Advances in Clinical Medicine
Vol. 10  No. 02 ( 2020 ), Article ID: 34208 , 7 pages
10.12677/ACM.2020.102022

The Value of TCD in Predicting Intracerebral Hemorrhage after Acute Precirculatory Occlusion

Guozhang Lu1, Liyong Zhang2, Jiheng Hao2, Peijian Wang2, Jiyue Wang2*

1Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an Shandong

2Department of Vascular Neurosurgery, Liaocheng People’s Hospital, Liaocheng Shandong

Received: Jan. 27th, 2020; accepted: Feb. 11th, 2020; published: Feb. 18th, 2020

ABSTRACT

Objective: To investigate the value of TCD in predicting intracerebral hemorrhage after acute anterior circulation occlusion. Methods: To collect all ischemic stroke patients with precirculatory vascular occlusion (2b-3 cerebral infarction) who were successfully treated with endovascular recanalization in Liaocheng Brain Hospital from November, 2017 to December, 2008. We reviewed their TCD examination of mean flow velocity index (MBF) in the contralateral and intraoperative middle cerebral artery (MCA) after intervention and analyzed its relationship with intracerebral hemorrhage and clinical outcomes after intervention. Results: a total of 44 patients were included in this study, 26 (59%) were male, 21 (48%) were middle cerebral occlusion, 9 (20%) were internal carotid artery occlusion, and 14 (32%) were internal carotid artery + middle cerebral artery occlusion. All patients underwent TCD examination within 14.6 ± 4.7 hours after the intervention, and underwent craniocerebral CT or MRI within 16.4 ± 5.8 hours. Among them, 8 patients (18%) had substantial intracerebral hemorrhage after the intervention, all of which occurred on the operative side. In 90 days of MRS, 18 patients recovered well (MRS 0-2), 26 patients had poor prognosis (MRS 3-6), and 4 patients died (MRS 6). Among the patients in the study, admission NIHSS score was higher for bleeding after acute stroke intervention than for non-bleeding patients (P = 0.034). There was no significant difference in gender, age, hypertension, diabetes, smoking, drinking and recanalization time between bleeding and non-bleeding patients. In the 90-day prognosis, patients with bleeding had a worse prognosis (MRs 3-6 P = 0.011). In the TCD test, the comparison of MBF between the bleeding group and the non-bleeding group was statistically significant (1.45 vs. 1.06 P < 0.001). Conclusion: MBF velocity index of MCA was higher after treatment of anterior circulation occlusive recanalization, suggesting a lower risk and prognosis of ICH after intervention.

Keywords:Acute Precirculation Occlusion, Transcranial Doppler Ultrasound, Hemodynamics

TCD在急性前循环闭塞机械取栓术后预测脑出血的价值

卢国章1,张利勇2,郝继恒2,王培健2,王继跃2*

1山东第一医科大学(山东省医学科学院),山东 泰安

2山东省聊城市人民医院血管神经外科,山东 聊城

收稿日期:2020年1月27日;录用日期:2020年2月11日;发布日期:2020年2月18日

摘 要

目的:探讨TCD对急性前循环闭塞机械取栓术后预测脑出血的应用价值。方法:搜集2017.11~2018.12于聊城市脑科医院所有成功血管内再通治疗前循环血管闭塞(脑梗死2b-3)的缺血性卒中患者。我们回顾了他们介入后对侧和术侧大脑中动脉(MCA)平均血流速度指数(MBF)的TCD检查,并分析其与介入后脑出血和临床结果的关系。结果:本研究共纳入急性前循环闭塞成功行机械取栓的患者44例,26例(59%)为男性患者,纳入的患者中有21例(48%)为大脑中闭塞,9例(20%)为颈内动脉闭塞,14例(32%)颈内动脉 + 大脑中动脉闭塞。所有患者在介入术后14.6 ± 4.7小时内行TCD检查,并在16.4 ± 5.8小时内行颅脑CT或MRI,其中有8例(18%)术后出现实质性脑出血,脑出血均出现在术侧。90天MRS中,有18例患者恢复良好(MRS 0-2),26例患者患者预后不良(MRS 3-6),4例患者最终死亡(MRS 6)。研究的患者中,急性卒中介入术后出血比非出血的患者入院NIHSS评分更高(P = 0.034)。出血与非出血患者在性别、年龄、高血压、糖尿病、吸烟、饮酒、再通时间上无统计学意义。在90天预后中,出血患者的预后更差(MRs 3-6, P = 0.011)。TCD检查中,在出血组和非出血组中,MBF的比较有统计学意义(1.45 vs. 1.06, P < 0.001)。结论:在前循环闭塞再通治疗后,MCA的MBF速度指数较高,提示介入后ICH的风险和预后较差。

关键词 :急性前循环闭塞,经颅多普勒超声,血流动力学

Copyright © 2020 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

目前世界上超过30%的脑卒中是由于大动脉阻塞引起的前循环急性缺血性卒中,其临床表现更为严重,预后更差 [1] [2]。五大随机试验显示当血管内治疗(EVT)结合静脉溶栓(IVT)与单独静脉溶栓治疗相比,可以为大动脉阻塞患者带来更好的治疗效果 [3] [4] [5] [6] [7]。随着技术的发展,机械取栓的再通率可高达90% [8],但患者仍会出现术后脑出血(ICH),导致患者预后较差 [9] [10]。近年来,有研究者通过动脉自旋技术(ASL)探讨急性前循环缺血性脑卒中(AIS)高灌注与出血转化(HT)的关系,发现术后高灌注与出血转化有关 [11] [12]。经颅多普勒超声(TCD)可以检测血流动力学,因此作者猜测TCD也可以通过术后动态检测患者的血流速度预测患者术后ICH的风险及预后。本研究通过TCD检测急性前循环缺血性脑卒中患者术后血流速度的变化与ICH及预后的关系。

2. 对象及方法

2.1. 对象

回顾性纳入2017.11~2018.12于聊城市脑科医院血管外科行支架取栓及桥接取栓的急性前循环闭塞(即颈内动脉和/或大脑中动脉急性闭塞)的患者44例,其中男性患者26例,女性患者18例;年龄37~82岁,平均64 ± 10岁。经DSA证实,颈内动脉闭塞9例,大脑中动脉闭塞21例,颈内动脉和大脑中动脉串联闭塞患者14例。本研究方案经聊城市脑科医院伦理委员会批准,患者或其家属均签署了手术知情同意书。

2.2. 纳入标准及排除标准

纳入标准:1) 年龄 ≥ 18岁;2) 经DSA检查证实为前循环大血管闭塞,均为单侧;3) 发病 ≤ 6 h;4) 发病前改良Rankin量表(mRs)评分 < 2分;5) 双侧颞窗透声良好;6) 经solitaire支架取栓后,血流再灌注达改良脑梗死溶栓(mTIcI)分级2b-3级。排除标准:1) 经DsA检查大脑中动脉为慢性闭塞;2) 头部CT显示出血或大面积脑梗死(超过大脑半球l/3)。

2.3. TCD检查方法

TCD采用RIMED Digi-lite,选用2.0 HZ探头。由经验丰富的超声科医师于患者的颞窗探查患者大脑中动脉,记录患者术后第1天的大脑中动脉的Vm。为了排除个体间血流速度的生理差异,并排除可能影响单个MBF的因素(如红细胞压积、血压、心率),我们还计算了同侧(即再通)的结果除以对侧MCA Vm速度。若DSA提示患者术后血流通畅(mTICI 2b-3级),TCD示血管闭塞或流速较高,由3名以上的超声科医师复查,若仍提示狭窄或闭塞或出血风险,则及时复查CT、CTA或DSA。

2.4. 手术方式

取栓操作均由经验丰富的介入放射科医生使用Solitaire支架取栓进行,具体手术方式:于股动脉置入8F或6F股动脉鞘管,将5F NAVI或6F NAVI中间导管置入颈内动脉,将Raber18微导管通过闭塞处,将Solitaire支架置入闭塞远端后释放,边抽吸边撤出支架。对介入后残余狭窄 > 50%的的患者进行球囊扩张,仍局限性狭窄的患者进行支架置入术,介入后再通状态以脑梗死溶栓分级表进行分级。mTICI等级为2b-3个定义为成功再通。所有血管内手术均由专职神经麻醉师在全身麻醉下进行。所有的患者在介入治疗后都在我们的卒中病房或神经重症监护病房接受了密切的血压监测。

2.5. 研究方法及颅内出血(ICH)的定义

所有患者入院后24小时及出院时均行颅脑MRI/CT检查。如果发生神经功能恶化(1类中NIHSS评分增加 > 2分或总分增加4分),立即行CT/MRI排除卒中复发或颅内出血(ICH)。患者出院后3个月采用改良Rankin量表(mRS)对神经综合征及功能状态进行评估 [13]。TCD在术后24 H内评估血管通畅程度和脑血流动力学;再狭窄时,经CTA/磁共振血管造影确诊。

ICH是在广泛应用海德堡出血分类(Heidelberg Bleeding Classification HBC)后定义的,将颅内出血分为出血转化、实质出血、脑室出血、蛛网膜下腔出血和硬膜下出血 [14]。有症状性脑出血定义为患者症状的恶化。最近的调查,症状恶化定义为美国国立卫生研究院(National Institutes of Health)脑卒中量表(NIHSS)评分增加2分,或总分增加4分 [14] [15]。

2.6. 统计分析

使用SPSS 23.0进行统计分析。分类变量使用χ2比较。对于连续变量,采用Kolmogorov-Smirnov检验检验高斯分布。如果确定为高斯分布,则使用t检验比较分组(“出血”和“非出血”)。若不服从高斯分布,则采用Mann-Whitney U检验。对MCA MBF指数采用多元线性logistic回归分析,并对所有患者的MBF进行回归分析并计算r值,P值 < 0.05为差异有统计学意义。

3. 结果

本研究共纳入急性前循环闭塞成功行机械取栓的患者44例,26例(59%)为男性患者,纳入的患者中有21例(48%)为大脑中闭塞,9例(20%)为颈内动脉闭塞,14例(32%)颈内动脉 + 大脑中动脉闭塞。入院NIHSS评分中位数为22(范围2~40)。入院年龄、性别、高血压、糖尿病、吸烟、饮酒、入院再通时间比较见表1

所有患者在介入术后14.6 ± 4.7小时内行TCD检查,并在16.4 ± 5.8小时内行颅脑CT或MRI,其中有8例(18%)术后出现实质性脑出血,脑出血均出现在术侧。90天MRS中,有18例患者恢复良好(MRS 0-2),26例患者患者预后不良(MRS 3-6),4例患者最终死亡(MRS 6)。

本研究的患者中,急性卒中介入术后出血比非出血的患者入院NIHSS评分更高(P = 0.034)。出血与非出血患者在性别、年龄、高血压、糖尿病、吸烟、饮酒、再通时间无统计学意义。在90天预后中,出血患者的预后更差(MRs 3-6, P = 0.011) (表2)。

TCD检查中,在出血组和非出血组中,MBF的比较有统计学意义(1.45 vs. 1.06, P < 0.001) (表3)。

Table 1. Comparison of basic data after stent removal in patients with acute precirculation occlusion

表1. 急性前循环闭塞患者支架取栓术后基础资料比较

Table 2. Comparison of 90-day prognosis and mean middle cerebral artery ratio in patients with acute precirculation occlusion

表2. 急性前循环闭塞患者90天预后与平均大脑中动脉比值比较

Table 3. Comparison of mean velocity ratio in the brain after stenting with or without bleeding in patients with acute precirculation occlusion

表3. 急性前循环闭塞患者支架取栓术后大脑中平均流速比值与是否出血比较

4. 讨论

近年来机械取栓的安全性、快速性和有效性得到认可,已成为大血管急性闭塞缺血性脑卒中患者的首选治疗方案 [3] [4] [5] [6] [7]。然而仍有一定比例的机械取栓患者预后较差,脑卒中再灌注治疗急性期严重并发症(静脉溶栓和机械取栓)为ICH,其常见原因是血脑屏障破坏和脑血流自动调节功能丧失所致的再灌注损伤 [9] [14] [15] [16]。

最近的一项研究探讨血管内治疗急性缺血性脑卒中前循环闭塞患者与术后脑出血的关系。该研究纳入123例前循环闭塞并行血管内治疗的患者,术后有18例发生脑出血,采用TCD监测术后开通侧大脑中动脉Vm速度,发现大脑中动脉Vm增加与术后脑出血有关 [17]。本研究结果中TCD显示再通后出现脑出血的患者MCA MBF速度指数显著升高,与未出血患者之间的差异具有统计学意义(1.45 VS 1.06, P < 0.001),而且,MBF速度指数也与患者90天预后有关,与其研究结果相符。

研究已经表明,高血压和大面积脑梗死与术后脑出血密切相关 [9] [15] [18]。本研究显示高血压与术后脑出血无统计学意义(P = 0.121),可能与术中及术后应用尼莫地平控制血压、缓解脑血管痉挛,术后还应用依达拉奉清除氧自由基,降低了高血压造成术后脑出血的发生。

既往研究认为,TCD上的血流速度在健康者和急性脑卒中患者中具有较大个体间差异 [19] [20]。虽然研究中脑出血患者同侧MCA中Vm速度显著增加,但很难确定临界点。因此,我们计算了同侧MCAVm速度除以对侧MCA Vm速度,发现机械取栓成功治疗急性前循环血管闭塞患者,同侧MCA MBF速度升高(平均39%)与脑出血之间存在显著的相关性。

TCD已越来越多地应用于脑卒中的研究,早期的研究使用TCD评估脑大血管溶栓后的通畅性或烟雾病术后的血流动力学变化 [21] [22] [23]。在急性和慢性狭窄闭塞过程中,血管重建后的病理生理机制可能不同。在临床情况下,这两种情况的共同之处在于,都表现出血流动力学失调。在这种情况下,TCD比MRI更容易实施 [24] [25],本研究表明TCD超声检查可以检测血管内再通治疗后MCA的血流动力学变化。

TCD可以实时监测MCA血流动力学,比MRI更容易,也可重复检测,与CTA具有较高的一致性,但会受到患者颞窗通透性的影响。且早期研究报道,由于导管的局部刺激,局部内皮反应或血管痉挛可以引起MCA的血流动力学改变 [26] [27]。近来有研究采用ASL动脉自旋标记技术,发现术后高灌注与出血转化有关,以后的研究可以将TCD与灌注技术结合起来 [11] [12]。本研究仅为单中心回顾性研究,样本量较少,有一定的局限性。因此,本研究结果尚有待于进一步探讨和验证。

文章引用

卢国章,张利勇,郝继恒,王培健,王继跃. TCD在急性前循环闭塞机械取栓术后预测脑出血的价值
The Value of TCD in Predicting Intracerebral Hemorrhage after Acute Precirculatory Occlusion[J]. 临床医学进展, 2020, 10(02): 134-140. https://doi.org/10.12677/ACM.2020.102022

参考文献

  1. 1. Lakomkin, N., Dhamoon, M., Carroll, K., Singh, I.P., Tuhrim, S., Lee, J., et al. (2019) Prevalence of Large Vessel Oc-clusion in Patients Presenting with Acute Ischemic Stroke: A 10-Year Systematic Review of the Literature. Journal of NeuroInterventional Surgery, 11, 241-245. https://doi.org/10.1136/neurintsurg-2018-014239

  2. 2. Peisker, T., Koznar, B., Stetkarova, I. and Widimsky, P. (2017) Acute Stroke Therapy: A Review. Trends in Cardiovascular Medi-cine, 7, 59-66. https://doi.org/10.1016/j.tcm.2016.06.009

  3. 3. Berkhemer, O.A., Fransen, P.S., Beumer, D., van den Berg, L.A., Lingsma, H.F., Yoo, A.J., et al. (2015) A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. The New England Journal of Medicine, 372, 11-20. https://doi.org/10.1056/NEJMoa1411587

  4. 4. Campbell, B.C., Mitchell, P.J., Kleinig, T.J., Dewey, H.M., Churilov, L., Yassi, N., et al. (2015) Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. The New England Journal of Medicine, 372, 1009-1018. https://doi.org/10.1056/NEJMoa1414792

  5. 5. Goyal, M., Demchuk, A.M., Menon, B.K., Eesa, M., Rempel, J.L., Thornton, J., et al. (2015) Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke. The New England Journal of Medicine, 372, 1019-1030. https://doi.org/10.1056/NEJMoa1414905

  6. 6. Jovin, T.G., Chamorro, A., Cobo, E., de Miquel, M.A., Molina, C.A., Rovira, A., et al. (2015) Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke. The New Eng-land Journal of Medicine, 372, 2296-2306. https://doi.org/10.1056/NEJMoa1503780

  7. 7. Saver, J.L., Goyal, M., Bonafe, A., Diener, H.C., Levy, E.I., Pereira, V.M., et al. (2015) Solitaire with the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic Stroke (SWIFT PRIME) Trial: Protocol for a Randomized, Controlled, Multicenter Study Comparing the Solitaire Revascularization Device with IV tPA with IV tPA Alone in Acute Ischemic Stroke. International Journal of Stroke, 10, 439-448. https://doi.org/10.1111/ijs.12459

  8. 8. Furlan, A.J. (2015) Stent-Retriever Thrombectomy for Stroke. New England Journal of Medicine, 373, 1076-1078. https://doi.org/10.1056/NEJMc1508744

  9. 9. Hao, Y., Yang, D., Wang, H., Zi, W., Zhang, M., Geng, Y., et al. (2017) Predictors for Symptomatic Intracranial Hemorrhage after Endovascular Treatment of Acute Ischemic Stroke. Stroke, 48, 1203-1209. https://doi.org/10.1161/STROKEAHA.116.016368

  10. 10. Yaghi, S., Eisenberger, A. and Willey, J.Z. (2014) Symptomatic Intracerebral Hemorrhage in Acute Ischemic Stroke after Thrombolysis with Intravenous Recombinant Tissue Plasminogen Activator: A Review of Natural History and Treatment. JAMA Neurology, 71, 1181-1185. https://doi.org/10.1001/jamaneurol.2014.1210

  11. 11. Yu, S., Liebeskind, D.S., Dua, S., Wilhalme, H., Elashoff, D., Qiao, X.J., et al. (2015) Postischemic Hyperperfusion on Arterial Spin Labeled Perfusion MRI Is Linked to Hemorrhagic Transformation in Stroke. Journal of Cerebral Blood Flow & Metabolism, 35, 630-637. https://doi.org/10.1038/jcbfm.2014.238

  12. 12. Okazaki, S., Yamagami, H., Yoshimoto, T., Morita, Y., Yamamoto, H., Toyoda, K., et al. (2017) Cerebral Hyperperfusion on Arterial Spin Labeling MRI after Reperfusion Therapy Is Related to Hemorrhagic Transformation. Journal of Cerebral Blood Flow & Metabolism, 37, 3087-3090. https://doi.org/10.1177/0271678X17718099

  13. 13. 张磊, 刘建民. 改良Rankin量表[J]. 中华神经外科杂志, 2012, 28(5): 512.

  14. 14. Von Kummer, R., Broderick, J.P., Campbell, B.C., Demchuk, A., Goyal, M., Hill, M.D., et al. (2015) The Heidelberg Bleeding Classification: Classification of Bleeding Events after Ischemic Stroke and Reperfusion Therapy. Stroke, 46, 2981-2986. https://doi.org/10.1161/STROKEAHA.115.010049

  15. 15. Wang, D.T., Churilov, L., Dowling, R., Mitchell, P. and Yan, B. (2015) Successful Recanalization Post Endovascular Therapy Is Associated with a Decreased Risk of Intracranial Haemorrhage: A Retrospective Study. BMC Neurology, 15, Article No. 185. https://doi.org/10.1186/s12883-015-0442-x

  16. 16. Bai, J. and Lyden, P.D. (2015) Revisiting Cerebral Postischemic Reperfusion Injury: New Insights in Understanding Reperfusion Failure, Hemorrhage, and Edema. International Journal of Stroke, 10, 143-152. https://doi.org/10.1111/ijs.12434

  17. 17. Yoo, A.J., Simonsen, C.Z., Prabhakaran, S., Chaudhry, Z.A., Issa, M.A., Fugate, J.E., et al. (2013) Refining Angiographic Biomarkers of Revascularization: Improving Outcome Prediction after Intra-Arterial Therapy. Stroke, 44, 2509-2512. https://doi.org/10.1161/STROKEAHA.113.001990

  18. 18. Jiang, S., Fei, A., Peng, Y., Zhang, J., Lu, Y.R., Wang, H.R., et al. (2015) Predictors of Outcome and Hemorrhage in Patients Undergoing Endovascular Therapy with Solitaire Stent for Acute Ischemic Stroke. PLoS ONE, 10, e0144452. https://doi.org/10.1371/journal.pone.0144452

  19. 19. Panerai, R.B., Eames, P.J. and Potter, J.F. (2006) Multiple Coherence of Cerebral Blood Flow Velocity in Humans. American Journal of Physiology—Heart and Circulatory Physiology, 291, H251-H259. https://doi.org/10.1152/ajpheart.01348.2005

  20. 20. Krejza, J., Mariak, Z., Walecki, J., Szydlik, P., Lewko, J. and Ustymowicz, A. (1999) Transcranial Color Doppler Sonography of Basal Cerebral Arteries in 182 Healthy Subjects: Age and Sex Variability and Normal Reference Values for Blood Flow Parameters. American Journal of Roentgenology, 172, 213-218. https://doi.org/10.2214/ajr.172.1.9888770

  21. 21. Marks, M.P., Lansberg, M.G., Mlynash, M., Kemp, S., McTaggart, R., Zaharchuk, G., et al. (2014) Correlation of AOL Recanalization, TIMI Reperfusion and TICI Reperfusion with Infarct Growth and Clinical Outcome. Journal of NeuroInterventional Surgery, 6, 724-728. https://doi.org/10.1136/neurintsurg-2013-010973

  22. 22. Kneihsl, M., Niederkorn, K., Deutschmann, H., Enzinger, C., Poltrum, B., Fischer, R., et al. (2018) Increased Middle Cerebral Artery Mean Blood Flow Velocity Index after Stroke Thrombectomy Indicates Increased Risk for Intracranial Hemorrhage. Journal of NeuroInterventional Surgery, 10, 882-887. https://doi.org/10.1136/neurintsurg-2017-013617

  23. 23. Demchuk, A.M., Burgin, W.S., Christou, I., Felberg, R.A., Barber, P.A., Hill, M.D., et al. (2001) Thrombolysis in Brain Ischemia (TIBI) Transcranial Doppler Flow Grades Predict Clinical Severity, Early Recovery, and Mortality in Patients Treated with Intravenous Tissue Plasminogen Activator. Stroke, 32, 89-93. https://doi.org/10.1161/01.STR.32.1.89

  24. 24. Harders, A. and Gilsbach, J. (1985) Transcranial Doppler Sonography and Its Application in Extracranial-Intracranial Bypass Surgery. Neurological Research, 7, 129-141. https://doi.org/10.1080/01616412.1985.11739711

  25. 25. 孙彬彬, 段炼, 史万超, 杨伟中, 李德生, 杨日淼, 等. TCD对烟雾病患者脑硬脑膜动脉血管融通术前后颞浅动脉血流变化的评估价值[J]. 中国临床神经外科杂志, 2011, 16(4): 204-206.

  26. 26. Aoki, J., Raber, L.N., Katzan, I.L., Hussain, M.S., Hui, F.K. and Uchino, K. (2014) Re-sponse to a Letter Regarding a Paper Entitled, “Post-Intervention TCD Examination May Be Useful to Predict Outcome in Acute Ischemic Stroke Patients with Successful Intra-Arterial Intervention”. Journal of the Neurological Sciences, 338, 243. https://doi.org/10.1016/j.jns.2013.12.050

  27. 27. Bonvin, C., Momjian-Mayor, I., Sekoranja, L., Lovblad, K.O., Altrichter, S., Yilmaz, H., et al. (2010) Stroke Severity and Residual Flow Determined by Transcranial Colour-Coded Ultrasound (TCCD) Predict Recanalization and Clinical Outcome during Thrombolysis. Journal of the Neurological Sciences, 296, 96-100. https://doi.org/10.1016/j.jns.2010.05.010

期刊菜单