﻿ 基于免疫算法的碳纳米管线传感器网络优化配置 Optimal Allocation of Carbon Nanotube Sensor Networks Based on Immune Algorithm

Computer Science and Application
Vol.07 No.08(2017), Article ID:21839,5 pages
10.12677/CSA.2017.78090

Optimal Allocation of Carbon Nanotube Sensor Networks Based on Immune Algorithm

Xin Ma1, Yulin Wang1, Hongwei Liu1, Xin Dang1, Jianling Niu2, Zuoyi Liu3, Xiaona Cao4, Tianyou Liu5

1School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin

2Tianjin Jitaifangzhou Information Technology Engineering Co. Ltd., Tianjin

3Tianjin Iron and Steel Group Co., Ltd., Tianjin

4Tianjin Medical University, Tianjin

5School of Environment and Natural Resources, Renmin University of China, Beijing

Received: Aug. 7th, 2017; accepted: Aug. 21st, 2017; published: Aug. 28th, 2017

ABSTRACT

According to the optimization allocation of three-dimensional braided composite material of carbon nano pipeline sensor in the sensors network to monitor material structure and keep structure health, in consideration of the principle of coverage maximum and sensor number minimum, an immune optimization algorithm was proposed. It designed individual antibody coding and the process of the immune algorithm. Finally, simulation results show that the immune algorithm can effectively obtain the best solution.

Keywords:Structure Monitoring, Immune Algorithm, Sensor Optimization

1天津工业大学计算机科学与软件学院，天津

2天津市吉泰方洲信息技术工程有限公司，天津

3天津钢铁集团有限公司，天津

4天津医科大学，天津

5中国人民大学环境学院，北京

1. 引言

2. 碳纳米管线传感器的优化配置模型

3. 算法实现

3.1. 免疫算法

3.2. 算法原理

3.3. 抗体编码

3.4. 算法实现过程

4. 仿真实验

Figure 1. A structured mesh for optimizing the configuration of the sensor

Figure 2. The relationship between the number of sensors and adaptive values

5. 结束语

Optimal Allocation of Carbon Nanotube Sensor Networks Based on Immune Algorithm[J]. 计算机科学与应用, 2017, 07(08): 788-792. http://dx.doi.org/10.12677/CSA.2017.78090

1. 1. Ma, X., Dong, Y. and Wang, Y. (2016) Matrix Algorithm for Braiding Simulation of Three-Dimensional Four-Step Braided Composites. Mathematical Problems in Engineering, 2016, 1-9.

2. 2. 莫宏伟. 人工免疫系统[M]. 科学出版社, 2003.

3. 3. 焦李成. 多目标优化免疫算法、理论和应用[M]. 科学出版社, 2010.

4. 4. 杨智春, 于哲峰. 结构健康监测中的损伤检测技术研究进展[J]. 力学进展, 2005, 34(5): 215-233.

5. 5. 李静东, 李嘉禄, 万振凯. 基于碳纳米管的三维编织复合材料健康监测技术[J]. 材料导报, 2012, 26(8): 109-113.

6. 6. 万振凯, 贡丽英. 三维编织复合材料健康监测数据异常诊断研究[J]. 材料导报, 2013, 27(10): 74-77.

7. 7. Gong, M., Jiao, L., Du, H., et al. (2009) Multiobjective Immune Algorithm with Nondominated Neighbor-Based Selection. Evolutionary Computation, 17, 131-134. https://doi.org/10.1162/evco.2009.17.1.131

8. 8. 柴争义, 李亚伦. 计算机免疫系统及其应用[M]. 科学出版社, 2016.

9. 9. 王震, 陈云芳. 基于人工免疫的多目标优化研究综述[J]. 计算机应用研究, 2009, 26(7): 2422-2426.

10. 10. 公茂果, 焦李成, 杨咚咚, 等. 进化多目标优化算法研究[J]. 软件学报, 2009, 20(2): 271-289.