Advances in Clinical Medicine
Vol. 14  No. 01 ( 2024 ), Article ID: 78654 , 8 pages
10.12677/ACM.2024.141009

维持性血液透析患者血管钙化的研究进展

梁伊凡

延安大学医学院,陕西 延安

收稿日期:2023年12月1日;录用日期:2023年12月26日;发布日期:2024年1月4日

摘要

血管钙化(vascular calcification, VC)是慢性肾脏病(chronic kidney disease, CKD)患者常见的血管病变,可加重心脏后负荷,可导致心脏缺血、左室肥厚和心力衰竭,从而导致透析患者心血管事件的发生率及死亡率的增高。血管钙化根据发生位置主要可分为内膜钙化和中膜钙化。VC在CKD中发病机制复杂,涉及多种因素和机制,且临床上尚缺乏有效的VC治疗方法。因此本文将从、流行病学、发病机制、危险因素、诊断及治疗等方面对维持性血液透析患者血管钙化研究加以阐述。

关键词

血管钙化,慢性肾脏病,透析

Research Progress on Vascular Calcification in Maintenance Hemodialysis Patients

Yifan Liang

School of Medicine, Yan’an University, Yan’an Shaanxi

Received: Dec. 1st, 2023; accepted: Dec. 26th, 2023; published: Jan. 4th, 2024

ABSTRACT

Vascular calcification (VC) is a common vascular lesion in patients with chronic kidney disease (CKD), which can exacerbate cardiac afterload, lead to myocardial ischemia, left ventricular hypertrophy, and heart failure, thereby increasing the incidence and mortality of cardiovascular events in dialysis patients. Vascular calcification can be mainly divided into intimal calcification and media calcification based on its location. The pathogenesis of VC in CKD is complex, involving multiple factors and mechanisms, and there is still a lack of effective VC treatment methods in clinical practice. Therefore, this article will elaborate on the study of vascular calcification in maintenance hemodialysis patients from the perspectives of epidemiology, pathogenesis, risk factors, diagnosis and treatment.

Keywords:Vascular Calcification, Chronic Kidney Disease, Dialysis

Copyright © 2024 by author(s) and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

近日,中国疾病预防控制中心周脉耕、南方医科大学南方医院侯凡凡院士等在JAMA内科学子刊JAMA Internal Medicine发表的一项研究显示,2018~2019年我国有8200万慢性肾脏病(CKD)成人患者。CKD、肾功能受损、蛋白尿的患病率分别为8.2%、2.2%和6.7%,但知晓率仅10%。研究结果显示,过去十年,我国的CKD患病率下降了30%,根据eGFR改良MDRD公式计算,由2009~2010年的10.8%降至目前的7.6% [1] 。但其中仍有相当一部分人群将发展为ESRD。ESRD患者死亡率每年仍高于20%,致其死亡的首要原因是心血管疾病(CVD),约占总死亡人数的60%,是普通人群的10~20倍 [2] 。冠状动脉钙化(CAC)是CVD最常见的病理表现之一,目前己成为CKD患者并发CVD及死亡的独立危险因素,可诱发患者病情加重甚至死亡,CAC所致患者的死亡率约占CKD患者总死亡率的30%左右 [3] [4] 。在CKD患者中,CAC的发生非常普遍,且在各个阶段均存在。

2. 发生机制

最新研究认为,血管钙化是一个主动的,且受严格机制调控的、类似于骨质矿化的过程。在ESRD患者中可以观察到这种“活跃”的血管钙化的现象。慢性肾脏病患者的血管钙化可发生在动脉的内膜和中膜,发生在内膜时是以动脉粥样硬化为表现形式,但多以中膜钙化为主,又称monckeberg’s钙化,其典型病理学特征为弥散于整个中膜层的连续性线样钙化,组织学表现为血管僵硬度增加,顺应性减退,但无明显的血管狭窄,血管内径不受影响。关于慢性肾脏病血管钙化的主要机制有两点:一是具有成骨潜能的祖细胞在血流或血管壁中聚集并激活,二是成熟的血管平滑肌细胞(vascular smooth muscle cell, VSMC)向成骨/软骨细胞发生表型转化,弹性蛋白发生降解 [5] 。同时这些VSMC形成类似于骨发生需要的“结节”,产生骨相关蛋白并形成基质囊泡,从而导致“矿化”进行。

3. 危险因素

研究发现传统危险因素,如性别、年龄、长透析龄、高血压、糖尿病、血脂异常、高半胱氨酸血症等传统危险因素已无法完全解释MHD患者出现冠脉钙化的原因,一些非传统危险因素开始被广泛关注,如钙磷代谢紊乱(高钙、高磷)、高甲状旁腺素(intact parathyroid hormone, iPTH)血症、炎症状态、氧化应激等 [6] [7] 。

3.1. 血镁异常

除了钙磷代谢的紊乱,在越来越多透析患者中发现了血镁代谢的异常,低镁血症的发生率可高达18% [8] 。血清镁每下降1 mg/dl,血管钙化的风险将增加71.6% [9] 。低镁血症可增加透析患者心血管死亡的风险 [10] 。动物实验中也发现提高血清镁离子浓度可以延缓冠脉钙化进展 [11] 。镁离子有拮抗钙离子的作用,因此可能抑制钙离子的内流,减少钙化的发生,有体外研究推测了血清镁抑制冠脉钙化的机制:抑制Wnt/β-catenin通路活性并逆转血管平滑肌细胞的成骨转化 [12] 。Montes等 [13] 的动物试验观察到高磷酸盐可诱导Wnt/β-catenin信号通路的激活,使β-catenin易位到细胞核内,Ffrizzled-3基因表达增加,Dkk-1基因表达下调(Dkk-1基因是Wnt/β-catenin通路的特异性拮抗剂)。但是补充镁后可抑制Wnt/β-catenin信号通路,显著降低成骨素转录因子Cbfa-1和0s-terix的表达,上调钙化抑制因子MGP和骨保护素(osteo-protegerin, OPG),从而减轻血管钙化。用siRNA沉默TR-PM7可致Wnt/β-catenin信号通路激活。补镁可增加或维持TR-PM7的活性,下调骨钙素的表达和骨形态发生蛋白-2 (bonemorphogeneticprotein, BPM-2)的活性,增加钙化抑制因子–骨桥蛋白(osteoponyin)、骨形态发生蛋白-7 (bonemorphogeneticprotein, BPM-7)和MGP的表达,从而抑制血管钙化。

3.2. 尿酸异常

尿酸水平过高或过低都与透析患者心血管死亡风险增加明显相关 [14] 。动物实验表明,高尿酸血症可以促进VSMC向成骨/软骨样细胞转分化,进而加剧血管钙化的发生 [15] 。田芳等人的研究也表明,维持性血液透析患者的高尿酸水平血管钙化的发生呈正相关 [16] 。近些年发现血尿酸是反映维持性血液透析患者营养状况的一个良好指标,尿酸有抗氧化功能,基于大样本的DOPPS研究提出,低尿酸水平与HD患者全因死亡率及心血管死亡相关,但是未提及低尿酸水平与冠脉钙化的发生及进展是否相关,相关机制有待进一步研究 [17] 。

3.3. 糖尿病

合并糖尿病的CKD患者是冠脉钙化的高危人群 [18] 。与无糖尿病组相比,糖尿病组患者有更高的冠脉钙化患病率和更高的CACS。高血糖和胰岛素抵抗导致血管平滑肌细胞的成骨分化 [19] 。高血糖通过多种机制影响血管钙化,包括氧化应激、晚期糖基化终产物和内皮功能障碍。这些因素导致活性氧(ROS)的增加,诱导细胞表型从血管平滑肌向骨细胞转移 [20] 。体外研究表明,高血糖可引起动脉壁中层骨基质蛋白如骨形态发生蛋白BMP-2和BMP-4的表达 [21] 。

3.4. 血脂异常

血脂异常是MHD患者长期并发症之一,可能与透析过程清除体内水溶性小分子左旋肉碱,且应用肝素透析时,脂肪酶的释放减少有关 [22] 。MHD患者冠脉钙化的发生及发展与高密度脂蛋白(High density lipoprotein, HDL)降低、低密度脂蛋白(Low-density lipoprotein, LDL)升高、甘油三酯(Triglyceride, TG)升高有关 [23] [24] 。导致低HDL血症的原因可能与ESRD患者卵磷脂转移酶减少,成熟障碍及营养不良有关。HDL可以抑制细胞的自发成骨分化和矿化,可以通过抑制VSMC的转分化来预防血管钙化;近年有研究发现,MHD患者的HDL可以发生结构和功能的改变,其对心血管的保护作用被削弱,具体机制仍在探索中 [25] [26] 。LDL可以促进VSMC钙化,主要是由于脂质过氧化作用 [27] 。

3.5. 骨及矿物质代谢指标异常

MHD患者常合并骨及矿物质代谢紊乱,主要表现为高磷血症、高钙血症、高iPTH水平、高成纤维细胞生长因子23 (Fibroblast growth factor 23, FGF23)水平。在慢性肾脏疾病中,高磷可刺激由成骨转录因子osterix激活介导的脉管系统中的成骨细胞转录程序,导致血管钙化 [28] 。持续高磷状态会导致血管钙化不断进展 [29] 。由于iPTH参与调节钙磷代谢,90%的MHD患者合并继发性甲状旁腺功能亢进(secondary hyperparathyroidism, SHPT),表现为iPTH水平升高 [30] 。在血管平滑肌细胞及内皮细胞中均可发现iPTH受体,iPTH可能是影响动脉功能的众多复杂因素之一,特别是大中型动脉,过高的iPTH可导致内皮功能障碍,从而与高血压、充血性心力衰竭和心血管死亡等心血管事件紧密相关 [31] 。有研究也证实,iPTH水平越高,冠脉钙化积分越高,冠脉钙化程度越重,钙化进展速度越快 [32] 。因此控制钙、磷、iPTH水平对延缓冠脉钙化进展至关重要。

1) FGF-23是由骨细胞及成骨细胞合成并分泌,可作用于多种组织或器官,主要靶器官是肾、肠和骨,是磷和维生素D代谢的重要调节剂。肾小球滤过率下降、FGF23清除的减少、Klotho蛋白的表达减少、高磷的刺激及SHPT均是导致FGF23升高的原因 [33] 。在早期CKD患者中FGF23即可升高,且随着肾功能的恶化而进行性升高,可达正常人的100~1000倍,其升高甚至早于血磷的升高,因此对早期预测CKD-MBD的发生有重要意义。越来越多的研究发现,FGF23与冠脉钙化进展密切相关,其升高是冠脉钙化进展的独立预测因子。原因可能有:升高的FGF23破坏了慢性肾脏病患者肾–骨–甲状旁腺轴的平衡,可导致左心室肥厚及心血管钙化;动物实验表明,FGF23可以通过激活FGF受体4,直接刺激肝细胞产生炎症因子,使机体长期处于慢性炎症状态;FGF23与血脂密切相关,其与HDL呈负相关,与TG呈正相关,在合并代谢综合征的患者中,患者的FGF23水平显著升高 [34] [35] 。

2) 血清可溶性klotho蛋白降低是CACS进展的独立危险因素 [36] 。血清可溶性蛋白即sKlotho (sKL),是一种抑制衰老的基因。研究表明,随着肾功能的恶化,sKL的浓度越来越低,sKL的缺乏可以导致慢性肾脏病的软组织钙化 [37] 。sKlotho作为FGF23的辅助因子,可以激活细胞外信号调节激酶,并刺激成骨细胞生成FGF23,促进尿磷排泄,同时,sKlotho可以直接抑制肾脏钠磷共转运蛋白,进一步降低血磷,因此低sKlotho患者常伴有高磷血症,进一步加速冠脉钙化的进展 [38] 。此外,低sKlotho水平还可以通过影响高血压、糖尿病等传统危险因素来加速冠脉钙化的进展。低sKlotho可以增加过氧化物诱导的内皮细胞凋亡,降低血管内皮细胞活性,并升高酶caspase-3和caspase-9的活性,加速高血压的进展;通过调节胰岛素/胰岛素样生长因子-1 (Insulin Growth Factor-1, IGF-1)信号通路,提高糖尿病发病率 [39] [40] 。

3.6. 钙结合蛋白S100A12升高

钙结合蛋白S100A12作为预测HD患者CVD的新型生物标志物,是晚期糖基化终产物受体(receptor for advanced glycation end products, RAGE)的配体之一,主要由中性粒细胞分泌和表达,参与机体的一系列炎症性、代谢性及肿瘤性疾病的病理生理过程。HD患者中S100A12的浓度高于健康患者。即使在调整了其它炎性指标的混杂因素(如白细胞、C反应蛋白后,血清S100A12水平仍是血管内膜、中膜厚度的重要独立决定因素 [41] 。Joseph Gawdzik等人的动物实验发现,在表达人S100A12半合子的慢性肾脏病小鼠模型中发现了更为显著的血管钙化,相关成骨标志物也升高,得出S100A12增强了鼠脉管系统中CKD触发的成骨作用这一结论,细胞实验提示S100A12介导的钙化过程取决于氧化应激的产生,可能是通过涉及RAGE和NADPH-氧化酶Nox1的途径 [42] 。

4. 血管钙化的诊断

多种成像技术已被应用于完整组织中早期VC的体外分析。如高分辨率微型计算机断层扫描,其空间分辨率远高于临床CT扫描,以及使用双磷酸盐共轭近红外荧光探针进行断层扫描,检测微钙化和大钙化 [43] 。许多无创和有创成像技术已被用于评估无法取样和体外组织学分析的部位(冠状动脉、颈动脉、主动脉血管等)的VC。在临床研究方面,这些研究主要涉及某些动脉(如冠状动脉)或钙化瓣膜疾病的动脉粥样硬化负荷的评估和分期,主要的成像方式包括X线平片、超声、透视、双能X射线吸收仪(DXA)、CT和磁共振成像(MRI)。电子束CT和多层螺旋CT目前被认为是识别和定量心血管钙化的金标准 [43] 。然而,CT成像的费用以及带来的辐射暴露和潜在危害也应计入考虑中。X线平片检查较CT成像辐射大大减少,但与CT相比缺乏灵敏度和定量准确性。冠状动脉计算机断层造影比标准的非对比CT具有更高的时空分辨率,可以更详细地评估斑块组成,但由于含碘造影剂的干扰,在识别和定量钙沉积方面价值有限 [44] 。DXA可以同时测量腹主动脉钙化和骨密度。经皮超声成像为诊断浅表动脉(如股动脉、颈动脉、腘动脉、胫骨)的晚期中膜VC提供了方法 [45] 。研究表明,融合PET-CT可以检测微钙化,并可能在标准CT技术检测到宏观钙化之前提供钙化斑块状态的高度相关信息,但还需要进一步验证 [44] 。

5. 血管钙化的治疗

目前认为,血管钙化不同于骨关节及软组织的转移性钙化,一旦形成,即使肾移植也难以将其逆转。但采取必要的措施预防或延缓心血管钙化的发生,或同等条件下减弱钙化的程度是有可能的。近年来在治疗药物上取得了一些进展,如开发了不含钙的磷结合剂,新型的维生素D类似物以及拟钙剂西那卡塞,这些药物为CKD患者心血管钙化的治疗提供了契机。

5.1. 磷结合剂

磷代谢异常是目前CKD疾病研究中的热点问题,GFR下降后,血磷排泄障碍,起初肾小管代偿性排磷增加,失代偿后血磷逐渐升高。升高的血磷不仅与心血管钙化相关,而且与CKD患者的不良预后有关。治疗透析患者高磷血症的方法包括限制饮食磷的摄入、充分透析和使用磷结合剂。常用的磷结合剂可以大致划分为含钙磷结合剂和不含钙磷结合剂,2003年美国肾脏基金会.肾脏病临床实践指南(NKF.K/DOQI)推荐,对严重钙化的患者限制含钙磷结合剂的使用。2009年的KDIGO指南建议,对已经出现心血管钙化的患者限制含钙磷结合剂的剂量。

5.2. 拟钙剂

继发性甲状旁腺功能亢进导致iPTH升高,进而引发钙、磷、骨代谢异常是CKD-MBD的重要组成部分,高iPTH血症直接或间接参与了CKD患者的心血管钙化。针对iPTH升高的治疗包括应用活性维生素D及其类似物、手术切除增生的甲状旁腺腺瘤、口服拟钙剂,如西那卡塞。

5.3. 维生素D受体激动剂

基础研究发现非选择性维生素D受体激动剂(VDRAs)骨化三醇具有剂量依赖性的诱导血管钙化的作用,而选择性VDRAs则没有这种量效关系,如帕立骨化醇,与骨化三醇相比可以减少血管钙化 [46] [47] 。但是当剂量更小时,二者似乎都可以通过恢复klotho蛋白和骨桥蛋白表达对血管钙化发挥保护作用 [48] 。

5.4. 针对FGF23的治疗

尽管ESRD患者血清FGF23升高是否造成血管钙化还存在争议,FGF23是CKD.MBD发病机制中的重要环节,降低异常升高的血清FGF23水平,对减轻心血管钙化可能有临床意义。

5.5. 镁

体外研究显示,镁可能通过抑制Wnt/β-catenin信号,以剂量依赖性地抑制磷酸盐诱导的VSMCs钙化,并且可以阻止羟基磷灰石晶体的生长 [49] 。一项随机对照试验发现,在CKD患者中,MgO组的CAC评分中位数变化明显小于对照组(11.3%比39.5%),而口服吸附剂AST-120组和对照组之间CAC评分的百分比变化没有显著差异。说明氧化镁,不是AST-120,似乎对减缓CAC进展有效 [50] 。

5.6. 其他药物

由于维生素K缺乏在ESRD患者中较为普遍,且维生素K拮抗剂(如华法林)可能通过上调未羧化的基质Gla蛋白和骨钙素促进血管钙化。啮齿类动物研究表明,补充维生素K2能减少血管钙化,但缺乏临床研究证据,已有前瞻性的RCT研究正在评估补充维生素K对血管钙化进展的影响。

6. 小结

尽管目前有很多关于如何克服VC的研究,但VC病理生理学的复杂性和多样性阻碍了最佳药物靶点的发现和药物的开发。进一步深入了解血管钙化机制可能会引发多种类型治疗药物的开发,从而改善血液透析患者的心血管结局。

文章引用

梁伊凡. 维持性血液透析患者血管钙化的研究进展
Research Progress on Vascular Calcification in Maintenance Hemodialysis Patients[J]. 临床医学进展, 2024, 14(01): 63-70. https://doi.org/10.12677/ACM.2024.141009

参考文献

  1. 1. 郑梦莹. 我国预估有8200万成人患慢性肾脏病知晓率仅10% [J]. 中华医学信息导报, 2023, 38(5): 14-14.

  2. 2. Sharaf El Din, U.A., Salem, M.M. and Abdulazim, D.O. (2016) Vascular Calcification: When Should We Interfere in Chronic Kidney Disease Patients and How? World Journal of Nephrology, 5, 398-417. https://doi.org/10.5527/wjn.v5.i5.398

  3. 3. 苏凯杰. 慢性肾病患者的胰岛素抵抗与心血管并发症[J]. 医学研究生学报, 2016, 29(6): 653-657.

  4. 4. Cozzolino, M., Mazzaferro, S., Pugliese, F. and Brancaccio, D. (2008) Vascular Calcification and Uremia: What Do We Know? American Journal of Nephrology, 28, 339-346. https://doi.org/10.1159/000111827

  5. 5. Disthabanchong, S. (2012) Vascular Calcification in Chronic Kidney Dis-ease: Pathogenesis and Clinical Implication. World Journal of Nephrology, 1, 43-53. https://doi.org/10.5527/wjn.v1.i2.43

  6. 6. Fang, K., Chen, Z., Liu, M., Peng, J. and Wu, P. (2015) Apoptosis and Calcification of Vascular Endothelial Cell under Hyperhomocysteinemia. Medical Oncology, 32, Article No. 403. https://doi.org/10.1007/s12032-014-0403-z

  7. 7. Liu, J., Ma, K.L., Gao, M., Wang, C.X., Ni, J., Zhang, Y., Zhang, X.L., Liu, H., Wang, Y.L. and Liu, B.C. (2012) Inflammation Disrupts the LDL Receptor Pathway and Accelerates the Progression of Vascular Calcification in ESRD Patients. PLOS ONE, 7, e47217. https://doi.org/10.1371/journal.pone.0047217

  8. 8. Yang, X., Soohoo, M., Streja, E., Rivara, M.B., Obi, Y., Adams, S.V., Kalantar-Zadeh, K. and Mehrotra, R. (2016) Serum Magnesium Levels and Hospitalization and Mortality in Inci-dent Peritoneal Dialysis Patients: A Cohort Study. American Journal of Kidney Diseases, 68, 619-627. https://doi.org/10.1053/j.ajkd.2016.03.428

  9. 9. Ishimura, E., Okuno, S., Yamakawa, T., Inaba, M. and Nishizawa, Y. (2007) Serum Magnesium Concentration Is a Significant Predictor of Mortality in Maintenance Hemodialysis Patients. Magnesium Research, 20, 237-244.

  10. 10. Sakaguchi, Y., Fujii, N., Shoji, T., Hayashi, T., Rakugi, H., Iseki, K., Tsu-bakihara, Y., Isaka, Y. and Committee of Renal Data Registry of the Japanese Society for Dialysis Therapy (2014) Mag-nesium Modifies the Cardiovascular Mortality Risk Associated with Hyperphosphatemia in Patients Undergoing Hemo-dialysis: A Cohort Study. PLOS ONE, 9, e116273. https://doi.org/10.1371/journal.pone.0116273

  11. 11. Kircelli, F., Peter, M.E., Ok, E.S., Celenk, F.G., Yilmaz, M., Steppan, S., Asci, G., Ok, E. and Passlick-Deetjen, J. (2012) Magne-sium Reduces Calcification in Bovine Vascular Smooth Muscle Cells in a Dose-Dependent Manner. Nephrology Dialysis Transplantation, 27, 514-521. https://doi.org/10.1093/ndt/gfr321

  12. 12. Montes de Oca, A., Guerrero, F., Mar-tinez-Moreno, J.M., Madueño, J.A., Herencia, C., Peralta, A., Almaden, Y., Lopez, I., Aguilera-Tejero, E., Gundlach, K., Büchel, J., Peter, M.E., Passlick-Deetjen, J., Rodriguez, M. and Muñoz-Castañeda, J.R. (2014) Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells. PLOS ONE, 9, e89525. https://doi.org/10.1371/journal.pone.0089525

  13. 13. 陈西霞, 张凌, 王勇, 等. 低镁血症加重慢性肾脏病患者心血管钙化的病理机制[J]. 临床肾脏病杂志, 2021, 21(7): 594-598.

  14. 14. Hsu, S.P., Pai, M.F., Peng, Y.S., Chiang, C.K., Ho, T.I. and Hung, K.Y. (2004) Serum Uric Acid Levels Show a “J-Shaped” Association with All-Cause Mortality in Haemodialysis Patients. Nephrology Dialysis Transplantation, 19, 457-462. https://doi.org/10.1093/ndt/gfg563

  15. 15. 宋哲, 赵阳, 王宪, 徐明江. 慢性肾功能衰竭继发高尿酸血症促进血管钙化[J]. 生理学报, 2016, 68(6): 709-715.

  16. 16. 田芳, 李浩, 刘雪梅, 等. 维持性血液透析患者血尿酸与冠脉钙化的相关性研究[J]. 中国中西医结合肾病杂志, 2018, 19(4): 324-326.

  17. 17. Latif, W., Karaboyas, A., Tong, L., Winchester, J.F., Arrington, C.J., Pisoni, R.L., Marshall, M.R., Kleophas, W., Levin, N.W., Sen, A., Robinson, B.M. and Saran, R. (2011) Uric acid Levels and All-Cause and Cardiovascular Mortality in the Hemodialysis Population. Clin-ical Journal of the American Society of Nephrology, 6, 2470-2477. https://doi.org/10.2215/CJN.00670111

  18. 18. Russo, D., Morrone, L.F., Imbriaco, M., Pota, A., Russo, L., Scog-namiglio, B. and Sorrentino, R. (2013) Coronary Artery Calcification and Outcomes in Diabetic Patients with and without Chronic Kidney Disease. Blood Purification, 36, 17-20. https://doi.org/10.1159/000350580

  19. 19. Fadini, G.P., Pau-letto, P., Avogaro, A. and Rattazzi, M. (2007) The Good and the Bad in the Link between Insulin Resistance and Vascu-lar Calcification. Atherosclerosis, 193, 241-244. https://doi.org/10.1016/j.atherosclerosis.2007.05.015

  20. 20. Cano-Megías, M., Bouarich, H., Guisado-Vasco, P., Pérez Fernández, M., de Arriba-de la Fuente, G., Álvarez-Sanz, C. and Rodríguez-Puyol, D. (2019) Coronary Artery Calcification in Patients with Diabetes Mellitus and Advanced Chronic Kidney Disease. Endocrinología, Diabetes y Nu-trición (Engl Ed), 66, 297-304. https://doi.org/10.1016/j.endien.2018.09.003

  21. 21. Chen, N.X., Duan, D., O’Neill, K.D. and Moe, S.M. (2006) High Glucose Increases the Expression of Cbfa1 and BMP-2 and Enhances the Calcification of Vascular Smooth Muscle Cells. Nephrology Dialysis Transplantation, 21, 3435-3442. https://doi.org/10.1093/ndt/gfl429

  22. 22. 孙春晓, 郭兆安. 慢性肾脏病血脂代谢紊乱的影响因素及其机制的研究进展[J]. 中国中西医结合肾病杂志, 2014(6): 546-548.

  23. 23. Wang, Y.N., Sun, Y., Wang, Y. and Jia, Y.L. (2015) Serum S100A12 and Progression of Coronary Ar-tery Calcification over 4 Years in Hemodialysis Patients. American Journal of Nephrology, 42, 4-13. https://doi.org/10.1159/000438869

  24. 24. Tamashiro, M., Iseki, K., Sunagawa, O., Inoue, T., Higa, S., Afuso, H. and Fukiyama, K. (2001) Significant Association between the Progression of Coronary Artery Calcification and Dyslipidemia in Patients on Chronic Hemodialysis. American Journal of Kidney Diseases, 38, 64-69. https://doi.org/10.1053/ajkd.2001.25195

  25. 25. Kameda, T., Ohkawa, R., Yano, K., Usami, Y., Miyazaki, A., Matsuda, K., Kawasaki, K., Sugano, M., Kubota, T. and Tozuka, M. (2015) Effects of Myeloperoxidase-Induced Oxida-tion on Antiatherogenic Functions of High-Density Lipoprotein. Journal of Lipids, 2015, Article ID: 592594. https://doi.org/10.1155/2015/592594

  26. 26. Yamamoto, S., Yancey, P.G., Ikizler, T.A., Jerome, W.G., Kaseda, R., Cox, B., Bian, A., Shintani, A., Fogo, A.B., Linton, M.F., Fazio, S. and Kon, V. (2012) Dysfunctional High-Density Lipoprotein in Patients on Chronic Hemodialysis. Journal of the American College of Cardiology, 60, 2372-2379. https://doi.org/10.1016/j.jacc.2012.09.013

  27. 27. Parhami, F., Morrow, A.D., Balucan, J., Leitinger, N., Watson, A.D., Tintut, Y., Berliner, J.A. and Demer, L.L. (1997) Lipid Oxidation Products Have Opposite Effects on Calcifying Vascular Cell and Bone Cell Differentiation. A Possible Explanation for the Paradox of Arterial Calcification in Osteo-porotic Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 680-687. https://doi.org/10.1161/01.ATV.17.4.680

  28. 28. Mathew, S., Tustison, K.S., Sugatani, T., Chaudhary, L.R., Rifas, L. and Hruska, K.A. (2008) The Mechanism of Phosphorus as a Cardiovascular Risk Factor in CKD. Journal of the Amer-ican Society of Nephrology, 19, 1092-1105. https://doi.org/10.1681/ASN.2007070760

  29. 29. Kurnatowska, I., Grzelak, P., Kaczmarska, M., Stefańczyk, L. and Nowicki, M. (2011) Serum Osteoprotegerin Is a Predictor of Progression of Atherosclerosis and Coronary Calcification in Hemodialysis Patients. Nephron Clinical Practice, 117, c297-c304. https://doi.org/10.1159/000321169

  30. 30. Block, G.A., Klassen, P.S., Lazarus, J.M., Ofsthun, N., Lowrie, E.G. and Chertow, G.M. (2004) Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis. Journal of the American Society of Nephrology, 15, 2208-2218. https://doi.org/10.1097/01.ASN.0000133041.27682.A2

  31. 31. Bosworth, C., Sachs, M.C., Duprez, D., Hoofnagle, A.N., Ix, J.H., Jacobs Jr., D.R., Peralta, C.A., Siscovick, D.S., Kestenbaum, B. and de Boer, I.H. (2013) Parathyroid Hormone and Arterial Dysfunction in the Multi-Ethnic Study of Atherosclerosis. Clinical Endocrinology (Oxf), 79, 429-436. https://doi.org/10.1111/cen.12163

  32. 32. Coen, G., Manni, M., Mantella, D., Pierantozzi, A., Balducci, A., Condò, S., DiGiulio, S., Yancovic, L., Lippi, B., Manca, S., Morosetti, M., Pellegrino, L., Simonetti, G., Gallucci, M.T. and Splendiani, G. (2007) Are iPTH Serum Levels Predictive of Coronary Calcifications in Haemodialysis Patients? Nephrology Dialysis Transplantation, 22, 3262-3267. https://doi.org/10.1093/ndt/gfm370

  33. 33. Yamashita, T., Yoshioka, M. and Itoh, N. (2000) Identification of a Novel Fibroblast Growth Factor, FGF-23, Preferentially Expressed in the Ventrolateral Thalamic Nucleus of the Brain. Biochemical and Biophysical Research Communications, 277, 494-498. https://doi.org/10.1006/bbrc.2000.3696

  34. 34. Singh, S., Grabner, A., Yanucil, C., Schramm, K., Czaya, B., Krick, S., Czaja, M.J., Bartz, R., Abraham, R., Di Marco, G.S., Brand, M., Wolf, M. and Faul, C. (2016) Fibroblast Growth Factor 23 Directly Targets Hepatocytes to Promote Inflammation in Chronic Kidney Disease. Kidney Interna-tional, 90, 985-996. https://doi.org/10.1016/j.kint.2016.05.019

  35. 35. Mirza, M.A., Alsiö, J., Hammarstedt, A., Erben, R.G., Michaëlsson, K., Tivesten, A., Marsell, R., Orwoll, E., Karlsson, M.K., Ljunggren, O., Mellström, D., Lind, L., Ohlsson, C. and Lars-son, T.E. (2011) Circulating Fibroblast Growth Factor-23 Is Associated with Fat Mass and Dyslipidemia in Two Inde-pendent Cohorts of Elderly Individuals. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 219-227. https://doi.org/10.1161/ATVBAHA.110.214619

  36. 36. Zheng, S., Zheng, Y., Jin, L., Zhou, Z. and Li, Z. (2018) Re-lationship between Serum Soluble Klotho Protein and Coronary Artery Calcification and Prognosis in Patients on Maintenance Hemodialysis. Iranian Journal of Public Health, 47, 510-518.

  37. 37. Hu, M.C., Shi, M., Zhang, J., Qui-ñones, H., Griffith, C., Kuro-o, M. and Moe, O.W. (2011) Klotho Deficiency Causes Vascular Calcification in Chronic Kidney Disease. Journal of the American Society of Nephrology, 22, 124-136. https://doi.org/10.1681/ASN.2009121311

  38. 38. Hum, J.M., O’Bryan, L.M., Tatiparthi, A.K., Cass, T.A., Clinken-beard, E.L., Cramer, M.S., Bhaskaran, M., Johnson, R.L., Wilson, J.M., Smith, R.C. and White, K.E. (2017) Chronic Hyperphosphatemia and Vascular Calcification Are Reduced by Stable Delivery of Soluble Klotho. Journal of the Amer-ican Society of Nephrology, 28, 1162-1174. https://doi.org/10.1681/ASN.2015111266

  39. 39. Ikushima, M., Rakugi, H., Ishikawa, K., Maekawa, Y., Yamamoto, K., Ohta, J., Chihara, Y., Kida, I. and Ogihara, T. (2006) Anti-Apoptotic and Anti-Senescence Effects of Klotho on Vas-cular Endothelial Cells. Biochemical and Biophysical Research Communications, 339, 827-832. https://doi.org/10.1016/j.bbrc.2005.11.094

  40. 40. Utsugi, T., Ohno, T., Ohyama, Y., Uchiyama, T., Saito, Y., Matsumura, Y., Aizawa, H., Itoh, H., Kurabayashi, M., Kawazu, S., Tomono, S., Oka, Y., Suga, T., Kuro-o, M., Na-beshima, Y. and Nagai, R. (2000) Decreased Insulin Production and Increased Insulin Sensitivity in the Klotho Mutant Mouse, a Novel Animal Model for Human Aging. Metabolism, 49, 1118-1123. https://doi.org/10.1053/meta.2000.8606

  41. 41. Mori, Y., Kosaki, A., Kishimoto, N., Kimura, T., Iida, K., Fukui, M., Nakajima, F., Nagahara, M., Urakami, M., Iwasaka, T. and Matsubara, H. (2009) Increased Plasma S100A12 (EN-RAGE) Levels in Hemodialysis Patients with Atherosclerosis. American Journal of Nephrology, 29, 18-24. https://doi.org/10.1159/000148646

  42. 42. Gawdzik, J., Mathew, L., Kim, G., Puri, T.S. and Hofmann Bowman, M.A. (2011) Vascular Remodeling and Arterial Calcification Are Directly Mediated by S100A12 (EN-RAGE) in Chronic Kidney Disease. American Journal of Nephrology, 33, 250-259. https://doi.org/10.1159/000324693

  43. 43. Nakahara, T., Dweck, M.R., Narula, N., et al. (2017) Coronary Artery Calcification: From Mechanism to Molecular Imaging. JACC: Cardiovascular Imaging, 10, 582-593. https://doi.org/10.1016/j.jcmg.2017.03.005

  44. 44. Wang, Y., Osborne, M.T., Tung, B., et al. (2018) Imaging Cardi-ovascular Calcification. Journal of the American Heart Association, 7, e008564. https://doi.org/10.1161/JAHA.118.008564

  45. 45. Smith, E.R., Hewitson, T.D. and Holt, S.G. (2019) Diagnostic Tests for Vascular Calcification. Advances in Chronic Kidney Disease, 26, 445-463. https://doi.org/10.1053/j.ackd.2019.07.001

  46. 46. Lopez, I., Mendoza, F.J., Aguilera-Tejero, E., et al. (2008) The Ef-fect of Calcitriol, Paricalcitol, and a Calcimimetic on Extraosseous Calcifications in Uremic Rats. Kidney International, 73, 300-307. https://doi.org/10.1038/sj.ki.5002675

  47. 47. Cozzolino, M., Staniforth, M.E., Liapis, H., et al. (2003) Sevelamer Hydrochloride Attenuates Kidney and Cardiovascular Calcifications in Long-Term Experimental Uremia. Kid-ney International, 64, 1653-1661. https://doi.org/10.1046/j.1523-1755.2003.00284.x

  48. 48. Lau, W.L., Leaf, E.M., Hu, M.C., et al. (2012) Vitamin D Receptor Agonists Increase Klotho and Osteopontin While Decreasing Aortic Calcification in Mice with Chronic Kidney Disease Fed a High Phosphate Diet. Kidney International, 82, 1261-1270. https://doi.org/10.1038/ki.2012.322

  49. 49. Oca, A., Guerrero, F., Martinez-Moreno, J.M., et al. (2014) Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells. PLOS ONE, 9, e89525. https://doi.org/10.1371/journal.pone.0089525

  50. 50. Sakaguchi, Y., Hamano, T., Obi, Y., et al. (2019) A Random-ized Trial of Magnesium Oxide and Oral Carbon Adsorbent for Coronary Artery Calcification in Predialysis CKD. JASN, 30, 1073-1085. https://doi.org/10.1681/ASN.2018111150

期刊菜单