiosis as an Inflammaging and Immunosenescence Condition That Fosters Progression of Retinopathy and Nephropathy. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1865, 1876-1897. https://doi.org/10.1016/j.bbadis.2018.09.032

  66. 66. Rossi, M., Campbell, K.L., Johnson, D.W., Stanton, T., Vesey, D.A., Coombes, J.S., et al. (2014) Protein-Bound Uremic Toxins, Inflammation and Oxidative Stress: A Cross-Sectional Study in Stage 3-4 Chronic Kidney Disease. Archives of Medical Research, 45, 309-317. https://doi.org/10.1016/j.arcmed.2014.04.002

  67. 67. Koppe, L., Fouque, D. and Soulage, C.O. (2018) Metabolic Abnormalities in Diabetes and Kidney Disease: Role of Uremic Toxins. Current Diabetes Reports, 18, Article No. 97. https://doi.org/10.1007/s11892-018-1064-7

  68. 68. Krukowski, H., Valkenburg, S., Madella, A.-M., Garssen, J., van Bergenhenegouwen, J., Overbeek, S.A., et al. (2022) Gut Microbiome Studies in CKD: Opportunities, Pitfalls and Therapeutic Potential. Nature Reviews Nephrology, 19, 87-101. https://doi.org/10.1038/s41581-022-00647-z

期刊菜单